spacer
spacer

PDBsum entry 1qqi

Go to PDB code: 
protein links
Transcription PDB id
1qqi

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
104 a.a. *
* Residue conservation analysis
PDB id:
1qqi
Name: Transcription
Title: Solution structure of the DNA-binding and transactivation domain of phob from escherichia coli
Structure: Phosphate regulon transcriptional regulatory protein phob. Chain: a. Fragment: c-terminal domain. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 1 models
Authors: H.Okamura,S.Hanaoka,A.Nagadoi,K.Makino,Y.Nishimura,Riken Structural Genomics/proteomics Initiative (Rsgi)
Key ref:
H.Okamura et al. (2000). Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. J Mol Biol, 295, 1225-1236. PubMed id: 10653699 DOI: 10.1006/jmbi.1999.3379
Date:
07-Jun-99     Release date:   07-Jun-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0AFJ5  (PHOB_ECOLI) -  Phosphate regulon transcriptional regulatory protein PhoB from Escherichia coli (strain K12)
Seq:
Struc:
229 a.a.
104 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1006/jmbi.1999.3379 J Mol Biol 295:1225-1236 (2000)
PubMed id: 10653699  
 
 
Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
H.Okamura, S.Hanaoka, A.Nagadoi, K.Makino, Y.Nishimura.
 
