Figure 2 - full size

Figure 2.
Fig. 2. A 30 Å long ammonia channel connects the two remote active centers of GatCAB. (A) The active site of a glutaminase reaction in GatA is composed of the conserved Ser-cis-Ser-Lys catalytic scissors shown as magenta stick representations. Residues involved in the hydrogen-bonded network (dashed black lines) in the active site are labeled. A plausible hydrolytic water molecule is colored light blue and is on the opposite side of a supposed ammonia product (orange sphere). The Fo-Fc electron density map (contoured at 3 , green mesh) calculated without the glutamine and Ser178 clearly demonstrates the tetrahedral covalent intermediate of the glutamine with Ser178. (B) The environment of the ADP binding site shown together with the omit Fo-Fc electron density map (2 , blue). Residues contributing to ADP (ball-and-stick) recognition are represented as stick models with labels. Two water molecules (light blue spheres) are coordinated to a magnesium ion (purple) and to ß phosphate. (C) The putative ammonia channel was calculated using the program CAVER (26), with the structure of the water-omitted GatCAB/glutamine complex. Glu125B blocking the ammonia transport route is shown in a space-filling representation for clarity. The channel was filled with a row of solvent molecules (light blue spheres), which interact with the conserved polar residues (colored sticks) along the pathway. A bound glutamine in GatA is drawn as spheres indicating the start point of the channel. (D) Schematic representation of the ammonia channel. Residues defining the channel are colored corresponding to their properties: red, negative; blue, positive; black, nonpolar side chain; gray, main chain. Hydrolyzed ammonia is colored orange. Strictly conserved residues are underlined and hydrogen-bonding distances are indicated (Å). The presumed movement of the Glu125B gate to open the ammonia channel is indicated by a black arrow.