  ABSTRACT  
 
PhoB is a transcriptional activator that binds to the phosphate box in the promoters of the phosphate genes of Escherichia coli. PhoB contains two functional domains, an N-terminal phosphorylation domain and a C-terminal DNA-binding/transactivation domain. Here, the three-dimensional structure of the DNA-binding/transactivation domain has been determined by NMR. It consists of an N-terminal four-stranded beta-sheet, a central three helical bundle and a C-terminal beta-hairpin. The second and third helices form a helix-turn-helix (HTH) variant containing a longer turn than the corresponding turn of the classical HTH motif. The overall architecture is very close to that of the OmpR DNA-binding/transactivation domain, however, the conformation of the long turn region of PhoB, a putative interaction site for the RNA polymerase sigma subunit, is entirely different from that of the corresponding turn of OmpR, which interacts with the alpha subunit. In addition, the third helix of PhoB is three amino acid residues longer than the corresponding helix of OmpR. The binding site of PhoB is a TGTCA sequence and the phospahte box contains the two binding sites. NMR studies of the complexes of the PhoB DNA-binding/transactivation domain bound to several different DNA molecules have revealed that two PhoB molecules bind in a tandem array on the phosphate box. In each complex of PhoB the third helix of the DNA-binding/transactivation domain is likely to recognize the TGTCA sequence from the major groove of DNA and the C-terminal beta-hairpin contacts on the minor groove of the 3' site out of the TGTCA sequence in a non-specific manner. The long turn region facing outward is likely to interact with the sigma subunit.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. Structural comparison of the DNA-binding/transactivation domains of PhoB and OmpR. (a) Stereoview of a superposition of the structures of the DNA-binding/transactivation domains of PhoB and OmpR. (b) A structural comparison of the putative interaction sites of PhoB and OmpR for RNA polymerase. Each of the loop regions in the HTH variant motif is colored in yellow. Amino acids that affect the interaction with RNA polymerase are drawn in red.
Figure 9.
Figure 9. A model structure of the complex of two DNA-binding/transactivation domains of PhoB on the phosphate box. The structure of DNA is assumed to be a normal B-form. We make no attempt to optimize the interaction between DNA and the protein by inducing the DNA-curvature [Makino et al 1996]. Residues that are responsible for DNA-binding are colored in red and blue by the same criteria as in Figure 8. Residues that are colored in purple have both characters of red and blue residues.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2000, 295, 1225-1236) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19199332 K.Wollschläger, K.Gaus, A.Körnig, R.Eckel, S.D.Wilking, M.McIntosh, Z.Majer, A.Becker, R.Ros, D.Anselmetti, and N.Sewald (2009).
Single-molecule experiments to elucidate the minimal requirement for DNA recognition by transcription factor epitopes.
  Small, 5, 484-495.  
19455134 M.S.Antunes, K.J.Morey, N.Tewari-Singh, T.A.Bowen, J.J.Smith, C.T.Webb, H.W.Hellinga, and J.I.Medford (2009).
Engineering key components in a synthetic eukaryotic signal transduction pathway.
  Mol Syst Biol, 5, 270.  
19820095 S.Gupta, A.Pathak, A.Sinha, and D.Sarkar (2009).
Mycobacterium tuberculosis PhoP recognizes two adjacent direct-repeat sequences to form head-to-head dimers.
  J Bacteriol, 191, 7466-7476.  
19371748 T.R.Mack, R.Gao, and A.M.Stock (2009).
Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB.
  J Mol Biol, 389, 349-364.  
18065544 A.Sinha, S.Gupta, S.Bhutani, A.Pathak, and D.Sarkar (2008).
PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation.
  J Bacteriol, 190, 1317-1328.  
18186481 T.Yamane, H.Okamura, M.Ikeguchi, Y.Nishimura, and A.Kidera (2008).
Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment.
  Proteins, 71, 1970-1983.
PDB code: 2z33
17242520 C.H.Trinh, Y.Liu, S.E.Phillips, and M.K.Phillips-Jones (2007).
Structure of the response regulator VicR DNA-binding domain.
  Acta Crystallogr D Biol Crystallogr, 63, 266-269.
PDB code: 2hwv
17491010 E.Hong, H.M.Lee, H.Ko, D.U.Kim, B.Y.Jeon, J.Jung, J.Shin, S.A.Lee, Y.Kim, Y.H.Jeon, C.Cheong, H.S.Cho, and W.Lee (2007).
Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism.
  J Biol Chem, 282, 20667-20675.
PDB codes: 2hqn 2hqo 2hqr
17477873 M.R.Duplessis, K.G.Karol, E.T.Adman, L.Y.Choi, M.A.Jacobs, and R.A.Cattolico (2007).
Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae).
  BMC Evol Biol, 7, 70.  
17541776 W.Juntarajumnong, T.A.Hirani, J.M.Simpson, A.Incharoensakdi, and J.J.Eaton-Rye (2007).
Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system.
  Arch Microbiol, 188, 389-402.  
16434396 E.Nowak, S.Panjikar, P.Konarev, D.I.Svergun, and P.A.Tucker (2006).
The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis.
  J Biol Chem, 281, 9659-9666.
PDB code: 1ys7
16717279 Z.C.Yuan, R.Zaheer, R.Morton, and T.M.Finan (2006).
Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria.
  Nucleic Acids Res, 34, 2686-2697.  
16428413 Z.C.Yuan, R.Zaheer, and T.M.Finan (2006).
Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti.
  J Bacteriol, 188, 1089-1102.  
15882427 A.Sola-Landa, A.Rodríguez-García, E.Franco-Domínguez, and J.F.Martín (2005).
Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes.
  Mol Microbiol, 56, 1373-1385.  
15978084 F.Depardieu, P.Courvalin, and A.Kolb (2005).
Binding sites of VanRB and sigma70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524.
  Mol Microbiol, 57, 550-564.  
16154092 P.Bachhawat, G.V.Swapna, G.T.Montelione, and A.M.Stock (2005).
Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states.
  Structure, 13, 1353-1363.
PDB code: 1zes
15906400 R.Eckel, S.D.Wilking, A.Becker, N.Sewald, R.Ros, and D.Anselmetti (2005).
Single-molecule experiments in synthetic biology: an approach to the affinity ranking of DNA-binding peptides.
  Angew Chem Int Ed Engl, 44, 3921-3924.  
15028686 H.Geng, S.Nakano, and M.M.Nakano (2004).
Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation.
  J Bacteriol, 186, 2028-2037.  
15197250 M.Ansaldi, L.Théraulaz, and V.Méjean (2004).
TorI, a response regulator inhibitor of phage origin in Escherichia coli.
  Proc Natl Acad Sci U S A, 101, 9423-9428.  
12486062 C.Birck, Y.Chen, F.M.Hulett, and J.P.Samama (2003).
The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface.
  J Bacteriol, 185, 254-261.
PDB code: 1mvo
12486069 D.Walthers, V.K.Tran, and L.J.Kenney (2003).
Interdomain linkers of homologous response regulators determine their mechanism of action.
  J Bacteriol, 185, 317-324.  
12887901 E.S.Krukonis, and V.J.DiRita (2003).
DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae.
  Mol Cell, 12, 157-165.  
12622817 T.Stein, S.Heinzmann, P.Kiesau, B.Himmel, and K.D.Entian (2003).
The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis.
  Mol Microbiol, 47, 1627-1636.  
12837793 V.L.Robinson, T.Wu, and A.M.Stock (2003).
Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily.
  J Bacteriol, 185, 4186-4194.
PDB code: 1p2f
12486063 Y.Chen, C.Birck, J.P.Samama, and F.M.Hulett (2003).
Residue R113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure.
  J Bacteriol, 185, 262-273.  
12176382 H.Zhao, T.Msadek, J.Zapf, Madhusudan, J.A.Hoch, and K.I.Varughese (2002).
DNA complexed structure of the key transcription factor initiating development in sporulating bacteria.
  Structure, 10, 1041-1050.
PDB code: 1lq1
11976297 I.N.Olekhnovich, and R.J.Kadner (2002).
Mutational scanning and affinity cleavage analysis of UhpA-binding sites in the Escherichia coli uhpT promoter.
  J Bacteriol, 184, 2682-2691.  
11839496 J.L.Huffman, and R.G.Brennan (2002).
Prokaryotic transcription regulators: more than just the helix-turn-helix motif.
  Curr Opin Struct Biol, 12, 98.  
12351839 K.Shindoh, K.Maenaka, T.Akiba, H.Okamura, Y.Nishimura, K.Makino, and Y.Shirakihara (2002).
Crystallization and preliminary X-ray diffraction studies on the DNA-binding domain of the transcriptional activator protein PhoB from Escherichia coli.
  Acta Crystallogr D Biol Crystallogr, 58, 1862-1864.  
12123454 K.Yamamoto, H.Ogasawara, N.Fujita, R.Utsumi, and A.Ishihama (2002).
Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability.
  Mol Microbiol, 45, 423-438.  
11849552 L.López-Maury, M.García-Domínguez, F.J.Florencio, and J.C.Reyes (2002).
A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803.
  Mol Microbiol, 43, 247-256.  
11972782 P.J.Sheldon, S.B.Busarow, and C.R.Hutchinson (2002).
Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI.
  Mol Microbiol, 44, 449-460.  
11244058 M.P.Allen, K.B.Zumbrennen, and W.R.McCleary (2001).
Genetic evidence that the alpha5 helix of the receiver domain of PhoB is involved in interdomain interactions.
  J Bacteriol, 183, 2204-2211.  
11489853 R.M.Harris, D.C.Webb, S.M.Howitt, and G.B.Cox (2001).
Characterization of PitA and PitB from Escherichia coli.
  J Bacteriol, 183, 5008-5014.  
11286862 S.Seredick, and G.B.Spiegelman (2001).
Lessons and questions from the structure of the Spo0A activation domain.
  Trends Microbiol, 9, 148-151.  
11073900 D.W.Ellison, and W.R.McCleary (2000).
The unphosphorylated receiver domain of PhoB silences the activity of its output domain.
  J Bacteriol, 182, 6592-6597.  
11069648 R.J.Lewis, S.Krzywda, J.A.Brannigan, J.P.Turkenburg, K.Muchová, E.J.Dodson, I.Barák, and A.J.Wilkinson (2000).
The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography.
  Mol Microbiol, 38, 198-212.
PDB code: 1fc3
10986267 S.K.Kim, S.Kimura, H.Shinagawa, A.Nakata, K.S.Lee, B.L.Wanner, and K.Makino (2000).
Dual transcriptional regulation of the Escherichia coli phosphate-starvation-inducible psiE gene of the phosphate regulon by PhoB and the cyclic AMP (cAMP)-cAMP receptor protein complex.
  J Bacteriol, 182, 5596-5599.  
10972837 X.Zhang, and F.M.Hulett (2000).
ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation.
  Mol Microbiol, 37, 1208-1219.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer