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Abstract

Understanding how genetic variation propagate to differences in phenotypes in individuals
is an ongoing challenge in genetics. Genome-wide association studies have allowed for
the identification of many trait-associated genomic loci. However, they are limited in their
inability to explain the altered cellular mechanism. Genetic variation can drive disease by
altering a range of mechanisms, including signalling networks, transcription factor (TF)
binding, and protein folding. Understanding the impact of variants on such processes has
key implications in therapeutics, drug development, protein engineering and more. This
thesis aims to utilise computational predictors to shed light on how cellular mechanisms
are altered in the context of genetic variation and better understand how they drive both
molecular and organism-level phenotypes. Many binding events in the cell are mediated by
short stretches of sequence motifs. The ability to discover these underlying rules of binding
could greatly aid our understanding of variant impact. Kinase-substrate phosphorylation
is one of the most prominent post-translational modifications (PTMs) which is mediated
by such motifs. We first describe a computational method which utilises interaction and
phosphorylation data to predict sequence preferences of kinases. Our method was applied to
57% of human kinases capturing known well-characterised and novel kinase specificities.
We experimentally validate four understudied kinases to show that predicted models closely
resemble true specificities. We further demonstrate that this method can be applied to different
organisms and can be used for other phospho-recognition domains. The described approach
allows for an extended repertoire of sequence specificities to be generated, particularly in
organisms for which little data is available. TF-DNA binding is another mechanism driven
by sequence motifs, which is key for the tight regulation of gene expression and can be
greatly altered by genetic variation. We have comprehensively benchmarked current methods
used to predict non-coding variant effects on TF-DNA binding by employing over 20,000
compiled allele-specific binding variants across 43 TFs. We show that machine learning-
based approaches significantly outperform more rudimentary methods such as the position
weight matrix. We further note that models for many TFs with distinct binding specificities
were unable to accurately assess the impact of variants. For these TFs, we explore alternative

mechanisms underlying TF-binding, such as methylation, co-operative binding, and DNA



shape that drive poor performance. Our results demonstrate the complexity of predicting
non-coding variant effects and the importance of incorporating alternative mechanisms into
models. Finally, we describe a comprehensive effort to compile and benchmark common
sequence and structure-based predictors of mutational consequences and predict the effect of
coding and non-coding variants in the reference genomes of H. sapiens, S. cerevisiae, and
E. coli. Predicted mechanisms include the impact on protein stability, interaction interfaces,
PTMs and TF-binding. These variant effects are provided through mutfunc, a fast and
intuitive web tool by which users can interactively explore pre-computed mechanistic variant
impact predictions. We validate computed predictions by analysing known pathogenic
disease variants and provide mechanistic hypotheses for causal variants of unknown function.
We further employ our predictions to devise gene burden scores in S. cerevisiae strains that
are used to perform gene-phenotype association tests and uncover several known and novel

associations.
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Chapter 1
Introduction

The cell is an intricate system of interconnected components governing the phenotype through
a combination of genetic and environmental factors. Changes to the genetic composition of
an individual that are either inherited or arise during development are one of the major driving
forces of phenotypic variability both at the organismal and molecular level. Even the simplest
changes in the genome can alter protein levels or function, ultimately interfering with critical
biological processes that then manifest as changes in molecular and organismal phenotypes.
The advent of next-generation sequencing (NGS) and omics profiling technologies, has
resulted in a substantial increase in the availability of genomes and corresponding phenotypic
readouts [1, 2]. This has unravelled the era of modern genetics and has significantly propelled
the bridging of the genotype-phenotype gap. The increased availability of such data has
also led to the development of computational and statistical methods that are critical to
implicating thousands of genetic loci to changes in phenotype [3]. Understanding the
articulate relationship between genotype and phenotype is an ongoing challenge in genetics
and one that is the basis of this thesis.

1.1 Genetic variation

Genetic variation refers to changes in the underlying DNA and range from single nucleotide
variation (SNV) to larger chromosomal rearrangements, such as copy number variation
(CNVs). SNVs involve a single substitution from one nucleotide to another, insertions or
deletions occur when a stretch of sequence with one or more bases are either inserted or
removed from the genome and CNVs occur when regions of the genome are repeated or
deleted. SN'Vs are, by far, the most common form of genetic variation with over 14 million

identified in the human genome alone [4]. As such, SNVs will be the primary focus of this
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thesis and any reference to genetic variation henceforth can be assumed to be SNVs unless
otherwise stated.

SNVs exist throughout the genome in both noncoding and coding regions and are re-
sponsible for a wide range of phenotypic consequences [5]. Those which are observed in
coding regions can be categorized into nonsynonymous (Or missense), Synonymous, nonsense
and nonstop. Nonsynonymous SNVs are those that result in an amino acid substitution,
whereas synonymous SNVs, due to the redundancy of the genetic code, results in a change
on the DNA level but not to the encoded amino acid. Although studies have shown that
synonymous SNVs can alter messenger RNA (mRNA), splicing [6], mRNA stability [7]
and protein folding [8] because no changes are made to the amino acid sequence they are
generally often benign relative to their nonsynonymous counterparts [9]. The remaining
categories include nonsense SN'Vs, which introduce a premature stop codon in the protein
sequence and nonstop SNVs that results in the loss of a stop codon, both of which have
detrimental effects on protein function [10].

Within a population, SNV typically exhibit two alleles, where one is more frequently
observed than the other. These are referred to as the major and minor alleles, respectively,
and the frequency at which they occur in the population is referred to as the allele frequency.
For instance, if an SNV with the minor allele, T, occurs in 10% of the population, it has
a minor allele frequency (MAF) of 0.10. If the minor allele of an SNV is prevalent in the
population, typically at a MAF of greater than 1%, it is often referred to as a single nucleotide
polymorphism (SNP).

Genetic variation is acquired by an individual through one of two ways. Germline
variants are inherited from maternal and paternal genomes during homologous recombination,
whereas somatic variants arise throughout the lifespan of the individual. In diploid organisms
such as human, the acquired SNV can be classified as heterozygous or homozygous, depending
on whether the allele is observed on one or both copies of the genome, respectively.

1.2 Genotype-phenotype association

Over the past decade, there has been significant progress towards bridging the genotype-
phenotype gap. This has been propelled by the development of sophisticated statistical
methods aimed at associating genetic variation to complex phenotypic traits, both on the
organismic and molecular level. Such methods have helped identify many causal variants in
both human and model organisms, and the increasing availability of genotype and phenotype
data is further enabling additional discoveries. Here, I briefly discuss the approaches taken

by association-based methods, the advances made and challenges faced.



1.2 Genotype-phenotype association 3

1.2.1 Genome-wide association studies

A key challenge of genetics is to identify the role risk factors play in Mendelian diseases
that can be linked to a single gene, such as cystic fibrosis and muscular dystrophy, as well as
common complex disorders that are instead governed by a more complex genetic architecture,
such as heart disease and obesity. Linkage studies, a process involving the tracking of genetic
variation through family lineages, have been pivotal at pinpointing causal genetic variants in
Mendelian diseases such as cystic fibrosis [11] and tuberous sclerosis [12]. Such phenotypes
are often highly penetrant, meaning the presence of the causal allele often implies a high
likelihood of exhibiting the phenotype. However, these approaches often do not extrapolate
well to phenotypes of a more complex genetic nature.

With the advent of sequencing and genotyping technologies, large-scale approaches
employing statistical means to establish a map between genomic loci and phenotype have
become increasingly abundant and key to identifying risk factors in human disease. Genome-
wide association studies (GWAS) is the most common approach, which interrogates, on a
genome-wide scale, millions of SNPs for associations to a trait of interest. Unlike linkage
analysis, GWASs are able to dissect complex phenotypes due to the abundance of data
involved and have been largely successful at identifying causal variants for a multitude of
both Mendelian and complex diseases, those of which include sickle cell anaemia [13],
type 2 diabetes [14], inflammatory bowel disease [15], multiple sclerosis [16, 17] and
obesity [18, 19]. In addition to disease phenotypes, GWASs have also associated genetic
variation with other physical traits, such as height [20], hair colour [21], and even facial
morphology [22]. Another field to which GWAS is increasingly contributing to is that of
pharmacogenomics where many genetic variants have been associated with drug efficacy,
metabolism, and toxicity [23-25]. These results, in turn, can be used to modulate drug
dosage to patients, giving rise to the era of personalised medicine. GWAS has also been
applied to several plant species [26, 27] and bacterial species [28], shedding light on the
genetic architecture of other organisms.

The design of a GWASSs relies on the concept of linkage disequilibrium (LD), which is
defined as the non-random co-occurrence of alleles of two SNPs in close proximity to one
another and is caused by forces such as natural selection and random drift [29, 30]. Because
genomic loci in close proximity are more likely to co-segregate during recombination, they are
therefore more likely to co-occur. Regions in the genome with a group of co-occurring alleles
are referred to as haplotype blocks, which can be leveraged to identify a set of representative
or "tag" SNPs within each haplotype thereby avoiding redundancy and minimising the number
of genotyped SNPs. The international haplotype map project (HapMap) has facilitated this
process by cataloguing SNP allele frequencies and their associations with nearby SNPs in a
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diverse set of individuals. The third and latest release from the HapMap project contains 1.5
million SNPs, genotyped across 1,397 individuals across 11 human populations [31]. The
haplotype map streamlines the process of identifying tag SNPs and is key in designing an
effective GWAS study.

GWAS:s are carried out by carefully defining two sets of individuals, those that harbour
a particular trait (case) and those that do not or that harbour an alternative trait (control).
Each group is then genotyped for tag SNPs, typically through SNP microarrays, and allelic
frequencies of SNPs from each group are compared using contingency table methods,
commonly the chi-squared test. Because of the high number of statistical tests carried
out, rigorous multiple testing correction is often required with a stringent p-value selection
criterion for identification of causal variants.

In contrast to more traditional approaches for surveying risk factors, such as linkage
analysis, GWASs are able to comprehensively survey the genome in a hypothesis-free and
unbiased manner, employing elegant statistical methods to uncover variant associations.
GWAS:s are not limited to families and can instead leverage information in a large number
of individuals from a diversity of outbred populations. In addition, GWASs are capable of
identifying causal variants in low-penetrance phenotypes [32]. The endless possibilities of
GWASSs, combined with its robustness makes it a valuable tool for dissecting the complex

underlying genetic architecture driving qualitative and quantitative traits.

1.2.2 Quantitative trait loci mapping

Quantitative trait loci (QTL) mapping is another association-based approach used for asso-
ciating genetic variation with changes in phenotype. QTL studies are similar in nature to
GWAS studies in that they both aim to identify genomic loci that correlate with changes
in the phenotype. However, QTLs differ in that they typically underlie quantitative traits,
which can range from morphological features such as height and weight to molecular-level
phenotypes such as protein levels and gene expression. QTLs can be applied to outbred pop-
ulations, such as human populations or experimental crosses carried out in model organisms,
where variation in recombinant offspring is inherited from either the maternal or paternal
genome. They have contributed significantly to further the interpretation of GWAS-derived
variants [33] and the genetics of several model organisms including S. cerevisiae [34] and D.
melanogaster [35] in which crosses can be easily achieved.

Expression QTLs (eQTLs) is one of the most commonly studied types of QTLs in which
an allele is able to explain differences in gene expression. The genotype of an individual is
first obtained through SNP genotyping or whole genome sequencing followed by a measure
of the individuals mRNA levels, typically through RNA sequencing (RNA-Seq). For each
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SNP, individuals are grouped based on the allele they carry and mRNA expression levels for
each group are tested against each other using statistical methods, such as linear regression, to
assess the significance of difference amongst the groups and the magnitude of the difference
(effect size).

Brem et al. [34] carried out one of the first comprehensive eQTL studies in S. cerevisiae,
in which microarrays were used to identify over 1,500 differentially expressed genes amongst
recombinant offspring, over a third of which were associated with variation at one or more
genomic loci. This set a precedent for and propelled the field of gene regulation. Today, QTL
studies are carried out on a much larger scale. For instance, the GTEx consortia measured
genotype and expression for 7,051 samples across 44 different human tissues carrying out
millions of association tests and identifying tens of thousands of significant eQTLs [36].

New derivatives of QTL studies are constantly being developed, such as those that survey
protein levels (pQTL) [37], histone modifications (hQTLs) [38] and methylation (mQTL)
[39]. Such studies provide the ability to dissect the complex genetic architecture underlying
the human genome and will allow us to better understand complex diseases and help develop

targeted therapies.

1.2.3 Limitations of association-based methods

Despite the successes of both GWAS and QTL-based studies, they are not without limitations.
For instance, rare variants require a significantly large sample size for appropriate statistical
power, which may not always be feasible [40]. The phenotype being assessed must also
display a substantial degree of variation within the population to be considered. Furthermore,
due to the extremely large number of statistical tests being carried out combined with
multiple testing, the increasing false positive rates further hinder the discovery of causal
variants [40]. More importantly, a fundamental drawback of association-based approaches
is their inability to pinpoint the underlying biological mechanisms driving the phenotypic
change. Through assessing quantitative molecular phenotypes, QTL-based studies focusing
on molecular phenotype offer a step closer to identifying the altered mechanism but are
nevertheless unable to provide the exact altered mechanisms driving this change. For example,
a GWAS-identified casual variant may also be identified as an eQTL, suggesting that alters a
transcriptional regulatory mechanism. However, the exact mechanism by which this occurs
remains unknown and could be due to a number of altered mechanisms such as changes in
epigenetic marks or altered binding of regulatory factors. Thus, a complete understanding of
how genetic variation is propagated to change in a phenotype requires the interpretation of

molecular consequences of mutations.
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1.3 Molecular phenotypes impacted by single nucleotide

variants

GWAS and QTL-based studies have significantly accelerated our understanding of how
genetic variation ties into phenotypic diversity. Yet, a complete understanding of the role of
variation in phenotype requires going beyond what is contributed by such approaches. The
lack of biological information provided by GWASs limits our ability to understand disease
origins and develop treatments accordingly.

A causal variant can affect protein function in a number of ways. For example, it can alter
gene expression through modifying key regulatory regions in the genome, affect the protein
stability, disrupt interactions between proteins, and affect other key physiologically properties
of proteins. Here, I describe a number of commonly-studied biological mechanisms by which
genetic variation can alter protein function. I further discuss advances in the computational
methodologies used to model these mechanisms and describe how they are employed to

assess the impact of genetic variation.

1.3.1 Transcription factor binding

Transcription is a key process in the central dogma, governing the creation of mRNA from
DNA the and thereby regulating the rate at which a gene is expressed. Regulatory sequences
encode a series of instructions that direct transcription. A key challenge in genetics is to
understand how the instructions encoded within sequence give rise to complex patterns
of transcription and how this is affected by sequence context (e.g. tissue or cell type).
Understanding this will allow us to understand the role of transcription in differentially
expressed patterns of genes.

The intricate process of transcription revolves around DNA-binding proteins known
as transcription factors (TFs), along with other factors that control chromatin structure.
Together, they have a central role in controlling the initiation of transcription through the
recruitment of the transcriptional machinery to core promoters of a gene. TFs carry this
out by recognising short stretches of regulatory sequences, typically between 6-18 bp, that
exist in close proximity to the promoter (cis-regulatory elements), or distal sequences,
such as enhancers (frans-regulatory elements), that are brought into close proximity of the
promoter with the aid of chromatin looping. This leads to the assembly of complexes that are

responsible for carrying out transcription initiation.
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High-throughput approaches for assaying transcription factor binding

Characterization of TF binding sites (TFBSs) was initially carried out using techniques such
as electrophoretic mobility shift assay (EMSA), where shifts in molecular weights through a
polyacrylamide or agarose gel are used to determine the occupancy of the TF [41]. Although
effective, and applicable both in vivo and in vitro, such low-throughput approaches do not
scale. High-throughput approaches based on microarrays, chromatin immunoprecipitation
(ChIP) and NGS [42] were soon after developed to facilitate large-scale identification of
TF-occupied regions in vivo [42].

Developed in the early 1990s, systematic evolution of ligands by exponential enrichment
(SELEX) was the first high throughput approach to assay protein-DNA interactions in vitro
[43]. The process begins with the generation of a large fixed-width double-stranded oligonu-
cleotide library, which is then incubated with the immobilised TF. Unbound oligonucleotides
are then purged, typically using affinity chromatography [44], and bound oligonucleotides
are eluted, subjected to PCR, and reincubated with the TF for subsequent rounds of binding
and selection to ultimately identify the consensus binding sequence [45]. This process is
repeated a number of times, where each round is referred to as a cycle. One of the inherent
limitations of SELEX is that it promotes over-selection of high-affinity binders. Medium
and low-affinity binders are critical to understanding the full extent of binding specificity
and shed light on the position-specific variability [46]. This poses an issue since, in the
classical SELEX methodology, such sequences are eventually purged out. Modern SELEX
derivatives, known as SELEX-seq, have mitigated this effect by incorporating massively
parallel sequencing of bound DNA after each round of selection [47, 48] (Figure 1.1a). This,
in turn, reduces the number of cycles required and allows for identification of sequences with
varying degree of binding affinity.

With the advances of methods for production and fluorescent detection, modern DNA
microarrays were born in the late 1990s. Protein binding microarrays (PBM) is an approach to
detect in vitro TE-bound DNA sequences [49]. Contrary to SELEX, the DNA array containing
a library of immobilised double-stranded oligonucleotides are exposed to a purified and
expressed TF of interest, which is modified to carry an epitope tag. After multiple rounds of
washing away unbound material, the array is exposed to a fluorophore-conjugated antibody
specific to the epitope (e.g. glutathione S-transferase), resulting in the fluorescing of bound
sequences [50] (Figure 1.1b). To eliminate any biases related to the probed double-stranded
oligonucleotides, a parallel control experiment is often carried out in which DNA is directly
stained using a second fluorescence signal, such as the fluorescent dye Sybrgreen I, which is

specific to double-strand DNA [51]. Fluorescent signals from both the control and treatment
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experiments are used to obtain a normalised score indicating TF protein-binding. PBMs have
since been applied to systematically successfully identify TFBSs [52, 51] (Figure 1.1b).
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Fig. 1.1 Diagrams of common high-throughput approaches for assaying TFBSs, including
(a) SELEX (b) PBMs and (c) ChIP-seq.

Methods that utilise ChIP were later developed that were capable of assaying TF-binding
both in vitro and in vivo. ChIP followed by microarray hybridization (ChIP-chip) is one such
approach that utilises DNA microarrays. Here, the TF is first cross-linked to the genomic
DNA using formaldehyde fixation. Cells are then subject to lysis and DNA is sheared
by sonication or enzymatic digestion into fragments of 150-500 bp [53]. A TF-specific

antibody is then used to precipitate the TF-DNA complexes and heat can be used to reverse
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the generated formaldehyde-generated cross-links. The remaining DNA is purified and
labelled with a fluorescent probe that is then exposed to a DNA microarray containing a
library of potentially complementary single-stranded DNA. To increase the signal-to-noise
ratio, dynamic range and leverage advances in sequencing technology, the ChIP sequencing
(ChIP-seq) protocol was developed. Instead of purified DNA being labelled and exposed to a
microarray, it is instead subject to high throughput DNA-sequencing [54] (Figure 1.1c). Itis
noteworthy to mention that the performance of ChIP-based methods largely hinges on the
availability and quality of the TF-antibody, crosslinking efficiency and the native abundance
of the TF [54].

Computational methods for modelling transcription factor specificity

The mode by which TFs recognise their binding sites in vivo is a non-trivial and ongoing
challenge in the field of gene regulation. The DNA-binding domain (DBD) of many TFs
exhibit a high degree of sequence specificity towards their binding sites, which is driven
primarily by a unique chemical signature displayed by the base pairs of a binding site [55].
This sequence specificity is thought to be driven primarily by favourable hydrogen bonds,
Van der Waals (VdW) contacts and electrostatic interactions between residue side chains
in the DBD and the bases in the binding site [56]. The abundance of TFBS profiling data
made available through methods like ChIP-seq and SELEX have propelled the systematic
discovery of sequence specificity through computational approaches aimed at extracting
underlying de novo sequence motifs for binding [57].

Computational approaches have utilised known binding sites of a TF to model the
properties of its sequence specificity, thereby allowing for potential binding sites in the
genome to be predicted in silico. Consensus sequences were the first approach to modelling
TF specificity. Given a set of fixed-width aligned sequences, the consensus sequence simply
reflected the most common base at each position (Figure 1.2a-b). To account for position-
specific variability, position weight matrices (PWMs) were introduced in 1982 by Gary
Stormo [58] as an alternative approach to consensus sequences, and have been one of the first
approaches to quantitatively model TF-binding [59]. For a given set of fixed-width binding
sites for a TF, a PWM is a matrix reflecting the log likelihood of observing each given base
(A, T, C and G) at a position.

PWMs are constructed by tallying up the position-specific counts for each base, termed
position frequency matrix (PFM). The probability of observing a base at a position is
computed and a PWM is constructed by computing the log ratio of observed to expected
probability (Figure 1.2c-d). The PWM can then be used to provide a quantitative score
reflecting the likelihood of binding (Figure 1.2¢).
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The TF sequence specificity is often graphically represented as a sequence logos, which
reflect the position-specific conservation of bases. The conservation at a given position is
computed as the Shannon entropy, reflecting the information content (IC). Each position in a
sequence logo is depicted as a stack of letters, where the height of each letter is relative to its
relative frequency of the IC (Figure 1.2f).
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Fig. 1.2 Modelling TF-binding using PWMs. (a) Given a set of binding sites for a TF, (b) the
consensus sequence provides a qualitative approach of describing the TF specificity. (c-d)
PFMs and PWMs instead model specificity quantitatively, which can then (e) be used to
score potential binding sites. (f) The specificity of a TF can be visualised using the sequence
logo. Figure adapted from [60].

Today, PWMs remain the de facto standard for predicting TFBSs, offering a flexible,
and intuitive approach to modelling TF sequence specificity. However, they do possess
several drawbacks. First, a PWM assumes positional independence, meaning that each
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position independently contributes independently to the final score. Many studies have,
however, shown that co-dependent positions do exist and play a significant role in binding
affinity [61-63]. Second, and more importantly, not all regions predicted as TFBSs sites will
correspond to functional regulatory sites, particularly in short length motifs where matches
are more likely to occur by random chance. This results in a high false positive rate. Other
limitations of PWMs include that they do not account for other mechanisms of binding such
as the sequence context around the immediate motif, which has been shown to facilitate
binding [64, 65].

Adapted versions of PWMs have been developed in an attempt to reduce the effects
of some of these drawbacks. For example, the dinucleotide weight matrix was developed
to account for co-dependency between positions [66]. Predictions from PWMs have also
been limited to regions more likely to be functional, such as those with regions of high
sequence conservation, or phylogenetic footprints, in attempt to increase identification of
functional binding sites. More recently, sophisticated approaches employing hidden Markov
models (HMMs), and machine learning including support vector machines (SVMs) [67],
deep learning [68, 69], and random forests [70] have been used to model TF specificity and
predict TEBSs. Such approaches have been trained on both regulatory and random genomic
sequences to learn far more complex patterns underlying the TFBSs, beyond what is capable
by PWMs.

Computational predictors of TFBSs have significantly advanced over the past several
decades. However, much work is yet to be done for improved sensitivity and accuracy.
Sequence specificity alone is not sufficient to capture all variability observed in TF-binding.
Specifically, many other factors have been shown to dictate binding for many TFs such as
geometric complementarity between DNA and the DBD [71], epigenetics [72], chromatin
accessibility [73] and cofactor availability [74]. For instance, a recent study that incorporated
three-dimensional features of DNA shape was able to bring a substantial improvement to
the performance of PWMs [71]. Incorporating a larger number of such mechanisms into

TF-binding models will be key to accurate modelling of TF binding in the future.

Genetic variation in TFBSs

Given the structured patterns encoded within TFBSs, genetic variation can alter sequence-
specific binding sites and either abolish or create a novel binding site. Known disease
variants have been found to be enriched in both cis and trans-regulatory regions [75, 76] and
specifically in TFBSs [77]. Understanding how variation alters binding is therefore crucial to

understand the exact mechanisms underlying aberrant gene regulation.
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Phenotype Variant TF Downstream gene Effect Reference
Haemophilia B Leyden chrX:138612890A>T ONECUT1 F9 Loss  [78]
Colorectal cancer chr10:90749256G>A  SP1 FAS Loss [79]
Delta-thalassemia chr11:5255790A>G GATA1 HBD Loss [80]
Breast cancer chr11:69331642C>G  ELK4 CCND1 Loss [81]
Melanoma chr11:111957523C>T ELF1 SDHD Loss [82]
Congenital erythropoietic porphyria chr10:127505271A>G  GATAl UROS Loss  [83]
Maturity-onset diabetes of the young chr12:121416289A>T HNF4A HNFIA Loss  [84]
Bernard-Soulier syndrome chr22:19710933C>G  GATA1 SFN Loss [85]
Alpha-thalassemia chr16:209709T>C GATA1 HBAI Gain [86]
Familial combined hyperlipidemia chr8:19796725T>C POU2F1 LPL Loss  [87]
Systemic lupus erythematosus chrl:172627498C>T  CEBPB FASLG Loss  [88]
Osteoarthritis chr20:34026064G>T YY1 GDF5 Loss [89]
Haemophilia B Brandenburg chrX:138612869G>C HNF4A F9 Loss  [90]
Coagulant factor VII deficiency chr13:113760095T>G HNF4A F7 Loss [91]
Insulin resistance chr3:12386337C>T PRRX1 PPARG Loss [92]
Prostate cancer chr8:128531689A>T FOXAI MYC Gain [93]
Hereditary persistence of fetal haemoglobin chr11:5271262A>G GATA1, TAL1 HBGI Gain  [94]
Pancreatic agenesis chr10:23508446A>C  PDX1 PTFIA Loss [95]
Type 2 diabetes chr11:72432985G>A  PAX6 ARAPI Gain  [96]
Asthma and autoimmune diseases chr17:38029120G>C  CTCF ZPBP2 Loss [97]
Pierre Robin syndrome chr17:68676303T>C MSX1 SOX9 Loss [98]
Hirschsprung disease chr22:38412781G>C ~ SOX10 SOX10 Loss  [99]
Beta-thalassemia chr11:5248372G>A GATA1 HBB Loss [100]
Treacher Collins syndrome chr5:149736964C>T YY1 TCOF1 Loss [101]
Nonsyndromic cleft lip chr1:209989270G>A  TFAP2A IRF6 Loss  [102]

Table 1.1 Examples of variants linked to variable TF binding.
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Early approaches used mutagenesis combined with EMSA to assay the impact of sequence
variation. The first of such studies appeared in the early 1990s which investigated the role
disease variants in the gain or loss of TF binding, for a limited number of TFs with well-
characterized DNA binding specificities at the time. One of the first was that by Martin et
al., who attributed the increased expression of the HBG gene in hereditary persistence of
fetal haemoglobin to a variant in its core promoter that altered binding specificity to create a
novel binding site for GATA1 TF [94] (Table 1.1). Another example is that of Crossley et al.
where a haemophilia-associated variant directly upstream of the F'9 gene transcription start
site (T'SS) disrupts the binding site for androgen receptor (AR) (Table 1.1). A larger list of
examples is listed in (Table 1.1).

Today, the extensive availability of TF-binding specificity models has allowed for in silico
prediction of variants impacting TFBSs. A typical way of approaching this is to the assess the
difference between the PWM score of two alleles, where a larger difference indicates a larger
impact on TF-specific binding [77]. Other methods such as gkmSVM [103], DeepSEA [69]
and DeepBind [68] have devised similar approaches using machine learning-based predictors,
instead of PWMSs. Such approaches are limited in their interpretability since they employ
black box approaches, the direct impact of a variant cannot be graphically represented. They
do, however, harness the ability to model far more complex binding mechanisms.

A relatively novel experimental approach to characterising the impact of genetic variation
on TF binding is the analysis of allele-specific binding (ASB) in ChIP-seq data [104, 105].
Given ChIP-seq data measuring the occupancy for a particular TF in a sample (tissue or cell-
line), along with the corresponding genotype for the sample, one can identify heterozygous
variants and count the number of ChIP-seq reads that map to the reference and alternate
alleles. Loci exhibiting significant imbalances in mapped read counts are then classified
as ASB events, in which one allele exhibits a significantly lower number of mapped reads
compared to the other; in particular, significance here can be tested using a binomial test
[104, 106]. Identified ASB events are not necessarily causal and the observed effect can
instead be caused by another variant in LD, epistatic effects, whereby multiple variants
contribute to the effect [107] or epigenetic effects influencing binding [108]. Nevertheless,
ASB mapping provides an elegant alternative to prioritizing causal variants and assessing the
impact of variants on TF binding.

TF binding is a complex mechanism that is collectively driven by a number of factors
including sequence specificity. Altered TF binding has the ability to alter gene expression and
future improvement to binding predictors will allow us to more accurately pinpoint causal

variants.
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1.3.2 Post-translational modifications

Post-translational modifications (PTMs) are reversible or irreversible chemical modifications
made to a protein and are involved in a multitude of biological functions such as cellular
signalling [109], protein folding and degradation [110] and metabolism [111] to name
a few. PTMs act as molecular switches by introducing conformational changes to the
protein’s structure, promoting or disrupting protein interactions or altering protein localization
[112, 113] ultimately extending the functional repertoire of the proteome. Over 200 different
types of PTMs have been characterized [114] and amongst the most commonly occurring
include phosphorylation, acetylation and ubiquitination (Table 1.2). Modified sites have
been well-characterised and collated into resources such as UniProt [115], dbPTM [116]
and PhosphoSitePlus [117]. Commonly, PTMs are reversible and involve two enzymes a
writer, responsible for attaching the modification and an eraser responsible for removing the
modification. PTMs are often attached to side chains of certain amino acids that act as strong
(S, T.Y,R,K, H, D, E, M, C) or weak (N, Q) nucleophiles. For instance, acetylation involves
the addition of an acetyl group to lysine residues (Table 1.2).

Modification Number of Number of Commonly modified
proteins sites residues
Phosphorylation 19,655 231,160 SSTY
Ubiquitination 9,022 63,729 K,C
Acetylation 7,555 22,762 K, A, M
Methylation 5,607 14,807 R, K, C
Sumoylation 2,155 6,987 K
O-linked Glycosylation 764 4,738 T, S, K
N-linked Glycosylation 1,134 2,976 N, K,D
Disulfide bond 167 1,136 C
S-nitrosylation 448 749 C
Hydroxylation 38 274 P, K,N
Palmitoylation 93 179 C
Pyrrolidone carboxylic acid 82 83 Q
Gamma-carboxyglutamic acid 10 82 E
S-Nitrosylation 70 82 C

Table 1.2 Identified PTM sites in human collected from public databases dbPTM [118] and
PhosphoSitePlus [117]. For each PTM, the number of proteins with at least one site and the
total number of sites are shown. Only the top 15 PTM types, as defined by the number sites
are shown.

Given the functional relevance of PTMs, it is evident that variants affecting PTM sites

can alter the modification through disrupting the modifiable site and affecting downstream
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function. Indeed there have been many reported cases where mutations of PTM sites
were directly associated with disease phenotypes. For instance, in the androgen receptor
(AR), loss of acetylation has been associated with spinal and bulbar muscular atrophy, a
neurodegenerative disorder affecting muscle movement. In the wild-type AR, mutations of
residues K630, K632 and K633 to alanine disrupt acetylation sites and have been shown
to significantly impede nuclear translocation. Furthermore, K632A and K633A mutants
aggregate and co-localise with other proteins (HSP70/HSP90) resulting in loss of proteasome
function [119]. Another example is that of the prion protein (PRNP), where the substitution
T183A was implicated in spongiform encephalopathy through the loss of N-glycosylation
[120]. More systematic studies have shown that PTM sites are under strong negative selection
and are significantly enriched in disease mutations [121]. The study of PTMs in the context
of genetic variation can, therefore, offer insight into altered mechanisms and help identify

causal mutations.

Kinase-substrate phosphorylation

Phosphorylation is the most prominent PTM and involves the transfer of a phosphate group
(POi_) to different amino acids, including serine, threonine or tyrosine residues of proteins.
In humans, this process is catalysed by over 500 protein kinases [122], which regulate a
spectrum of function. This process is crucial for the regulation of a diverse range of cellular
process, including growth, metabolism, cell cycle progression, differentiation, and apoptosis
[122].

The mode by which protein kinases recognize specific target residues depends on numer-
ous factors such as co-expression, residue surface accessibility, and other PTMs [123]. More
importantly, kinases have been shown to have preferences for certain amino-acids flanking
the central phospho-acceptor residue [123]. These preferences define the kinase-substrate
specificity often referred to as the kinase-substrate ‘motif’, which were initially defined by
searching for consensus patterns among a set of known target phosphosites. For example, the
cyclin-dependent kinase (CDK?2) is known to preferentially target the motif [ST|PX[RK] (a
proline at position +1, any amino-acid at position +2 and an arginine or lysine at position +3)
[123].

Kinase-substrate motifs were initially employed to predict potential targets for kinases
[124]. However, to allow for the modelling of kinase-substrate specificity and quantitative
prediction of potential targets, PWMs have been employed. Similar to TFs, using a set
of target phosphosites sequences a PFM is constructed, where the observed amino acid
frequencies are tallied up for each position. This matrix can then be used to generate the

PWM by calculating the log ratio of observed versus expected relative frequencies. Generated
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PWMs can be used to provide a quantitative score for a peptide describing the likelihood
of kinase-specific phosphorylation. Sophisticated methods that employ machine learning
approaches such as neural networks [125], SVMs [126] and random forests [127] have since
been developed that similarly, model kinase sequence specificity and successfully predict
putative target phosphosites with a higher degree of accuracy [125].

The role of genetic variation on kinase-substrate phosphorylation

Disease variants occurring in kinase-substrate sequence motifs have been shown to rewire
phosphorylation networks and potentially drive disease [148, 146]. Variants falling within
specificity determinants could alter kinase-substrate phosphorylation either by diminishing
an existing site (loss-of-binding) or introducing a novel binding site (gain-of-binding) (Fig-
ure 1.3a). By altering phosphorylation, these variants individually or collectively interfere
with underlying signalling networks that may contribute to disease properties.

Several studies have described disease mutations altering key residues in kinase-substrate
phosphorylation motifs. For instance, mutations in protein-tyrosine phosphatase 1B (PTPNT1)
have frequently been associated with type 2 diabetes. Specifically, the rare P387L substitution
disrupts phosphorylation of the phosphosite S386, resulting in altered phosphatase activity
[131] (Figure 1.3b). Another example is that of KCNH2, a member of the potassium voltage-
gated channel family. Here, the substitution K897T introduces a novel phospho-acceptor
residue for the Akt protein kinase, resulting in altered protein regulation that contributes to
cardiac arrhythmias (Figure 1.3b). A larger set of examples are summarised in Table 1.3. In
addition to these examples, recent analyses of cancer driver mutations in regions flanking the

phospho-acceptor have implicated phosphorylation as an altered mechanism in disease [148].

Predicting the impact of variants on Kinase-substrate phosphorylation

There have been a number of studies systemically exploring the impact of phosphorylation-
associated variation and numerous resources have been developed to categorize likely causal
variants in phosphorylation. The PTMVar dataset provided within the PhosphoSitePlus
database collates disease mutations curated in the UniProt resource [149] that occur in the
vicinity of experimentally identified phosphosites, identifying over 19,000 variants falling
within seven residues of a phosphosite [117]. The PTM-SNP database more generally
identifies ~180,000 variants occurring in proximity to any PTM-modified residues including
phosphorylation [150].

While such documented variants are more likely to play a role in altering signalling

networks, additional information on whether they impact underlying mechanisms driving
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Phenotype Gene Variant Phosphosite Affected kinase(s) Effect Reference
Obesity PPARG  P113Q  Sl112 MAPK1; MAPKS Loss  [128]
Mycobacterial diseases STATI L706S Y701 SRC Loss [129]
Advanced sleep phase disorder PER?2 S662G  S662 CSNKI1D; CSNKI1E Loss  [130]
Type 2 Diabetes PTPNI P387L  S386 CDK1 Loss  [131]
Prostate Cancer NKX3-1 R52C S48 PRKCA Loss [132]
Multiple cancer types TP53 P47S S46 MAPK14 Loss  [133]
Multiple cancer types 0GGlI S326C  S326 Loss  [134]
Multiple cancer types CCNDI  T286R  T286 GSK3B Loss  [135]
Multiple cancer types CDKNIA DI149G S146 AKT1; PRKCA Loss  [136]
Cardiac arrhythmias KCNH? K897T  T897 AKT1 Gain [137]
Dilated cardiomyopathy PLN R14C S16 PRKACA Loss  [138]
Masculinization AR R407S  S407 Gain  [139]
Osteoporosis BDNF V66M T62 CHEK2 Loss [140]
Rett syndrome MECP2  R306C T308 PRKACA Loss  [141]
Breast cancer GABI T387N  T387 Loss [142]
Cholelithiasis ABCB4 T34M T34 PRKACA; PRKCA Loss  [143]
De Vivo disease SLC2A1  R223W  S226 PRKCA Loss [144]
Fine-Lubinsky syndrome MAF P59H T58 GSK3A; GSK3B Loss  [145]
Multiple cancer types TP53 R213Q  S215 PRKCD Loss  [146]
Multiple cancer types TP53 R282W  T284 AURKA; AURKB  Loss  [146]
Multiple cancer types CLIP1 E1012K S1009 CSNK2A1 Loss [146]
Multiple cancer types CTNNBI S37C S33 GSK3A; GSK3B Loss  [146]
Multiple cancer types CTNNBI G34R S37 CAMK2A Gain  [146]
Autism UBE3A  TS508A  T508 PRKACA Loss  [147]

Table 1.3 Examples of disease variants linked to altered kinase-substrate phosphorylation.
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phosphorylation is not provided. As such, several resources were developed that take into
account the modelling of kinase-binding preferences. For example, Ryu et al. modelled
kinase-binding preferences using SVMs and used them to assess the impact of over 33,000
nonsynonymous mutations obtained from Swiss-Prot [151, 149]. Impact predictions were
then provided through the PhosphoVariant database [151]. Similarly, Ren et al. used the
kinase-specific phosphorylation site predictor GPS 2.0 [152] to assess the impact of over
64,000 nonsynonymous variants from the dbSNP resource [4] and provide results into the
PhosSNP database [153].
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Fig. 1.3 Genetic variation in kinase-substrate phosphosites. (a) Substitutions of residues
critical to the sequence specificity of a can either result disrupt existing phosphosites or create
new ones. (b-c) Two examples of disease variants altering specificity determinants. (b) The
loss of a proline at position +1 disrupts a key motif for the CDK1 kinase, resulting in the loss
of phosphorylation at S386 [131]. (c) The substitution of a lysine to threonine introduces a
novel phosphorylation site for the AKT1 kinase [137].

The described databases contain pre-computed predictions on a static set of variants. To
facilitate flexibility in predicting any mutations, user-friendly tools were then developed,
the first of which was the machine learning approach MIMP [146]. Briefly, MIMP employs
PWMs to model binding specificities for 124 kinases. Peptides are scored before and after a
mutation and a Bayesian approach is used to identify variants impacting the kinase site [146].
ReKINect utilises the NetPhorest [125] and NetworKIN [154] algorithms, which model
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kinase specificity using neural networks. The magnitude of loss or gain of phosphorylation
is then assessed through the predicted probabilities of kinase-binding to the wildtype and
mutant peptides [155]. PhosphoPICK-SNP is another tool that allows for prediction of
phosphosite-altering variants [156] by employing PhosphoPICK, a method which utilises
HMMs to model kinase-specificity. Unlike MIMP and ReKINect, PhosphoPICK incorporates
additional contextual information such as protein-protein interaction (PPI) networks and
protein abundance allowing to allow for more accurate kinase-substrate and variant impact
prediction. The described approaches have associated web servers and/or software libraries

that further facilitate the interpretation of protein-coding variants.

1.3.3 Short linear motifs

Short linear motifs (SLiMs) are short, conserved, stretches of sequences (typically 3-11
amino acids long) following a particular pattern that is able to mediate transient protein
interactions [157]. SLiMs are linear meaning that they are bound without the need of three-
dimensional structure to bring residues in close proximity to one another. The linear pattern
is often represented as a regular expression to reflect the positions and of residues critical
for binding. SLiMs typically occur in intrinsically disordered regions, which lack structure
and allow for the plasticity often required for binding [157]. It is characteristic that within a
SLiM, only a limited number of residues are responsible for mediating the interaction. SLiMs
are typically bound at low affinities meaning interactions are transient in nature, allowing
for the formation of highly rapid and dynamic interaction networks [157]. By recognising
and binding SLiMs, protein domains are able to carry out a variety of cellular functions
including, but not limited to, proteasomal degradation, apoptosis, ligand binding and PTMs
[157]. Since sequence specificity underlying PTMs, which was previously discussed, can
be thought of as a SLiM, I generally refer to SLiMs as those not involving PTM functions
throughout this thesis.

Both experimental and predicted SLiMs identified in the literature have been manually
curated and compiled into publicly accessible resources. These include the eukaryotic
linear motif (ELM) database, the LMPID database [158], Minimotif Miner (MnM) [159],
and Scansite [160]. The ELM resource is, by far, one of the largest and most commonly
used. It contains a total of 2,972 experimentally validated instances of SLiMs of 264
classes that mediate 1,429 interactions across 188 organisms [161]. Such resources provide
comprehensive and systematic datasets on identified SLiMs.

Variants altering critical residues in a SLiM can interfere with the underlying interaction
and thus function. There have been numerous examples linking mutations in SLiMs to
diseases. For instance, the 14-3-3¢ protein (YWHAZ) is responsible for regulating the
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Fig. 1.4 An example of a SLiM affected by a disease variant. (a) 14-3-3{ protein (grey)
in complex with the RAF1 proto-oncogene peptide containing the SLiM (PDB:41HL),
represented as a regular expression in (b). (c) A variant (red) affecting a key residue in the
SLiM (green) results in loss of binding by 14-3-3(.

activity of proto-oncogene RAF1 through binding at its motif RSXS ,XP [162], where S, is
a phosphorylated residue. The P261S substitution has been implicated in Noonan syndrome
and abolishes the SLiM mediating the interaction, thereby deregulating its activity [163]
(Figure 1.4). There have been cases where substitutions of non-critical residues in SLiMs are
associated with disease. Although such positions are not directly involved in binding, they
can contribute to the stability of the interaction, for example by forming hydrogen bonds
with the interactors [164].

1.3.4 Protein Stability

The three-dimensional configuration of a protein is key to its function. Upon protein folding,
a linear string of amino acids is converted into a functional three-dimensional structure that
is maintained and stabilised by forces and interactions formed between atoms of the residues.
The folds and interactions formed by a protein are driven primarily by its amino acid sequence
[165]. Throughout this process, the protein traverses an energy landscape whereby unstable
secondary, tertiary and quaternary folds and interactions are formed until a stable and minimal
energy structure is achieved (Figure 1.5). How proteins traverse this landscape and reach a
stable folded state ever so rapidly while avoiding misfolding and aggregation is very much

an open question in science. An improved understanding of mechanisms underlying the
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stability of protein intermediates during this process will allow us to better grasp how protein

misfolding drives proteopathic diseases and how disease variation can alter this landscape.
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Fig. 1.5 A schematic of the energy landscape traversed by a protein during folding. Figure
adapted from [166].

Forces driving protein stability

There are several forces that govern the stability of the native conformational state of
the protein. Commonly, these include ionic bonds, disulphide bridges, hydrogen bonds,
hydrophobic interactions and VAW forces [167, 168] (Figure 1.6). Ionic bonding or salt
bridges are forces that rely on the charge of the amino acid side chain. Naturally, the side
chain of some amino acids are either fully protonated or fully deprotonated making them
acidic (e.g. aspartic acid, glutamic acid) or basic (arginine, lysine). When oppositely charged
side chains of residues are in close proximity (typically within 5A) the bond formed is often
highly favourable thereby contributing to the stability of a protein [169]. Hydrogen bonds
are another force that largely contributes to protein stability. They form when a hydrogen
atom covalently bonded to a highly electronegative atom (donor e.g. nitrogen or oxygen)
interacts with another electronegative atom (acceptor) through electrostatic interactions. This
will often occur when the hydrogen atom is less than 2.5A away from the acceptor and
the donor-hydrogen-acceptor angle is between 90-180°[170]. Hydrophobic interactions
are thought to be one of the largest contributing forces to protein stability [168]. They
help reduce the surface area of the protein to avoid unnecessary interactions with polar
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solvents and occur when hydrophobic nonpolar residues in the protein (alanine, valine,
leucine, isoleucine, phenylalanine, tryptophan and methionine) interact with one another in
the presence of a polar solvent (typically water). VAW forces occur through electrostatic
interactions between any two or more atoms in close proximity to one another (typically less
than 4.5A). They form between a temporary dipole (a molecule with uneven distribution of
electrons, causing slightly positive and negative poles) and another atom that, upon contact,
becomes dipolar (an induced dipole). Although VAW forces are much weaker in nature than
that of chemical covalent bonds, an accumulation of VAW forces can result in significant
stability contributions.

Overall, such forces and others, help provide the stability and allow conformational

flexibility required to carry out protein function.
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Fig. 1.6 Schematic representing common forces and interactions driving protein stability.

The thermodynamic stability of a protein

The thermodynamic stability of a protein that is constantly between folded and unfolded
states can be used to represent the overall stability of a protein (Figure 1.5). The stability of a
protein can then be calculated as the difference in Gibbs free energy, AG, between folded
(Gy) and unfolded (Gy) states of the protein:

AG=G;—G, (1.1)
G=H-TS (1.2)
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where G is the Gibbs free energy defined in terms of the enthalpy (H), temperature (T)
and entropy (S) of the system. Typically, AG is measured in kcal/mol and a negative value
indicates the protein is stable.

Experimental approaches to identify the stability of a protein typically involve first
denaturing a native-state protein using heat or denaturing agents (e.g. urea, guanidinium
chloride). The choice of denaturing agent often depends on the protein as some proteins
are resistant to denaturing by certain agents. A readout for how denatured the protein is
measured at different temperatures or denaturing agent concentrations. Examples of these
readouts include ultraviolet (UV) light absorbency, fluorescence, or the catalytic activity of
the protein. UV light absorbency and fluorescence utilise the presence of aromatic residues
like tryptophan, tyrosine and phenylalanine, which are often partially buried in the core of
the protein. As such, these residues absorb and fluoresce light differently when the protein is
folded or unfolded [171], serving as an ideal indicator of the denatured level. Similarly, the
catalytic activity of a protein often directly corresponds to the folding state, i.e. denatured
proteins lose their catalytic activity [172]. A curve is then drawn where the readout measured
is plotted as a function of the varying temperature or denaturant concentration (Figure 1.7a).
This can then be used to calculate the rate at which the protein folds and unfolds, defined as
ks and k,, respectively. The ratio between these values is defined as the equilibrium constant
K., and is used to calculate the stability of the underlying protein, AG. Given the gas constant
(R) and the absolute temperature in kelvins (7'), the stability is calculated as follows:

ky
Koy = -4 (1.3)
eq kf
AG = —RTInK,,. (1.4)

Genetic variants altering protein folding and stability

Given the role of the forces formed between residues in the stability of a protein, mutations
substituting these critical residues can lead to a decrease in stability, and therefore function.
The impact a mutation has on protein stability is calculated by computing the difference
between the free energy of the wildtype (AG,,;) the mutant (AG,,,;), which is referred to as
AAG:

AAG = AG,; — AG . (1.5)

This value quantifies the magnitude of effect a mutation has on stability. A high value
here (>1.8) indicates that the mutation is highly destabilising, whereas a low value (<-1.8)
indicates the mutation introduces further stability [173]. Over the past several decades,
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Fig. 1.7 The impact of mutations on protein stability. (a) To experimentally identify AG
values, temperature or a denaturant are used to denature a protein while a readout, such as
catalytic activity, measures the denatured level. The generated curve aids the calculation of
AG. (b) Energy landscapes of proteins before and after a destabilising mutation. The mutated
protein has a low AG value compared to the wildtype and therefore, the computed AAG is
highly positive.

studies have carried out thousands of mutagenesis experiments to investigate the role of
mutations in protein stability. The majority of identified destabilising mutations occur in the
core of the protein compared to the surface. However, many surface mutations can still alter
function by, for instance, affecting the active site of a protein or a PPI interface [174] (see
section 1.3.5). The results of these experiments have been manually curated and collated in
numerous online resources such as the ProTherm database [175], protein mutant database
(PMD) [176], and the human genome mutation database (HGMD) [177]. ProTherm is one
of the largest database and most comprehensive resource listing experimental AAG values
for 15,437 documented mutants in 311 protein structures [175].

It is no surprise that disease mutations have also been shown to alter protein stability.
There has been a wide range of diseases associated with either the stabilization or destabiliza-
tion of proteins such as prion [178, 179], muscular [180], retinal [181] and neurodegenerative
[182, 183] diseases, to name a few. For instance, the M114T substitution in profilin 1 (PFNT)
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is associated with amyotrophic lateral sclerosis through creating a cavity in the core of the
protein, thereby destabilising it [180]. Conversely, the H101Q substitution in the CLIC2
protein, which is associated with X-linked intellectual disability, further stabilises the protein.
Due to the added stability, the likelihood of conformational changes in CLIC2 is dramatically
reduced, which impedes its transport to the cell membrane [184, 185]. These examples

highlight the significance of disease-causing variants on protein stability.

Computational methods for predicting the impact of genetic variants on protein stabil-
ity

To facilitate identification of both stabilising and destabilising variants, computational ap-
proaches have been developed that predict the impact of a variant on protein stability (AAG).
Stability predictors can be classified into two primary classes: sequence-based predictors and
structure-based predictors. The performance of these methods is typically measured with
respect to experimentally identified AAG values obtained from the ProTherm database [175].
A quantitative value describing the performance the stability of the underlying protein as the
correlation coefficient between experimental AAG values and those predicted by the method.

Sequence-based predictors such as MuStab [186], EASE-MM [187], and iPTREE-STAB
[188] utilise machine learning methods such as decision trees [188] or SVMs [186, 187] to
predict AAG values. Sequence features include biochemical features of amino acids, such
as the hydrophobicity, polarity, molecular weight, and acidity (pK,), as well as sequence-
based structural features such as the tenancies for an amino acid to form different secondary
structures and proportions of a residue estimated to be buried within the core [186]. Other
biological features have also been used such as the number of codons per amino acid, average
residue flexibility, refractivity and the relative mutability of an amino acid [186].

Alternatively, structure-based approaches such as FoldX [189], MAESTRO [190], Eris
[191], SDM [192] and PoPMuSiC [193] exploit three-dimensional features available in
protein structures to predict AAG values. These approaches often utilise a set of physics-
based energy functions to estimate the overall free energy of folding, AG, of the wildtype
and mutant. The contribution of stabilizing forces, such as electrostatic interactions, covalent
bonding, and VAW forces, to the total energy, is identified and combined in a manner that
accurately reflects the free energy of folding [194].

Sequence-based predictors benefit from higher coverage since they do not depend on
the availability of protein structures yet often suffer from lower prediction accuracy. The
bottleneck of structural data availability in structure-based approaches is often mitigated by
hybrid approaches that incorporate sequence-based information [195]. Furthermore, recent

studies have shown that even predictions made with medium to low-quality homology models
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based on structures from closely related organisms show virtually no loss in prediction power
[196].

In summary, protein stability is a mechanism that plays a major role in maintaining
regular protein function. Mutations altering the biochemical properties of amino acids can
disrupt or create stabilising interactions, and potentially alter protein function. Stability is
also commonly altered in a wide variety of diseases. Understanding how mutations alter
protein stability is, thus, of considerable interest for genetically engineering proteins for
industrial, environmental and pharmaceutical applications, as well as better understanding
the role of mutations in disease. The developed methods for predicting the impact of variants
on protein stability is key for variant interpretation. However, much work is to be done to
improve the accuracy of these algorithms, which will partly be aided by increased availability

of structural data.

1.3.5 Protein-protein interaction interfaces

Rather than acting individually, proteins typically form macromolecular structures that carry
out biological function through cooperative interactions with one another. With the majority
of human proteins involved in at least one complex [197], PPIs are at the centre of a large
variety of biological processes. Much like protein stability, these interactions are stabilised
by forces within the interaction interfaces of both proteins such as hydrogen bonds, salt
bridges, hydrophobic effects and VAW forces [198]. Residues within an interface that are
crucial for binding are often referred to as "hot-spots’ and contribute to the Gibbs free energy
of binding (AGp;,q). Understanding of the molecular determinants underpinning the stability
of PPIs will help us better understand how these interactions form and how genetic variation

can alter them.

Properties of protein interaction interfaces

PPIs are often mediated by structured globular domains that interface with the partner. The
complex formed as a result of the interaction between two different proteins is referred
to as heterodimers, whereas a self-interacting complex is a homodimer. The duration of
the interaction can also vary, ranging from short-lived interactions (e.g. those mediated by
SLiMs, see section 1.3.3) to more permanent ones (e.g. the ribosomal machinery).
Interaction interfaces often exhibit characteristic features that distinguish them from the
rest of the protein. For instance, the amino acid composition at interaction interfaces tends to
be more hydrophobic relative to other surface residues and less hydrophobic relative to the
core of the protein [199-201]. The geometric shape of interfaces also plays an important role
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in ensuring a complementarity between both proteins [202]. Computational predictors often
leverage this information to predict interface residues [203, 204], however, the increasing
availability of protein structures is simplifying the identification of bona fide interfaces. The
protein data bank (PDB) currently holds 123,388 protein structures, 6,363 (5%) of which
represent protein complexes of one or more PPIs. Resources such as Interactome3D [205]
and eppic [206] have readily made available the structures of binary PPIs from multimeric
protein complexes in PDB. Identifying interface residues in these structures is typically
carried out by computing the relative surface accessibility (RSA) of residues [199, 200, 207],
a measure that reflects how exposed or buried a residue is relative to its maximum solvent
accessible surface area. The RSA is computed for residues in both monomeric structures
and the interaction complex then subtracted to identify residues that are exposed in the
monomeric structure but buried in the complex (Figure 1.8a). Although this is effective at
identifying interface residues, not all residues will contribute equally to binding stability

[208], and additional measures must be taken to identify those that do.

Experimental and computational approaches to identify the contribution of interface
residues to binding

Many experimental techniques aim to identify the precise contribution of interface residues
to binding. For instance, alanine-scanning is a process by which surface residues are
systemically mutated to alanines. The binding affinity can then be assayed for each mutant to
assess the impact of the variant [209]. However, such approaches are often low-throughput
and time-consuming. Instead, techniques such as deep mutational scanning provide a more
high-throughput approach at assaying the contribution of interface residues to binding [210—
212]. While this is approach is exhaustive and highly effective at identifying residues
implicated in binding, routine application remains challenging and time-consuming.
Alternatively, computational approaches, similar in nature to those used for protein
stability, have been developed that predict the impact of mutations on the free energy of
binding, AAGy;,q (Figure 1.8b). The commonly used algorithms include FoldX [189],
BindProfX [213, 214] and MutaBind [215]. MutaBind and FoldX use empirical energy
functions to estimate AAGy,;,;. BindProfX uses information on conserved residues within
homologous binding domains combined with AAGy,;,4 predictions from FoldX to improve
accuracy. These predictors are often benchmarked against experimentally derived AAGy;,q
values, which are deposited in resources like the SKEMPI database, which holds AAGp;,q
values for over 3,000 mutations across 85 PPIs [216] and more recently the PROXiMATE

database, with over 6,200 mutations across 175 complexes [217].



28 Introduction

a Compute RSA Identify interface residues:
Monomeric structures Interaction complex substract RSA values
Exposed ks Non-interface
<
7
+ pe
Exposed Burried Interface
b Input: Predict: Interpret:
Wildtype Binding energy High AAG: disrupts binding stability

L4

<

/4

(= —_—> Energy function
Hydrogen bonds
Hydrophobic interactions
van der Waals forces
Salt bridges
a - . - e
Mutant ) Low AAG: increased binding stability
) \2. AG :i'nd AG :;d , >
D Y
> AAG

bind

in silico mutation

Fig. 1.8 (a) To identify interface residues the RSA of residues in monomeric structures is
subtracted from that of the interaction complex. This identifies residues that are exposed
in the monomeric protein but buried within the complex. (b) Predicting the impact of a
mutation on a PPI involves predicting the binding energy, AGy;,,q, of both wildtype and
mutated interaction complex. The difference AAGy;,; between those two values typically
indicates whether the mutation destabilises, stabilises or has no impact on binding.

There still exists much room for improvement, with respect to the performance of
predictors, partially due to the relatively limited number of experimentally derived AAGp;,q
values and PPI structural data. These predictors do, however, provide a quick and inexpensive
alternative to experimental approaches and have been used to uncover valuable insights
into developing drug PPI inhibitors [218], PPI-mediated viral infections [219, 220], and
engineering of novel PPIs [221].

Disease variants in interaction interfaces

PPIs are commonly modified in disease. Disease variants have been known to occur in

interface residues, resulting in altered binding and leading to disease phenotypes. For
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instance, the substitutions K228E and N374H in T-box, brain, 1 (TBR1) are associated
with sporadic autism and have been shown to abolish both homodimerization of TBR1
and interaction with the TF FOXP2, which has been previously implicated in speech and
language disorders [222]. Another example is that of the proliferating cell nuclear antigen
(PCNA), which has been associated with multiple diseases including DNA repair diseases
such as xeroderma pigmentosum, Cockayne syndrome, and ataxia telangiectasia [223]. The
substitution S2281 was shown to cause a large deformation of a binding pocket, abolishing
binding with multiple partners [224].

More systematic studies have been carried out that demonstrate, on a large-scale, the
role of disease variation in PPIs. For instance, a recent study analysed mutation data from
5,989 tumour samples across 23 different cancer types in the context of interfaces in over
10,000 proteins [225]. They identified over 100 PPI interfaces significantly enriched in
somatic cancer mutations, one-third of which were interfaces in known cancer driver genes,
which were also shown to serve as central hubs in PPI networks. The remaining proteins
showed literature implicating them in cancer. These findings were additionally coupled with
clinical data such as survival curves to highlight the implication of PPI interface mutations.
More structure-based studies have utilised predictions of AAG of binding to assess the role
of disease variants in PPIs. For example, using FoldX, Billur Engin et al. analysed over
1.2 million somatic cancer mutations in the context of over 4,800 experimentally derived
interaction interfaces and found that over 20% of mutations on the surface of a protein were
predicted to affect binding affinity [226]. These mutations commonly fall within interaction
interfaces of known tumour suppressors and oncogenes to alter binding.

Understanding the molecular underpinnings of PPI specificity is key to understanding the
impact of mutations on protein interfaces. Advances in both physics and statistical-based
algorithms have allowed for computational tools, such as FoldX, to estimate the impact upon
which a mutation will have on the binding. While such approaches provide a convenient way
by which mutational impact can be assessed, their performance hampered by the scarcity of
experiential AAGy;,; values and structural data. Increasing availability of such data, along
with advances in NGS and proteomics, will propel a complete understanding of the molecular
basis upon which mutations alter PPIs.

1.3.6 Initiation and termination of translation

Translation is an intricate system by which ribosomes convert transcribed mRNA into a
folded, functional protein (Figure 1.9a). Initiation and termination of translation are guided
by start and stop codons, respectively. Start codons indicate the start of translation and in
eukaryotes it is almost always the AUG codon, which encodes for a methionine. Unlike
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eukaryotes, prokaryotes have a selection of primarily three start codons: AUG (73%), GUG
(14%) and UUG (3%) [227]. Stop codons, encoded by UAG, UAA, and UGA, indicate
a signal for the termination of translation (Figure 1.9b). This occurs because transfer
RNAs (tRNAs) do not harbour any anticodons that are complementary to stop codons, thus
forcing the release from the polypeptide. Mutations disrupting start or stop codons can have
drastic effects that hamper translation and result in mRNA degradation, protein truncation
or misfolding. Accounting for start and stop codons is therefore insightful to understanding
altered mechanisms and their role in disease.

1.3.7 Mechanisms for quality control of variants altering start and stop
codons

Mutations can have one of three effects on start and stop codons: disrupt a stop codon,
introduce a premature stop codon or disrupt a start codon.

A point mutation disrupting a stop codon, also known as a nonstop mutation, and results
in the stalling of the ribosome upon reaching the 3’ end of the mRNA. This triggers a
process termed nonstop-mediated decay (NSD). In S. cerevisiae, this process involves the
recruitment of the Ski complex, containing cofactors SKI2, SKI3, SKI8, and SKI7, as well
as the exosome complex. Together, the SKI and exosome complexes are responsible for
degrading the mRNA in a 3’ to 5’ fashion, while also repressing further translation of the
transcript [228] (Figure 1.9b). S. cerevisiae E3 ubiquitin ligases LNT1 and NOT4 then
promote polyubiquitination-mediated degradation of the produced polypeptide [229, 230].
Genes involved in the SKI and exosome complexes are highly conserved across eukaryotes
[231] and their homologs also play key roles in NSD [232].

Nonsense mutations introduce premature stop codons resulting in aberrant mRNA, which,
if translated, will produce shortened polypeptides that will likely lead to deleterious effects
on protein function [233, 234] (Figure 1.9c). The severity of nonsense mutations primarily
depends on their location in the protein, where variants closer to the N-terminal are more
likely to have a deleterious impact. Processes in place such as nonsense-mediated decay
(NMD) aim at reducing this likelihood by purging mRNA transcripts carrying nonsense
mutations (Figure 1.9¢). In S. cerevisiae, when the ribosome reaches the termination codon it
is often unable to release an incomplete polypeptide [235]. Termination factors SUP34 and
SUP45 are recruited, which in turn recruit three additional factors UPF1, UPF2, and UPF3.
This promotes the disassociation of the ribosome, GTP hydrolysis of the generated peptide
and recruitment of the DCP1-DCP2 decapping enzyme complex to the 5’ of the mRNA
[235]. DCP1-DCP2 triggers hydrolysis of the 5’ cap, which quickly results in degradation
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Fig. 1.9 (a) Translation involves the ribosome machinery (blue) sliding across generated
mRNA transcribed from DNA and producing a polypeptide which folds into a fully functional
protein structure (b-d) mRNA surveillance pathways to deal with aberrant transcription or
translation. These include (b) the loss of a stop codon (c) premature gain of a stop codon
and (d) loss of a start codon. Such effects either result in a non-functional misfolded or

truncated protein or the triggering of respective pathways to degrade generated polypeptides
and mRNAs.

of mRNA in a 5’ to 3’ fashion by the exonuclease XRN1 [236]. Such fail-safe mechanisms
reduce misfolding of protein and aberrant functions.
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Finally, mutations disrupting the AUG start codon in eukaryotes significantly hamper
translation efficiency of mRNA. In many cases, either the mRNA or generated protein is
degraded (Figure 1.9d). A recent study in S. cerevisiae shows that the degree of efficiency
of non-AUG start codons depends on the sequence context. Specifically, if there is another

AUG codon upstream of the mutated start codon, translation initiation can be rescued.

Disease mutations in start and stop codons

Disease-causing mutations that alter start and stop codons have been well documented in the
literature. For instance, the nonsense mutation G542X in the CTFR gene results in significant
loss-of-function and has been implicated in cystic fibrosis [237]. Another example is the
nonstop mutation X420Y in the microphthalmia-associated TF (MITF), which is associated
with Waardenburg syndrome, a genetic disorder characterised by deafness and pigmentation
changes [238]. The mutation causes a 33 residue extension of the protein product, resulting
in the reduced transcriptional activity of MTIF [238]. A final example is the M 11 substitution
identified in encephalomyelitis (inflammation of the brain and spinal cord) patients, causing
the loss of the start codon in CMT1X. This results in abolished gene expression, even though
the mutation had no effect on mRNA levels [239]. These examples highlight how disease
mutation can alter initiation and termination of translation. Disease mutations altering start
and stop codons have also been the subject of a number of therapies that aim to suppress
their effects [240, 241], further elucidating their importance.

1.4 Sequence conservation of proteins

Although not a biological mechanism per se, sequence conservation plays a crucial role in
identifying key functional regions in proteins. Regions of a protein that remain unchanged
over time despite mutational pressure are often due to natural selection and suggest that any
variation would be deleterious to the organism’s fitness [242]. Indeed, conserved elements
include protein domains, which often mediate key proteins function. Some of the most
conserved proteins include essential cellular machinery such as the 16S and 23S ribosomal
proteins, as well as binding domains of ATP-binding cassette transporters and yet these
sequences, remain virtually indistinguishable across organisms that separated by billions of
years of evolution [243]. Therefore, assessing similarities between protein sequences across
organisms offers significant insight into functionally relevant protein regions.
Computational methods have leveraged sequence conservation to predict whether an SNV
would impact protein function [244-246]. These commonly include SIFT [244], GERP++

[245], and PolyPhen?2 [246], to name a few. These algorithms in one form or another utilise
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sequence conservation similarly. In brief, for a protein of interest a set of related homologous
protein sequences are identified, typically using programs like PSI-BLAST [247] and used to
construct a multiple sequence alignment (MSA). Given a nonsynonymous SNV, the algorithm
then uses a scoring metric to determine how frequently the mutated residue is observed at
that position within the MSA. Algorithms also often account for the chemistry of amino acids
when identifying how conserved a position is, rather than rely on sequence identity alone.
For instance, a position that exhibits an abundance of glycines, alanines, valines and leucines
does not necessarily lack conservation and could instead indicate the position is tolerant to
amino acids with similar chemical properties, in this case, a hydrophobic side chain.
Algorithms utilising sequence conservation have become a fundamental component of
variant analysis and prioritization pipelines. They have helped identify many causal variants
across human disease [248, 249] and other organisms [250, 251]. Although they do not
directly provide insight into affected mechanisms, they can often instead be combined with

mechanistic predictors to allow for an increased confidence of variant impact prediction.

1.5 Aims of the thesis

Not all genetic variation will influence the phenotype of an organism. I have described here
the approaches taken to identify causal genetic variants, such as GWAS and QTL-based
association methods. Furthermore, I discuss some of the biological mechanisms which
these variants can impact, how they can be computationally modelled and used to provide
mechanistic insight into variant effects. This thesis is primarily focused on the latter.

Having described the importance of kinase-substrate sequence specificity in the context
of disease variants, Chapter 2 describes a computational approach I have developed a method
which utilizes functional interaction data and phosphorylation data to predict specificities
of kinases. This method was applied to human kinases and was able to predict substrate
sequence preferences for over half of all known kinases, capturing known well-characterised
kinase specificities, as well as novel ones. Several specificities were additionally validated
experimentally and were shown to closely resemble predicted ones.

In Chapter 3, I compile a comprehensive set of ASB variants from numerous studies and
use them as a gold-standard to assess how TFBS predictors perform at assessing the impact
of variants on TF binding. Results suggest that TF specificity models exhibit variable levels
performance at predicting the impact of variants, that is independent of the performance of
the TF specificity model at predicting TFBSs. This suggests the mechanism underlying TF
binding for poorly performing TFs is one that is far more complex and robust than expected.

I further compare the performance of different scoring schemes across different methods



34 Introduction

(both PWMs and more sophisticated machine learning approaches) used to assess the impact
of TF binding. For TFs that are unable to accurately predict the impact of variants, I explore
alternative mechanisms such as methylation, DNA shape and binding co-factors that may
explain the poor performance.

Chapter 4 describes a comprehensive effort to compile and benchmark state-of-the-art
sequence and structure-based predictors of mutational consequences and predict the effect of
all possible amino acid and nucleotide variants in the reference genomes of H. sapiens, S.
cerevisiae and E. coli. Predicted mechanisms include protein stability, interaction interfaces,
PTMs and TFBSs. These variant effects are provided through mutfunc, a fast and intuitive
web tool by which users can query pre-computed predictions by providing amino acid or
nucleotide-level variants. I apply computed predictions to analyse known causal disease
variants as well as provide mechanistic hypotheses for causal variants of unknown function.

Chapter 5 involves the analysis of natural variants harboured by wild S. cerevisiae isolates
in the context of predictions generated in Chapter 4. The mechanistic impact predictions
are used to generate gene-level functionality scores, which are then used to perform gene-
phenotype associations. This provides a number of advantages over traditional GWASs,
namely, by identifying dysfunctional genes through analysis of rare genetic variants, it
alleviates the requirement of a large number of samples required to identify associations in

GWASSs and uncovers many novel associations.



Chapter 2

Uncovering phosphorylation-based
specificities through functional
interaction networks

In this chapter, we describe a novel computational method, which utilizes functional
interaction data and phosphorylation data to predict sequence specificities of kinases. 1
conceived the method and carried out all computational analysis under the supervision of
Pedro Beltrao. I was not involved in the generation of experimental data. Mass-spectrometry
experiments were carried out by collaborators Naoyuki Sugiyama and Yasushi Ishihama
at the University of Kyoto. The work in this chapter includes published material from the

following article:

Omar Wagih, Naoyuki Sugiyama, Yasushi Ishihama and Pedro Beltrao (2016). Uncover-
ing phosphorylation-based specificities through functional interaction networks. Molecular
& Cellular Proteomics, 15(1), 236-245

2.1 Introduction

Over the past decade, there has been an ever-increasing quantity of phosphorylation site
(phosphosite) data, typically identified using mass spectrometry (MS), with over 100,000
phosphosites identified in human [252-254]. Despite this, a large number of these phospho-
sites are without a known upstream regulatory kinase. Compendiums of kinase-substrate rela-
tionships curated from the literature [252-254] currently associate only 6% (6,320/107,444)

of known phosphosites to one or more kinases. While the experimental characterization of
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kinase target phosphosites allows for the discovery of many kinase specificities, they are
typically expensive, time-consuming, and are not feasible for kinases that are difficult to
work with. The ability to uncover specificities driving kinase-substrate phosphorylation will
allow us to better model cellular signalling networks and understand how genetic variation
can rewire such networks.

The only available computational method aimed at predicting kinase-substrate specificity
without any prior knowledge of its substrates is Predikin [255], which does so by employing
substrate-determining residues (SDRs) in the catalytic domain of the kinase. These are
residues that have been identified as driving the kinase’s specificity towards particular posi-
tions in the substrate phosphosite. In Predikin, SDRs are identified by aligning sequences of
kinase catalytic domains using HMMER [256] to identify semi-conserved elements. Residues
surrounding these elements are then mapped to three-dimensional structures of kinases in
complex with their substrate peptide and manually curated for interactions with positions
on the peptide (Figure 2.1a). To predict specificity of a kinase given its sequence, Predikin
first analyses the sequence for a kinase catalytic domain. If identified, the domain sequence
is scanned for previously reported SDRs (Figure 2.1a). Substrate phosphosites of kinases
with similar SDRs are then combined and used to construct a predicted specificity model
(Figure 2.1b). In this way, Predikin makes use of known kinase target sites. While effec-
tive, Predikin exhibits several shortcomings. First, it depends on the availability of protein
structures and therefore cannot be easily scaled to kinase families without three-dimensional
structures nor to other post-translational modification (PTM) recognition domains. Second,
it depends on the availability of kinase-substrate data to construct final specificity models,
further limiting scalability. Lastly, SDRs for tyrosine kinases have not been identified, and
therefore predictions can only be made for serine/threonine kinases.

We decided to take an alternative approach to predicting kinase specificity. Previous
studies have shown that it is possible to use information regarding the interaction partners of
a peptide-binding protein to identify potential motifs mediating these interactions [257]. As
such, putative interaction partners of a kinase should be more likely than random proteins to
be phosphorylated by that kinase. Phosphosites occurring on interaction partners of kinases
should, therefore, confer a bias in amino acid composition toward the kinase’s specificity,
which could be revealed by motif enrichment (Figure 2.1c). We applied our method using
the STRING functional interaction network [258] and publicly available phosphoproteomic
data to predict specificities for 57% (282) of all human kinases. These included kinases
with previously known specificities, as well as other understudied kinases. To validate the
proposed method, we experimentally determined kinase-substrate phosphosites for four

understudied kinases. Predicted models were shown to closely resemble the specificity of
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experimentally identified phosphosites. The analysis was extended to show that specificities
can be predicted, not only for kinases but also for other phospho-residue binding domains,
such as 14-3-3 proteins and the acetyl-lysine binding bromodomain. Finally, this method
was applied to mouse kinases to explore conservation of sequence specificity.

We demonstrate that it is possible to combine large-scale PTM data with protein network
information to derive the specificity of PTM regulators and believe that this approach can be

widely applicable to different PTM types.

2.2 Results

2.2.1 Network-based prediction of kinase-substrate specificity

We hypothesized that the interaction network of a protein kinase should be enriched in its
target proteins. This hypothesis was confirmed by the observation of a significant enrichment
of known kinase targets in the functional interaction or physical interaction partners of
kinases. Of phosphosites with an annotated kinase, 5.5% show a functional interaction with
the kinase as revealed by STRING, which was significantly larger than that of random pairs
of proteins (Figure 2.2, p<2.22x1071®). Similarly, 7.61% show a physical interaction in
BioGRID [261], which was also significantly higher than that of random kinase-substrate
pairs (Figure 2.2, p<2.22x107!6). In order to predict kinase specificities, information
on human protein interaction data and phosphorylation data derived from large-scale MS
studies were combined. Functional interactions derived from STRING [262] were used as
a source for potential kinase interactors. STRING reports a score ranging from 0 to 1000
reflecting the confidence of the interaction, which is a combination of scores from across
multiple evidence sources [263]. A total of 2,425,314 interactions in 22,523 proteins were
collected along with experimentally determined phosphosites from three public databases
(PhosphoSitePlus [117], PhosphoELM [253] and HPRD [264]). Phosphosites were mapped
back to proteins with STRING interactions resulting in 107,444 sites across 12,207 proteins
(Methods, section 2.3.1). A total of 493 kinases were identified within this reference proteome
(81% serine/threonine and 19% tyrosine kinases) using the Kinomer prediction tool [265]
(Methods, section 2.3.2). For a given kinase, enrichment was carried out on all phosphosites
occurring on the STRING partners using the motif-x algorithm [266] (Methods, section 2.3.3,
Figure 2.1c). A random sample of 10,000 unphosphorylated S/T/Y residues were used as
the background for enrichment. Phosphosites matching the most significant extracted motifs
were then used to build a position weight matrix (PWM) highlighting the predicted specificity
of the kinase, which could then be used to predict phosphosites (Figure 2.1c).
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Fig. 2.1 (a) Identification of SDRs in Predikin is carried out by (1) aligning sequences of
kinase catalytic domains to (2) identify semi-conserved elements. (3) Residues proximal
to these elements are manually curated to identify if they interact with specific positions
the peptide. The structure shows literature defined SDRs (magenta) interacting with proline
at position +1 of the substrate (yellow) [259, 260]. (b) Predicting kinase specificity with
SDRs using Predikin. (1) A kinase query sequence is first analyzed for a kinase catalytic
domain. (2) If identified, this domain is annotated with previously identified SDRs. (3)
Kinases with similar SDRs are then identified. (4) Their known target phosphosites are
collected and (5) used to construct a predicted specificity model (c) Overview of the proposed
method. (1) Experimentally identified phosphosites on functional interaction partners of a
kinase are collected. (2) The phosphosites are then subject to motif enrichment to identify
over-represented motifs in the flanking sequence, likely reflecting the kinase’s specificity. (3)
Phosphosites matching the top five significant motifs are then retained and used to construct
a specificity model.

A survey of all known phosphosites revealed a strong bias of prolines at position +1
(P+1) (Figure 2.3a-b). This results in consistent enrichment of P+1 motifs (Figure 2.3c). The
abundance of P+1 sites results in proline-directed motifs masking the true underlying motif

of non-proline-directed kinases. To circumvent this, we require prior knowledge on whether
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Fig. 2.2 Enrichment of kinase-substrate pairs in protein interaction networks. (a) In the
STRING interaction network for the human kinases, 5.5% of the interactions correspond
to known kinase-substrate interactions (p<2.22x10716). (b) Similarly, BioGRID contains
7.61% known kinase-substrate interactions (p<2.22x107!6). The histograms show the
proportion of 1,000 random kinase-substrate pairs in STRING and BioGRID.

a kinase is proline-directed (i.e. prefers P+1) is required. We found that in almost all cases,
kinases belonging to the CMGC family, including CDKs, MAPKs, GSKs and CDK-like
kinases harbour P+1 motifs, as shown in their experimental binding sites (Figure 2.3d). Thus,
if a kinase was not predicted as belonging to the CMGC family, it was assumed not to be
proline-directed and P+1 phosphosites were removed from the foreground and background
sets prior to motif enrichment.

There are two variable parameters in the method (1) the threshold for the functional
interaction prediction score from STRING and (2) the top k number of significant motifs
extracted during the enrichment. To determine the optimal thresholds, we assessed the
performance of predicted kinase specificity models against a set of 9,595 gold standard kinase-
substrate relationships. We carried out benchmarking using a set of nine well-studied kinases
from a diverse set of kinase families (ABL1, AKT1, ATR, AURKB, CDK2, CSNK2A1,
GSK3B, MAPK1, and PRKACA) with well-recognized specificities in the literature. The
STRING score threshold and the top k motifs extracted were varied and the performance of
the resulting PWM in each case was evaluated using the Receiver Operating Characteristic
(ROC) and area under the ROC curve (AUROC or AUC) (Methods, section 2.3.4). Increasing
the STRING score threshold, on average, resulted in higher AUCs up to a value of 400, after
which no significant increase in performance was observed (Figure 2.4). Furthermore, more
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Fig. 2.3 Proline bias across all phosphosites. (a) Information content for each position
flanking the central residue for all known phosphosites. The highest information content
position is shown in red. (b) Amino acid frequencies for each position of all phosphosites.
Proline is highlighted in red. (c) Two examples of non-proline-directed kinases showing the
effect of removing P+1 phosphosites. Each example shows the predicted specificity before
(left) and after (right) removal of P+1 phosphosites. Consistent enrichment of proline is
observed for these cases if P+1 phosphosites are not removed, masking the true specificity of
the kinase. (d) Bar plot showing CMGC vs. non-CMGC kinases with at least 20 substrates
and the proportions of each class, which are proline-directed. Kinases were considered
proline-directed if a predominance of Proline was observed at position +1.

stringent STRING thresholds result in an insufficient number of sites for motif enrichment
thereby reducing the coverage of kinases for which we can predict specificity. Thus, a
STRING score threshold of 400 is used throughout. Additionally, the top five motifs resulting
from motif enrichment were selected for model construction for two reasons. First, varying
the top k motifs beyond a value of five did not show considerable improvement in performance.
Second, over selecting motifs was shown to mask the true predicted specificity of the kinase
(Figure 2.5).

The STRING score used here is based on a combination of multiple evidence sources
(e.g. text mining, co-expression, interaction data). STRING also provides source-specific
scores. To ensure certain evidences were not affecting performance, functional interactions

were defined using the inclusion or exclusion of individual evidences. However, on average,
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using alternate evidences did not provide a significant increase in performance, and resulted

in fewer numbers of kinases with predicted specificity (Figure 2.6).
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Fig. 2.4 Benchmarking of the method on nine kinases with well-defined specificities. Optimal
parameters of the method were computed by varying the STRING score threshold and the top
k significant motifs used in constructing the model. The performance of kinases is measured
in each case. The arrow corresponds to selected thresholds.

The collection of all phosphosites contain over-represented motifs. To ensure predicted
models were not due to random motif enrichment, we compared the performance of predicted
models against random models constructed without the STRING network information. If a
given kinase has n STRING interactions, and among those interactors, there are m phospho-
sites (81,52, ...,5,), then m random phosphosites are selected from all known phosphosites
(ry,r2,...,rm). Specificity is then predicted, as previously described using these sites. Ran-
dom models were compared against the predicted models in their ability to discriminate
the gold standard sequences, as measured by the AUC. Predicted models for most of the
nine kinases, with the exception of AKT1 and MAPK1, performed significantly better than
random (Figure 2.7a). This does not imply that the predicted AKT1 model is incorrect since
it performs well at predicting known AKT]1 target sites (AUC = 0.90, Figure 2.7a). However,
some kinases such as AKT1 have specificities that are well modelled by the common motifs

across all phosphosites. In such cases, the network information appears to provide almost no
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Fig. 2.6 Performance using inclusion or exclusion of different STRING evidences. (a)
Distribution of AUCs for predicted models of all kinases with >20 known substrates by either
excluding a particular string evidence or using only that evidence to generate the prediction.
(b) The proportion of kinases with no prediction resulting from lack of interactions when
restricting evidences.

gain compared to random sampling. In contrast, ATR has an atypical specificity with a Q+1
preference that is well recovered by this approach (Figure 2.7a,f) but highly unlikely to be
observed in a random pool of phosphosites.

These results demonstrate the ability to integrate protein interaction information with

large-scale data on protein phosphorylation to derive kinase specificity models.

2.2.2 Prediction of kinase-substrate specificity across all human Kki-
nases

Our method was applied to all human kinases, resulting in predictions for 282/493 (57%)
of kinases. Kinases that did not yield a prediction either had a low number of partners or
a scarcity of phosphosites on partners. Performance of predicted models for 85 kinases
with at least 20 literature-defined phosphosites was measured by how well they performed
at discriminating the literature-defined phosphosites from that of other kinases (Methods,
section 2.3.4, Figure 2.8). The average AUC across all kinases was 0.64 with 32% (27/85)
of kinases having an AUC greater than 0.7 (Figure 2.7b). On average, CMGC, PIKK, and
AGC families performed best, whereas TKL, STE and TK kinases had a larger fraction of
poorly performing models. When excluding the TKL, STE, and TK kinases, the average
AUC increases to 0.68 with 44% of kinases (27/61) scoring higher than 0.7 (Figure 2.7b).

Differences in performance across kinase families could reflect different degrees of sequence
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Fig. 2.7 Benchmarking of the method. (a) The performance of each predicted model compared
with models predicted using random phosphosites. Seven of nine cases perform better
than random (. p<.01, * p<0.05, ** p<0.01, *** p<0.001, one-sided Z-test). Error bars
represent the median absolute deviation for 1,000 random models. 85 kinases with > 20
known substrates were used as the gold standard. (b) Performance of predicted models
by kinase family. The grey line denotes near-random performance. (c¢) Performance of
models constructed using experimental phosphosites is compared with that of the predicted
models. A strong correlation suggests a relationship between the specificity of the kinase and
predictability of a specificity model. (d-g) Examples of predicted specificity models. The top
and middle panel of each example shows the specificity of the kinase as constructed from
known phosphosites and as predicted by the described approach, respectively. The bottom
panel shows the top five extracted motifs and the number of phosphosites matching them.

specificity in the kinase-substrate recognition. For example, many tyrosine kinases have
additional targeting domains (i.e. PTB and SH2 domains) and several STE kinases are known
to have an additional interaction surface known as “docking motifs” [267, 268]. For these
kinases, targeting is achieved by multiple interfaces or often aided by other mechanisms and,
therefore, may be less specific in the recognition of sequences flanking the phosphosite. In
line with this reasoning, kinases that harboured additional protein domains also had poorer
performing models (p=1.88x 1073, Figure 2.9). This notion was tested more explicitly by
comparing predicted models with a proxy for kinase promiscuity. For the same set of kinases,

experimental specificity models were constructed using the literature-defined phosphosites
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Fig. 2.8 Performance of 85 kinases with >20 known targets compared to that of random models (. p<0.01, * p<0.05, ** p<0.01, ***
p<0.001, Z-test). Error bars represent the median absolute deviation of 1000 random models.
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and performance was measured using 10-fold cross validation (Methods, section 2.3.4).
Interestingly, a strong correlation was observed between the performance of predicted and
experimental models (r=0.757, p=2x 10716, Figure 2.7c), suggesting that kinases with higher
sequence specificity are more likely to have high predictability.

icantly lower performance. Significance
J_ is measured using a one-sided Wilcoxon
signed-rank test.
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In attempt to identify features comprised by better performing models, the performance
of the predicted models were correlated with several features including (1) the number
of functional interacting partners, (2) the number of phosphosites on interacting partners,
(3) the distribution of information content, and (4) the number of extracted motifs. Weak
correlations (r=0.361, Figure 2.10) were observed for each of the individual features. A
higher correlation was achieved by combining a number of features using a linear regression
model (7=0.542, p=8.37x 1078, Figure 2.10). This model could thus be used to assign a
quantitative measure of confidence related to the truth of predicted specificity, which is used
here to rank predictions.

Several additional adaptations to the method were explored. For example, using different
background sets for motif enrichment or restricting to high confidence phosphosites for motif
enrichment.

In the current implementation, we exclude all P+1 phosphosites when predicting the

specificity for kinases that are not proline-directed. This requires prior knowledge regarding
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the different kinase families, which might not always be available for different PTM types
or species. Rather than having to specify P+1 kinases, one can use all phosphosites as a
background for motif enrichment to decrease the importance of P+1 motifs. However, this
approach results in a moderate decrease in the mean AUC to 0.61 (Figure 2.11a) and fewer
predictions (32 vs. 85). Furthermore, the importance of prolines and arginines at certain
positions is decreased and in most cases are not enriched for, likely resulting in incorrect
enrichments and ultimately models (Figure 2.11b).

To test if phosphosite quality impacted performance, we restricted phosphorylation data
using two criteria. First, only phosphosites that were annotated to at least two PubMed
articles were retained. Second, since MS methods are biased towards highly abundant
proteins, phosphosites that occurred in the top 10% abundant proteins as defined in PaxDB
[269] were removed. Models were predicted using both sets of filtered phosphosites and the
performance was assessed. Overall, restricting phosphosites did not appear to improve the

performance of the models (Figure 2.11a).

2.2.3 Mass spectrometry-based validation of kinase specificity

To validate predictions, four kinases with few literature-defined phosphosites spanning
different kinase families were selected for experimental validation. These included CMGC
kinases SRPK?2 and HIPK?2, AGC kinase AKT?2, and PEK kinase EIF2AK4. For each
of these kinases, in vivo target phosphosites were identified using the phosphoproteomic
approach described by Imamura et al. [270] (Figure 2.12a). Briefly, HeLa cell extracts were
treated with phosphatase to remove any existing phosphosites, and kinases were added in
separate experiments. The phosphorylated extract was then subjected to trypsin digestion,
phosphopeptide enrichment, and nanoLC-MS/MS (Methods, section 2.3.5, Figure 2.12a).
This resulted in a total of 483 novel phosphosites being identified for these kinases (AKT?2,
n=248; EIF2AK4, n=91; HIPK2, n=106; SRPK2, n=38). The performance of predicted
models for these kinases was then assessed against these sites (Figure 2.12b-e). All predicted
models performed significantly better than random, and three of the four displayed an AUC
> 0.7 at classifying the experimentally identified sites (Figure 2.12f). These results are in line
with the benchmarks performed and further support the validity of the approach described
here. We note that the SRPK2 kinase was predicted to have a strong preference for serines
and arginines at several positions. This motif was unusual given previously described models,
though several elements of this motif are confirmed by the experimental sites (Figure 2.12d).
Furthermore, the kinase specificity of SRPK2 was recently determined using a chemical
genetic approach [271] that identifies the conserved RXXSP motif for SRPK?2. This provides
further validation of the predicted specificity model of this kinase.
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Fig. 2.10 Feature correlations. Performance of predicted models correlated with (a) number of
phosphosite sequences on functional partners, (b) number of phosphosite sequences matching
the top five enriched motifs, (c) number of functional partners, (d) sum of information content
across positions of models (¢) maximum information content amongst different positions, (f)
total number of enriched motifs and (g) number of annotated Pfam domains. (h) A linear
regression model built using a combination of features (a,d,e,f) is used to predict the AUC of
predicted specificity models, which are correlated against the true AUC. The line of best fit
is shown in red.

2.2.4 Prediction of post-translational modification binding specificities

To demonstrate the extensibility and application of the proposed method, it was applied to
other types of linear motif specificities, such as that of 14-3-3 proteins. 14-3-3 proteins are
conserved single domain proteins capable of binding a phospho-serine or threonine and are
responsible for tight regulation of several important pathways including cell death, cell cycle
control, and signal transduction [272]. Previous studies have shown that 14-3-3 proteins
demonstrate distinct specificities towards their target phosphosites [273] (Figure 2.13a). We
applied the method to human 14-3-3 proteins and similarly show that the recovered models
are good predictors of known binding sites (AUC > 0.80) while performing significantly
better than random (Figure 2.13b). Well-known determinants such as arginine at position -3
and some preference for proline at position +2 are recovered. Furthermore, little to no overlap
was found between sites used to construct individual models of the 14-3-3 proteins, despite
showing similar predicted specificity (Figure 2.13c-d). This suggests that the same motif is
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Fig. 2.11 Alternate motif enrichment background sets. (a) Performance of predictions using
different background sets: (1) using unphosphorylated STY sites as background for motif
enrichment, while filtering P+1 phosphosites versus, (2) restricting to phosphosites having
two or more associated PubMed IDs, (3) removing phosphosites occurring in highly abundant
proteins, (4) refining function partner phosphosites using the method described in Reimand et
al. [148], and (5) using all phosphosites as a background while retaining P+1 phosphosites in
non-proline-directed kinases. (b) Using phosphorylated sequences as background for motif
enrichment, while retaining P+1 sequences for non-proline-directed kinases. Examples of
predicted models for non-proline-directed kinases, using top five significant motifs. The left
predicted model is using unphosphorylated sequences as the background for motif enrichment
while filtering out P+1 sequences. The right predicted model is using all phosphosites as
background for motif enrichment while retaining P+1 sequences.

recovered in each case, from a different source of partner sites, adding to the confidence of
the recovered models.

The described method was also applied to the bromodomain-containing histone acetyl-
transferase p300. p300 has crucial roles in chromatin remodelling [274] and binds acetylated
lysines with a well-characterized specificity [275]. A collection of 12,149 human lysine
acetylation sites were obtained from dbPTM [116] and used along with the same network-
based motif enrichment to predict the specificity of p300’s bromodomain. The predicted
specificity (Figure 2.13e) is very similar to the known preference for KXXK or KXXXK

(where X is any amino acid and both lysines are acetylated).
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Fig. 2.12 Experimental validation. (a) Workflow for identifying phosphosites. (b-e) Predicted
specificity models of four kinases that were selected for experimental validation of their
target phosphosites. The top and middle panel of each example shows the specificity of the
kinase as constructed from the experimental target phosphosites and as predicted models,
respectively. The bottom panel shows the top five extracted motifs and the number of
phosphosites matching them. (f) The performance of each predicted model compared with
models predicted using random phosphosites.

These results recapitulate the benefit that PTM recognition specificity can be predicted
by combining network information with PTM data.

2.2.5 Conservation of kinase-substrate specificity

Catalytic domains of many kinases, particularly those within the same families, are highly
conserved across species [276], suggesting that their sequence specificity is likely conserved
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too. To test this hypothesis, the proposed model was applied to mouse (Mus musculus), which
contained 29,732 phosphosites and 2,425,424 STRING interactions. Using human kinases
with an AUC above 0.6, a total of 56 one-to-one ortholog kinases in mouse were identified,
using the InParanoid resource [277]. Results displayed a close resemblance between the
specificity determinants of human kinases and their corresponding mouse orthologs (Fig-
ure 2.14). Over 34% (19/56) of predicted mouse kinases demonstrated similar or better
performance at predicting known human kinase sites than the orthologous human model.
This suggests that at least these 19 kinase pairs have very conserved kinase preferences. For
the remaining cases, one cannot confidently say that there is a divergence in specificity since

we cannot rule an incorrect prediction.

2.2.6 The kpred resource for predicted kinase-substrate specificities

To facilitate visualization of results, predictions for all kinases are provided through a web
resource (Figure 2.15a), kpred, which is available at https://evocellnet.github.io/kpred. Users

can explore predicted specificity models through the sequence logo, investigate enriched
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Fig. 2.14 Conservation of kinase specificity. (a-f) Six examples showing the comparison of
predicted human versus mouse models. Each example shows logos for human gold standard
The first panel highlights information on the kinase (Figure 2.15b). This includes the

specificity (top) and the predicted specificity model in human (middle) and mouse (bottom).
quences were removed prior to enrichment, the number of STRING partners and the number

kinase family and group it belongs to and the kinase class (serine/threonine or tyrosine).
Further information resulting from the method is also displayed such as whether P+1 se-
tify phosphosites for construction of the predicted model (Figure 2.15¢). The table also

three main panels (Figure 2.15b-d), described in detail below.
of phosphosites found on partners.

motifs and phosphosites and bulk-

sequence logo.
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includes additional motif information resulting from the motif-x [266] enrichment such as
the enrichment score, the number of sequences matching phosphosites in the foreground and
background datasets, and the fold increase of foreground over the background.

The final panel contains a table of phosphosites matching the enriched motifs and used
to construct the predicted specificity model (Figure 2.15d). The table reports details of the
phosphosites such as the sequence context of the site, its position, kinases known from the
literature to phosphorylate this site (if any) and the source database of the phosphosite. The
table also includes the STRING score between the kinase and the protein containing the

phosphosite.
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Fig. 2.15 The kpred resource. (a) Overview of a result page for the CK2 kinase CSNK2A1.
The result page is split into three panels highlighting (b) the kinase and prediction model (c)
the enriched motifs and (d) phosphosites used to construct the model.

Users can choose to download the logo in multiple formats or results as a flat file from
the top of the result page (Figure 2.15b). The flat file is provided in a tab-delimited format
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and similarly structured to the result page, where each panel is separated by //. Alternatively,

logos and flat files for all kinases can be downloaded in batch from the download page.

2.3 Methods

2.3.1 Phosphorylation and functional interactions data collection

Functional interaction data were collected from STRING (v9.1). Phosphosites were collected
from public databases, including PhosphoSitePlus [252], PhosphoELM [253], HPRD [254]
and from a study of mouse tissues [278]. Phosphosites were then mapped to protein sequences
provided by STRING. Kinase orthologs for 471/493 (95%) human kinases were obtained
from InParanoid v8.0 [277].

2.3.2 Kinase domain prediction

Given a protein sequence, we used Kinomer [265], which uses multilevel HMMs and
HMMER [256] to identify protein kinases and classify them into their appropriate kinase
family. E-value cutoffs for each family were used as defined in Martin et al. [265]. If a kinase
was predicted more than one family, the one with the highest E-value was retained. These
families were also used to determine if the kinase is serine/threonine-specific or tyrosine-
specific. A kinase is assumed to be either serine/threonine-specific or tyrosine-specific and

does not account for dual specificity kinases.

2.3.3 Phosphorylation-based motif enrichment

The motif-x algorithm [266] was used to identify motifs enriched within a set of phosphosites,
compared with a background (Figure 2.16). The background set used here was 10,000 11-
mers centred on non-phosphorylated serine, threonine or tyrosine residues, depending on if
the kinase is serine/threonine-specific or tyrosine-specific.

Given a foreground and background set of sites, motif-x first constructs a positional
frequency matrix from the foreground set. This matrix contains the observed count f;; of
each residue j at position i. Similarly, for the background, a positional probability matrix is
computed, containing the likelihood p;; of observing residue i at a certain position j. Given
the number of sites in foreground data n, the significance of residue/position pairs are then

identified using a binomially distributed model:
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n

P(n, fij,pij) = Y (Z)Pijk(l —pij)"* (2.1)
k=fij

Significant residue/position pairs are then identified using a threshold of Ppinomial < 109,

These pairs are used to construct a motif, which is reported. Sequences in the foreground and

background data matching these motifs are then removed and the process repeats iteratively

until one of the following criteria is met (1) no significant residue/pairs exist below the

threshold or (2) fewer than 10 sites remain in the foreground or background data.
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Fig. 2.16 Overview of the motif-x algorithm. (1) Foreground and background sequences are
used to construct a frequency matrix and probability matrix, respectively which are used
to (2) compute binomial probabilities. (3) Significant residue/position pairs are identified
and used to construct the motif reported. (4) Sequences matching the reported motif are
then removed from the foreground and background sets and this process repeats until (5) the
algorithm converges (no significant pairs remaining) or too few input data remains.

A score s reflecting the significance of the extracted motifs are calculated using the

binomial probabilities of pairs used to generate the motifs:

s(motif) = i —log(b;) (2.2)
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where m is the total number of significant residue/position pairs used to generate the motif
and b; is the binomial probability of the i residue/position pair. This score is ultimately
used to define top significant motifs.

Since the motif-x tool was only available via an online web server, the algorithm
was re-implemented for the R programming language and made publicly available at

https://github.com/omarwagih/rmotifx.

2.3.4 Kinase specificity models and performance assessment

Specificity models were constructed as PWMs, which are commonly used to model speci-
ficities of linear motifs [58]. PWMs can then be used to score peptides. A single PWM
is constructed using a set of phosphosites. If S is a set of n phosphosites, each of length
[, s1, - ,sn, Where sp = sq,- -, 55 and sy ; represents one of the 20 amino acids. A PWM
My with weights p;; as the relative frequency of each amino acid i at a particular position
J is constructed as follows:

Q. 1, ifi=g.
pij=—Y fils)+€  filg) = o other (2.3)
k=1 , Otnerwise.

Where € is a pseudo-count added to each frequency value to avoid infinite values upon log
transformations.

An adapted version of the matrix similarity score (MSS), originally developed in the
MATCH algorithm [279], as described in Wagih et al. [146] is then used to score a phos-
phosite g also of length [, g1,---,g;. The MSS uses the positional information content to
assign position-specific weights of importance. Additionally, scores are normalized against
the highest and lowest relative frequencies per position in the PWM. This results in a score
pij reflecting the likelihood of binding ranging from O to 1, where O represents no binding
and 1 represents a perfect match. The MSS defined as:


https://github.com/omarwagih/rmotifx
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Current — Min
Max — Min

l
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j=1
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Min =Y 1(j)p}" (2.4)
j=1

1
Max = Z I(j)p;”“x
=1

. Pi,j
I(j)=— ilog(—=
(]) ;pw g( D )

min
J
minimum and maximum relative frequency at position j of the PWM, respectively, and p, is

Here, g; denotes the residue at position j of the query sequence, p”'"" and p?’“x denote the
the background frequency of a particular amino acid in the proteome.

The performance of a given PWM was evaluated using the AUC, which is the curve
representing the relationship between the false positive rate and true positive rate as the MSS

score cutoff is varied:

FP TP

FPR= ——— TPR= ———
FP+TN TP+FN

(2.5)

Here, FP, TP, TN, FN represent the number of false positives, true positives, true negatives,
and false negatives, respectively. The PWM is used to score positive and negative sequences
in order to generate these values. For a kinase of interest, the positive sequences are
defined as the set of phosphosites annotated to the kinase, whereas the negative sequences
as phosphosites annotated to any kinase not belonging to the same kinase family, where the
kinase classification is defined by Manning et al. [122].

In the case where the performance of experimental models was evaluated (i.e. using the
gold standard sequences), 10-fold cross-validation was carried out. The kinase sequences are
split into 10 random bins and each bin is iteratively used as the test set, while the remaining
nine are used to construct the PWM. This results in 10 AUCs, which are then averaged to

provide an unbiased proxy of the PWM'’s prediction power.
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2.3.5 Profiling in vitro kinase substrates

Identification of in vitro kinase substrates was carried out by collaborators Naoyuki Sugiyama
and Yasushi Ishihama at the University of Kyoto using the previously described approach by
Imamura et al. [270]. Briefly, lysate proteins were extracted from Hela S3 cells at about
80% confluence in 15 cm dishes, and the total protein amount was measured by a BCA
protein assay kit. Dephosphorylation was then carried out with TSAP (Promega, Madison,
MI, USA) at 37°C for 1 h, and TSAP was inactivated by heating to 75°C for 30 min. For in
vitro kinase reactions, each 100 ugul~! of dephosphorylated proteins (1 ug/ul) was reacted
with 1 pl of each recombinant kinase (0.5 pug/ul) or distilled water as a control at 37°C in
kinase reaction buffer (40 mmol Tris-HCI at pH 7.5, 20 mmol MgCl,, 1 mM ATP) for 3 h.
AKT?2, catalytic domain [120—481(end), accession NP_001617. 1], full-length EIF2AK4
[1-1649(end) accession Q9P2KS8.2], full-length HIPK?2 [1-1198(end) accession QIH2X6]
and full-length SRPK?2 [1-688(end) accession NP_872633.1] were obtained from Carna
Biosciences Inc. (Kobe, Japan). The kinases were expressed as N-terminal GST-fusion
protein using the baculovirus expression system with SF9 cells and were purified using
glutathione Sepharose chromatography. The reaction was stopped by heating to 95°C for 5
min. After protein reduction/alkylation, Lys-C/trypsin digestion (1/100 w/w) was performed
and phosphopeptides were enriched by TiO,-based hydroxyl-acid-modified metal oxide
chromatography [280].

Phosphopeptides were desalted by StageTips and analyzed by nanoLC-MS/MS using
a self-pulled analytical column (150 mm length x 100 um) inner diameter) packed with
ReproSil-Pur C18-AQ materials (3 um), Dr. Maisch, Ammerbuch, Germany). An Ultimate
3000 pump (Thermo Fisher Scientific, Germering, Germany) and an HTC-PAL autosampler
(CTC Analytics, Zwingen, Switzerland) were used coupled to an LTQ-Orbitrap XL (Thermo
Fisher Scientific). A spray voltage of 2,400 V was applied. The MS scan range was m/z
300-1,500. The top 10 precursor ions were selected in MS scan by the Orbitrap with r
= 60,000 for MS/MS scans and the ion trap in the automated gain control (AGC) mode,
where automated gain control values of 5.00 x 105 and 1.00 x 104 were set for full MS and
MS/MS, respectively. To minimize repetitive MS/MS scanning, a dynamic exclusion time
was set at 20 s with a repeat count of 1 and an exclusion list size of 500. The normalized CID
was set to be 35.0. Mass Navigator v1.2 (Mitsui Knowledge Industry, Tokyo, Japan) was
used to create peak lists on the basis of the recorded fragmentation spectra with the default
parameters for the LTQ-Orbitrap XL. Peptides and proteins were identified by automated
database searching using Mascot v2.3 (Matrix Science, London, UK) against SwissProt
release 2010_11 (02/11/2010, 522,019 entries). A precursor mass tolerance of 3 ppm, a
fragment ion mass tolerance of 0.8 Da, and strict trypsin specificity allowing for up to two
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missed cleavages. Carbamidomethylation of cysteine was set as a fixed modification and
oxidation of methionines; phosphorylation of serine, threonine, and tyrosine was allowed
as variable modifications. Peptides were considered identified if the Mascot score was
over the 95% confidence limit based on the “identity” score of each peptide and if at least
three successive y- or b-ions with a further two or more y-, b-, and/or precursor-origin
neutral loss ions were observed, based on the error-tolerant peptide sequence tag concept.
After identification, phosphopeptides identified from the control samples were rejected. A
randomized decoy database created by a Mascot Perl program gave a 1% false-discovery rate
for identified peptides with these criteria. Phosphosite localization was evaluated using a site-
determining ion combination method based on the presence of site-determining y- or b-ions

in the peak lists of the fragment ions, which supported the phosphosites unambiguously.

2.4 Discussion

The advances in MS have expanded tremendously our knowledge of exact protein modifica-
tions sites for a number of different PTM types. However, there is almost no information
regarding the regulatory interactions connecting regulators to target proteins. Determining
the recognition preferences for PTM enzymes and binding domains in large scale is still
an open problem and remains a limiting factor in achieving this goal. In this chapter, we
used phospho-regulation as a model system and showed that it is possible to combine PTM
information with interaction network data to derive accurate models of enzymes and binding
domains. A resource that contains all of the information used for the specificity predictions
of each kinase can be accessed from http://evocellnet.github.io/kpred. The code required to
apply this approach can be found in the help page along with a tutorial.

It should be noted that even though some models do not perform better than that of
randomly sampled sites, this does not necessarily reflect the reliability of the predicted model.
Some kinase specificities are well-modelled by the most common motifs that are recovered
from a random sample. For these cases, the added information from the network data does
not result in a model that is more accurate than random. The power of the proposed approach
is, therefore, more obvious for regulators that have specificities that are less common such as
the DNA damage kinase ATR. For this kinase, the recovered model is accurate (AUC = 0.94)
while performing much better than models produced by random sites.

In the current implementation of this approach, kinases that are not CMGC are assumed
to not be proline-directed and P+1 phosphosites are removed prior to enrichment. This may
result in mispredicting cases where a non-CMGC kinase is proline-directed and where CMGC

kinases are not proline-directed. An alternative approach that does not require the removal of
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P+1 phosphosites was tested but, overall, yielded a lower performance. However, in cases
where P+1 phosphosites are retained, motifs can be recovered that are proline-directed. For
example, the CSNK2A1 kinase is a casein kinase belonging to the CMGC group. It is one of
the few non-proline-directed kinases belonging to the CMGC family. CSNK2A1 is known to
have a strong preference for acidic residues, predominately C-terminal to the phosphosite
[281]. Despite that P+1 phosphosites were not removed prior to enrichment for this kinase,
a strong bias for an acidic residue at positions +1, +3 and +4 is recovered (Figure 2.14).
Additionally, the class of the kinase (i.e. serine/threonine or tyrosine) is required a priori to
filter only phosphosites matching the class of the kinase. This is primarily due to the fact
that phosphotyrosine is in many regards a different PTM from that of phosphoserine and
phosphothreonine. In particular, it occurs at a much lower frequency and thus, if one would
not discriminate between these two types, the predicted specificities would be dominated by
serine/threonine phosphosites.

It is important to take into account that most phosphosite information was retrieved from
phosphoproteomics experiments that have used trypsin for protein digestion. Given that
trypsin cleaves C-terminal to arginine and lysine residues, it is possible to expect a bias
for arginine or lysine residues in the phosphopeptides. One would otherwise expect any
bias to be equally possible at positions before or after the phospho-residue and also not
specifically biased for arginine or lysine. Instead, arginine determinants are more frequent
than lysine determinants and are not symmetrically distributed. Of the 202 Arg determined
positions (defined as having >0.25 relative frequency at the position), 96% (194/202) are
found N-terminal to the phosphosite, whereas 0.039% (8/202) are found C-terminal to the
phosphosite. Overall, there are only 19 positions where lysine is the major determinant,
and these tend to be more evenly distributed with 42.1% (8/19) occurring N-terminal to the
phosphosite and 57.89% (11/19) occurring C-terminal to the phosphosite. Thus, this bias is
unlikely to influence the recovered motifs.

Kinase families show different average performance in their predictions and the perfor-
mance of gold standard specificity models is correlated with that of the predicted models.
These observations highlight the inherent limitation of the approach proposed here. PTM-
interacting proteins that recognize their target sites mostly by residues flanking the target
phosphosite will be more amenable to this approach than those that use multiple recognition
mechanisms. These include docking motifs, colocalization, coexpression, and scaffolding
interactions [123]. In addition, this approach assumes that the recognition occurs in a linear
epitope at the PTM position. It has recently been shown that kinase targeting can also occur
in a three-dimensional epitope [282]. As such, this linear motif enrichment strategy would

not be appropriate if a PTM enzyme or binding domain often recognizes the target site
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through three-dimensional epitopes. These observations should be taken into account prior
to future use of this method on other PTM recognition domains.

The proposed method was also successfully applied to different modes of site-directed
motif-binding domains, such as 14-3-3 domains and bromodomains, suggesting that the
method could thus be extended further to analyze specificities of other PTM recognition
domains. Finally, this approach was applied to study the conservation of kinase specificity
between human and mouse kinases. For the kinases analyzed, at least 34% appear to have
conserved specificity. Thus, in combination with an analysis of potential mutations in
specificity-determining residues, this approach could be used to identify PTM recognition
domains with diverged specificities across species. Given that these regulators interact with
many different target PTMs, it is expected that their specificity diverges slowly. This is
in contrast to the fast changes in PTMs targeted by these proteins, that can diverge more
quickly [283, 284]. Conserved regulator specificity with diverged target phosphosites is a
scenario that is analogous to what is observed in transcriptional regulation [285]. However,
there have been cases described for the divergence of transcription-factor specificity [286],
suggesting that analogous cases of PTM divergence recognition are likely to exist. In addition
to studying the evolution of specificity, applying this method to different organisms could
lend further confidence to the true specificity of a PTM recognition domain, since models
trained in different species could contribute complementary specificity determinants and
ultimately be combined to provide better models.

In summary, we describe here a novel approach to predict PTM recognition motifs
and believe it can be applicable to a wide range of recognition domains and contribute

significantly to our understanding of these signalling systems.






Chapter 3

Assessing performance of methods for
predicting impact of variants on
transcription factor binding

In this chapter, I employ over 146,000 allele-specific binding (ASB) ChIP-seq variants across
43 TFs as a gold standard to assess how TF-binding models across five different methods
perform at predicting variant impact. I compare the performance of different methods and
explore alternative mechanisms beyond sequence specificity that may be altered by variants.
This work was carried out by myself in collaboration with the company Deep Genomics and

under the supervision of Daniele Merico, Andrew Delong and Brendan Frey.

3.1 Introduction

Gene expression is a tightly regulated process governed by a multitude of variables [42].
One of the primary mechanisms contributing to the regulation of gene expression is the
binding of TFs to regulatory genomic elements. Differential gene expression can drive and
contribute to almost every aspect of disease phenotypes. Understanding the intricate process
of TF-DNA binding can, therefore, provide mechanistic hypotheses for variants and propel
the discovery of novel therapies. Fortunately, through the aid of high throughput techniques
such as ChIP-seq, SELEX and PBMs, the binding specificities of many TFs have been
exhaustively catalogued over the past decade [287].

Genetic variation falling within specificity determinants of TFBSs can alter binding by
introducing novel binding sites or diminishing existing binding sites, often resulting in a

substantial impact on molecular phenotypes through changes in gene expression. Approaches
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such as pooled ChIP-Seq have been used to experimentally map variants to molecular-level
traits such as TF-binding [288, 289]. These approaches are, however, costly and cannot yet be
routinely applied to the sizeable quantity of genetic variation data available. As such, much
effort has gone into modelling TF-DNA binding in silico, which range from rudimentary
approaches such as the PWM to state-of-the-art deep-learning methods. These methods
have also been employed to predict variants likely to alter TFBSs and have thus become an
essential component of many variant prioritization pipelines.

The performance by which TF binding models are able to distinguish their binding
regions from random genomic regions has been well characterised [290, 291]. To assess how
well these predictors perform at identifying the impact of variants, known regulatory variants
are often employed, which include variants from the Human Genome Mutation Database
(HGMD), GWAS-derived variants, and QTLs [292, 293, 103]. However, little has been done
to explore the ability of these models to assess the impact of genetic variants on binding in a
TF-specific manner. ASB ChIP-seq provides a valuable dataset to carry out such performance
assessments. Here, ChIP-seq reads are mapped to either allele of heterozygous variants
within an individual or cell line, allowing for the explicit identification of variants that alter
TF occupancy. Several studies have utilised ASB data to explore TF-specific performance at
assessing variant impact. For instance, Zeng et al. used a small number of ASB variants for
six TFs to validate their GERV method at identifying TFBS-altering variants [294]. Shi et
al. compiled a dataset of over 10,000 ASB variants across 45 ENCODE ChIP-Seq datasets
and demonstrated that ASB variants lie within highly relevant PWM positions [105]. These
studies are, however, often based on a small number of TFs or are focused on individual
variant impact methods.

In this chapter, we aimed to carry out a systematic and unbiased analysis of the perfor-
mance of TF-binding models at assessing variant impact. Using a compiled compendium
of over 20,000 ASB variants across 100 TFs, we compare a total of five methods. We
devise several scoring metrics for each model and assess how they affect the identification of
impactful variants. We also explore the performance of TFs individually, identifying TFs
that are able to accurately predict variant impact as well as those that, although have distinct
binding specificities, are unable to do so. We explore mechanisms that may explain this poor
performance and suggest improvements for modelling impact of variants on TFBSs. This

study offers novel insight into non-coding variant impact prediction in TFBSs.
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3.2 Results

3.2.1 A compendium of allele-specific binding data

To assess the performance of TF-binding impact predictions, we require a set of variants
known to alter binding or have no effect on binding. This is conveniently provided by ASB
ChIP-seq data. ASB variants were collected from five studies [106, 104, 295, 105, 296],
with each study providing heterozygous variants, the sample or cell line from which it was
obtained, and reference and alternate allele read counts and the TF affected (Figure 3.1a).
If an ASB variant was reported across multiple studies, the one with the highest number of
total mapped reads was retained. Variants with at least 10 reads mapping to the reference or
alternate allele were retained, for a total of 146,947 TF-variant pairs (ASB events) reported
across 94 TFs. The largest fraction of TFs was reported in a single study, with a total of 50
TFs and as few as three TFs were reported across all five studies (Figure 3.1b). Different
studies also contained a disproportionate number of TFs and samples for which ASB data
was available. The largest number of TFs was contained within the Santiago et al. dataset
with a total of 80 TFs across from 14 samples [106] (Figure 3.1c-d).

The binomial test was used to define how the significance of the imbalance between the
reference and alternate read counts (Methods, section 3.3.1), which is commonly used in
ASB studies [104, 297]. ASB variants that exhibit significant differences between reference
and alternate read counts were defined by a significance threshold Ppipomia < 0.01, resulting
in 21,183 ASB events, of which 57.5% (12,715) were loss events where the alternate read
count is lower and 9,397 (42.5%) were gain events, where the reference read count was lower.
A total of 54,826 balanced reads, or non-ASB events, were defined as those with Ppinomial >
0.5 (Methods, section 3.3.1). In total, 46 TFs had at least 10 non-ASB and ASB variants,
while 43 TFs had at least 20 non-ASB and ASB variants. To our knowledge, this is the
largest available ASB dataset compiled.

ASB variants are implicated in altering TF-binding and should be less likely to exist with
high frequency. We confirmed this by analysing the proportion of ASB variants which are rare
at a MAF < 1% using data from the EXAC consortium [298], 1000 genomes project [299], and
the ESP6500 project [300] (Methods, section 3.3.4). ASB variants consistently demonstrated
a higher fraction of rare variants, compared to non-ASB variants (p<9.1x 1073, Figure 3.1f).
We also assessed whether commonly used non-coding variant impact predictors, such as
GWAVA [301], Eigen [302] and CADD [303], could accurately distinguish ASB variants
from non-ASB using the area under the receiver operating characteristic curve (AUROC)
measure (Methods, section 3.3.4). However, near-random performance was observed for all
three methods (CADD AUROC = 0.51, Eigen AUROC = 0.46, GWAVA AUROC = 0.48,
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Figure 3.1g). This suggests that current approaches, which do not incorporate TF specificity
are unable to identify variants altering TF-binding.
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Fig. 3.1 Properties of ASB and non-ASB variants. (a) The use of ASB data for assessing the
performance of TFBS variant impact. (b) The total number of TFs covered by a different
number of studies. Only three TFs have ASB data in all five studies. (c-d) The number of TFs
and samples per ASB study. (e) The number of ASB variants per TF at a Ppinomial < 0.01 and
at least 10 reads mapped to either allele. Only TFs with at least 20 ASB variants are shown.
Loss and gain ASB variants are shown in magenta and green, respectively. (f) ASB variants
(green) are relatively rare compared to that of non-ASB variants (orange). Significance
p-values represent a one-sided Fisher’s exact test. (g) Non-coding variant impact predictors
are unable to distinguish ASB variants from non-ASB.

We utilised the collected ASB data to assess and compare the performance of several
computational predictors of TF-binding variant impact (Figure 3.1a). The approaches
included in the analysis were those based on PWMs [287, 68], k-mer-based approaches
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GERYV [294] and gkmSVM [103], and deep learning-based approaches DeepBind [68] and
DeepSEA [69].

3.2.2 Scoring metrics for evaluation of transcription factor binding

variant impact

The different methods available offer a variety of scoring metrics that describe the quanti-
tative impact of a variant on TF-binding. These metrics are typically signed, where strong
negative and positive values indicate loss and gain, respectively. DeepSEA produces a single
probability of binding for both the wildtype and mutant sequences and uses two metrics to
quantify the impact of a variant: the difference (diff) and log fold change (log FC) between
the probabilities (Methods, section 3.3.3). gkmSVM provides a single score deltaSVM
reflecting the change in the sum of k-mer weights for wildtype and variant sequences and
GERYV provides a single unsigned score (GERV score) that reflects the change in predicted
ChIP-seq read counts (Methods, section 3.3.3).

In contrast, PWMs and DeepBind only provide a score reflecting the likelihood of binding
and not the impact of a variant. For these approaches, we devise a number of metrics to assess
the impact of a variant. Because the TF specificity models receive as input a fixed-length
sequence, we score multiple overlapping sequences (“k-mers”) along the region of interest
with the reference and alternate allele. The defined metrics serve as a good starting point for
assessing how different approaches perform at scoring the variant impact on TF-binding and
are described in more detail.

Raw score metrics of variant impact

The difference in raw model scores is typically used to assess the impact of a variant [304—
306] (Figure 3.2). We similarly define delta raw as the maximum difference between the
raw wildtype and mutant scores across the k-mers. Because TF-binding can be made robust
through homotypic clusters of redundant binding sites, they can often mitigate effects of
impactful variants [307]. In line with this reasoning, we devised delta track as the difference
between the maximum of all wildtype k-mer scores and the maximum of all mutant k-mer
scores. Both metrics are signed, such that losses are indicated by negative scores and gains
by positive (Table 3.1, Methods, section 3.3.3).

Probability-transformed metrics of variant impact

We sought to aid interpretability and strengthen baselines for variant effect prediction. To

do this, we convert raw scores (which are not on any particular scale and not comparable
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Fig. 3.2 Defining TFBS variant-impact scoring metrics. (1) Wildtype and mutant k-mers
flanking the variant position are scored. (2) The generated raw scores are used to derive both
the delta raw and delta track metrics. (3) Py;,q values are then computed for each wildtype
and mutant k-mer. (4) Py, and Py, scores are defined using the generated Py;,g.

across TFs) to likelihoods of binding (which are normalized to [-1, 1] and are comparable
across TFs). We define positive and negative sequences as those used to train the DeepBind
or PWM model and random genomic regions, respectively (Methods, section 3.3.3). We
found that, in some cases, distributions of raw scores from the background followed a normal
distribution and in some cases, distributions of foreground scores were bimodal with one
component of scores exhibiting similar properties to that of the negative distribution. Because
the ChIP-seq/SELEX data obtained was used to train deep learning models, this is likely due
to lenient threshold used to call the ChIP-seq peaks, which was done to maximise the number
of sequences available to train models. As such we use a Gaussian mixture model (GMM) to
learn the two components comprising the foreground distribution. One component is fixed to
the parameters of the negative distribution and the "true positive" component is learned. A
linear model is then trained and used to compute the probability of binding (Pp;,,s) from raw
PWM or DeepBind scores (Methods, section 3.3.3).

Using the Py;,4 score, we define the delta Py, ; score as the maximum difference between

the mutant and wildtype Py;,,4 probabilities across all k-mers. This value ranges from -1 to 1,
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where low negative values indicate a loss of binding and high positive values indicate a gain
of binding.

We additionally define a probabilistic score Py, and Py, that range from 0-1 reflecting
the likelihood of a binding site being lost or gained, respectively. For P, this is computed
by taking the joint probability of binding for the wildtype sequence and the probability of
the mutant not binding and vice versa for Py, (Figure 3.2a, Methods, section 3.3.3). Py
and Py, are combined into a single score by first signing P, negatively and computing
the probability with the higher absolute value as P.,,,,. Since Py, and Py, can have low to
moderate magnitudes we also compute P, as the sum of the signed probabilities, resulting

in a near-zero score for such cases (Table 3.1, Methods, section 3.3.3).

Score metric Method Description

diff DeepSEA Difference in the probability of binding

log FC DeepSEA Log fold changes of the binding probability

deltaSVM gkmSVM Difference in the sum of SVM-based k-mer
weights

GERYV score GERV Difference in predicted ChIP-seq reads

delta raw PWMs/DeepBind Maximum difference across each scored win-
dow

delta track PWMs/DeepBind Difference between the maximum score for
all windows

delta P,y PWMs/DeepBind Maximum difference between probability-
transformed scores across each scored win-
dow

P.onb PWMs/DeepBind Maximum signed P, Or Pygjn score

P PWMs/DeepBind Sum of signed P, and Py, scores

Table 3.1 Summary of existing and devised scoring metrics used across different methods.

3.2.3 The use of allele-specific binding data for benchmarking variant
impact prediction

Given the numerous available predictors and scoring metrics available for prioritising the
impact of variants on TFBSs, we investigated how well each method and scoring metric
performed at distinguishing TFBS-altering variants using the ASB data as a gold standard.
We collected and trained models for TFs with ASB data from the described methods.
DeepBind models for 94 TFs were utilised, which we had previously trained on ENCODE
ChIP-seq data and SELEX data [68]. For DeepSEA, pre-trained models for 67 TFs were

used that were trained on similar datasets to those used for DeepBind, matched by the cell
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line from which the training data was obtained. The same data used to train DeepBind
models was used to train 94 corresponding gkmSVM models and pre-trained GERV models
for 62 TFs were collected, based on ChIP-seq data (Methods, section 3.3.2). We further
utilised PWMs for 56 TFs from the JASPAR database along with 92 sets of PWMs based
on over-represented motifs derived using MEME-ChIP [308] from the data used to train
DeepBind models. For each TF, sequences matching a set of the top five over-enriched
motifs were used to construct at most five PWMs. Using the set of PWMs, predictions were
generated for the (1) "signif" most significant PWM and (2) "best" the PWM that resulted in
highest magnitude variant-impact score (Methods, section 3.3.2).

Each method, model, and scoring metric variants was used to score both ASB and non-
ASB data. The resulting scores were used to assess the performance of the predictor at
discriminating variants implicated in loss or gain ASB from that of non-ASB variants using
the receiver operator curve (ROC) and precision-recall (PR) curve. The AUROC and area
under PR curve (AUPRC) are used to provide a quantitative measure of performance, where
both metrics provide a different view on performance.

The performance was measured using the definition of an ASB and non-ASB variants as
those with a Ppinomial < 0.01 and Ppinomial > 0.5, respectively and exhibited at least 10 reads
mapped to the reference or alternate allele. We further only considered TFs with at least 20

ASB or non-ASB variants to improve robustness.

A comparison of variant-impact scoring metrics within methods

We first explore performance of PWM-based scoring metrics. We compared the performance
of five scoring metrics used for PWMs in JASPAR and MEME-based PWMs. The perfor-
mance of scoring metrics in most cases was equivalent to one another in each of the PWM
sets, with the exception of delta raw which consistently demonstrated poor performance
(p<8.5x% 1074, Figure 3.3). For instance, in JASPAR PWMs, the average difference between
AUROC s between delta raw and delta track was, on average, 0.06 and 0.07 for gain and loss,
respectively and 68% (19/28) of TFs show a 10% increase in delta track performance for
either loss or gain ASB events (Figure 3.4a). The source of poor performance for delta raw
can be attributed to the inflation of scores caused by maximising differences over all k-mers.
High delta raw scores do not necessarily indicate a loss or gain of due to the positional inde-
pendence of PWMs. For instance, a low-scoring wildtype sequence harbouring a variant in a
position of importance for the PWM will result in a high delta raw score. This effect coupled
with taking the maximum over sliding k-mer windows results in an inflation of scores, which

affects the identification of true negatives (non-ASBs) and true positives (ASBs). These
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effects are partially mitigated by metrics such as the delta track and probabilistic metrics
(Figure 3.3).
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Fig. 3.3 Distribution of differences in AUROCSs between PWM scoring metrics. The p-value
on the y-axis represents a two-sided Wilcoxon test between AUROCs of the compared
metrics.

The early B-Cell Factor 1 (EBF1) is one of the TFs with lower performance for delta
raw compared to the other metrics. For the MEME signif PWM, the delta track showed an
AUROC of 0.75 and 0.70 for loss and gain, respectively whereas delta raw showed AUROCs
of 0.66 and 0.61, respectively. Figure 3.4b shows the distributions of scores for loss and gain
ASB and non-ASB variants, highlighting the inflation of scores for non-ASB variants.

Detailed examples showing the calculation of delta raw and delta track for an EBF1 ASB
and non-ASB variants are shown in Figure 3.5a-c. Here, the scores for the wildtype and
mutant track are shown, along with the difference for each k-mer and the final computed
scores. The first example highlights a non-ASB variant, where a near-zero predicted score is
desired, yet despite no predicted binding occurring on either the wildtype or mutant tracks,
the delta raw metric still results in an inflated score through differences computed in non-
binding regions (Figure 3.5a). The second example highlights a loss ASB variant and the
loss event is correctly identified by both metrics. However, the maximum difference for delta
raw here is obtained not from the k-mer exhibiting the loss (k-mer window 19), but rather at
another k-mer (k-mer window 14) (Figure 3.5b). The third and final example highlights a

gain ASB event that shows how the drawbacks of the delta raw metric lead to an incorrect
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Fig. 3.4 Comparison of delta raw and delta track metrics for the PWM. (a) AUROC:Ss for
delta track compared to that of delta raw for the three PWM sets. (b) Density plots showing
the inflation of scores in the delta raw metrics for the EGR1 TF.

prediction of the variant as loss, whereas delta track correctly predicts the directionality
(Figure 3.5¢c). The delta track and similar metrics offer numerous advantages over identifying
the largest possible difference. All metrics will, however, be bottlenecked by the high degree
of false positives produced by PWMs.

The performance of scoring metrics used in both DeepBind and DeepSEA were also
assessed. We compared the two DeepSEA metrics and found that, overall, neither metric
significantly outperformed the other (p < 0.42). The log FC metric did, however, show an
average increase of 0.032 and 0.019 in AUROC for loss and gain, respectively (Figure 3.6a).
For DeepBind, no significant difference was observed in performance between the five
used metrics. However, delta raw did show a modest increase in AUROC over other
approaches, with an overall average AUROC difference of as much as 0.021, compared to
P.omp (Figure 3.6b). Unlike the PWM, the delta raw did not overall show difference to that
of delta track (AUROC difference = 0.0089).
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Fig. 3.5 EGRI1 examples of scores for individual k-mers highlighting the differences between
delta track and delta raw. The left plot shows the wildtype (black) and mutant (red) scores
for each k-mer, the middle plot shows the score difference, and the right plot shows the final
delta raw and delta track scores. This is shown for (a) a non-ASB that are misclassified by
delta raw, and correctly classified by delta track (b) loss ASB correctly identified by both
metrics, and (c) gain ASB misclassified by delta raw and correctly identified by delta track.

The choice of the scoring metric used in variant impact can often be critical to both
interpretability and performance. For PWMs, the delta raw metric in PWMs has been long
used in studies to quantify effect of a variant of a TFBSs [304, 306, 305, 76]. The results
demonstrated here indicate that the choice of score metric when using PWMs, particularly
delta raw, can drastically impact the reliability of predictions made on regulatory variants.
Alternative metrics such as delta track and the probabilistic metrics P, and Py, offer
good approaches to mitigating effects by delta raw but still are bottlenecked by the inherent
limitations of PWMs. For deep learning approaches, little overall difference was observed
between metrics and the choice of metric in this case remains purely for interpretation

purposes.

Performance of binding models vary depending on the definition of ASB variants

We then asked whether performance varied if thresholds used to define ASB and non-ASB
variants were changed. We measured the AUROC for a combination of thresholds for both
the Ppinomial (¢ < 0.1, 0.01, 1073,10~%and 107 ) and the minimum number of reference or
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Fig. 3.6 Distribution of differences in AUROCSs between (a) DeepSEA and (b) DeepBind
scoring metrics. The p-value on the y-axis represents a two-sided Wilcoxon test between
AUROC:s of the compared metrics.

Compared metrics

alternate reads (>10, >20 and >30 reads). Performance was measured for seven TFs (BATF,
CEBPB, CTCF, EBF1, RUNX3, SMC3, TBP) which had >20 ASB variants at 10> and
>30 reads.

Utilising performance measures for seven TFs with sufficient data at >10 reads and
Phinomial < 107> we found that, on average, more stringent definitions of Ppinomial thresholds
exhibited higher AUROCSs, which was consistent across both loss and gain ASBs (Figure 3.7a).
For instance, for gain ASBs in DeepBind, at a >10 reads the average AUROC at Ppipnomial <
107> and Ppinomia < 0.10 is 0.70 and 0.59, respectively. Conversely, increasing the minimum
number of reads did not show any substantial shift in performance (Figure 3.7a). These
results suggest that models are better able to distinguish variants with a higher imbalance
in the number of reads and that higher read imbalance is more likely driven by changes in
sequence specificity.

To determine if more stringent thresholds used to define non-ASB variants affected the
AUROC, we fixed the ASB Ppinomial to 0.01 with >10 reads and assessed performance at
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Fig. 3.7 Performance based on different definitions of ASB and non-ASB variants. Perfor-
mance as measured by the median AUROC for (a) ASB variants across seven TFs where
both Ppinomial and minimum reads thresholds were varied. (b) Similar performance was
measured for 21 TFs at different Ppinomial thresholds for non-ASB variants. Magenta and
green represent loss and gain, respectively and error bars represent the standard error.
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different Ppinomial thresholds of 0.5, 0.7, and 0.9 for 21 TFs which had at least >20 non-ASB
variants at p > 0.9. However, higher thresholds of Ppinomiar did not show any significant
variation in performance (Figure 3.7b).

At stringent thresholds of Ppinomial, the number of TFs for which ASB data is available is
minute. Thus, to assess performance with a sufficient number of TFs, we retain the thresholds
of Ppinomial < 0.01. Furthermore, since no significant increase was observed at higher reads
we retain the >10 reads for further analyses. Lastly, it is not expected that the performance
of gain and loss differ significantly and any changes observed are likely due to the small

number of TFs being assessed.

Machine learning-based methods outperform PWMs at predicting the impact of vari-
ants on transcription factor binding

PWMs have been the de facto approach to modelling TF specificity and assessing impact
of regulatory variants on TF-binding. Machine learning, and in particular deep learning
approaches are able to capture more complex relationships and reduce false positive predic-
tions. We, therefore, next asked how the performance of k-mer-based and machine-learning
approaches compared to that of PWMs at predicting variant impact. For methods with more
than one scoring metric, we selected the top performing metric, which included delta track
for PWMs, log FC for DeepSEA and delta raw for DeepBind, the deltaSVM score from
gkmSVM and the GERV score from GERV. We compared performance based on the AUROC
and AUPRC (Figure 3.8).

Because there exists a different number of trained models with ASB data for each method,
we compared performances for 11 TFs with models across all five methods. GERV showed
near random performance across both loss and gain, performing poorer than PWMs. The
other machine-learning approaches including gkmSVM, DeepBind and DeepSEA signif-
icantly outperformed PWMs with respect to AUROCSs (Figure 3.8a, p=0.034 DeepBind,
p=5.91x10"% DeepSEA, p=0.038 gkmSVM) and AUPRCs (p=4.57x10~3 DeepBind,
p=1.24x1073 DeepSEA, p=0.024 gkmSVM). We further limited the predictors being com-
pared in order to retain a larger number of common models between the methods. We
compared MEME-based PWMs, with gkmSVM and DeepBind for a total of 39 common
TFs, where both DeepBind and gkmSVM similarly outperformed the PWM-based models
with respect to AUROCS (Figure 3.8b, p=4.07x 1073 DeepBind, p=4.85x 107> gkmSVM)
and AUPRCs (p=2.32x 1073 DeepBind, p=7.31x 1073 gkmSVM).

Comparing the AUROC of deep-learning-based methods to that of PWM delta track,
we identify the TFs SRF, CHD2, IRF4, BATF and CEBPB amongst those where deep

learning models perform better at predicting variant impact (Figure 3.8c-d). A more in-depth
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Fig. 3.8 Comparing performance of machine learning approaches to PWMs. (a-b) Compari-
son of AUROC: (left) and AUPRCs (right). Performance is shown for (a) nine TF models
shared amongst five methods and for (b) 31 TF models shared amongst four methods. (c-d)
Scatter plots showing the AUROC: for individual TFs for deep learning models (c) DeepBind
delta raw and (d) DeepSEA log FC against PWM delta track.

examination of DeepBind and PWM scores reveals that even the best performing PWM
metric often results in high numbers of false positives and false negatives. These results
further illuminate the importance of machine learning models in variant impact.

Alternative binding mechanisms explain differences in variant impact prediction per-

formance

Having established that machine learning approaches outperform PWMs, we sought to focus
on DeepBind and DeepSEA models and investigate the performance of individual TFs.
Amongst TFs that performed well are RUNX3, BATF, MAFK, and CEBPB, which
had an AUROC:Ss of > 0.7 in either DeepBind or DeepSEA models. Conversely, TFs like
SP1, BRCAL1, TBP, and TAF1 consistently showed near-random performance (Figure 3.10a-
b). We asked whether poor ASB performance is dictated by the model’s performance at
identifying binding sites. A model that is unable to correctly identify binding sites should not
perform well at identifying the impact of ASB variants. Indeed, we found that models with
an AUC < 0.80 in DeepBind also demonstrated poor ASB performance (Figure 3.10c-d).
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However, high-performing models showed a high degree of variation with respect to ASB
performance. For instance, SP1 and BRCA1 both have model AUROC:S of 0.99. Despite
having explicit sequence specificities, such models are unable to detect in vivo occupancy
differences introduced by variants. This suggests alternate mechanisms beyond simple
binding site specificities affecting binding. Since a number of mechanisms have been shown
to contribute to TF-binding specificities such as methylation, DNA shape, TF cofactors and
regulatory PTMs on the TF, we explored whether such mechanisms are able to explain the
poor performance observed.

TFs that are involved in binding complexes can obtain their specificity by the binding

of cofactors [74]. We collected known physical TE-TF interactions from the transcription
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Fig. 3.10 Exploring performance of individual TFs for deep learning methods. (a) AUROCs
and (b) AUPRC:s for loss (magenta) and gain (green) ASBs. TFs are ordered by the maximum
performance metric across methods and effects (c-d) AUROC:S of binding performance is
compared against performance of models to identify impact of variants, as defined by (c)
AUROC:s and (d) AUPRC:s for DeepBind delta raw (red) and DeepSEA log FC (blue) models.

cofactors (TcoFs) database [309] for 35 TFs with performance measures and asked whether
the degree of interactors predicted ASB performance. We found that TFs such as the TATA-
binding protein (TBP) and the specificity protein 1 (SP1) which showed upwards of 50

interactions with other TFs also correlated with poor performance (Figure 3.11a).
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Cytosine methylation is another major factor shown to dictate binding for many TFs
[72]. A recent study by Yin et al. used a methylation-sensitive derivative of SELEX to
identify TFs influenced by methylation for over 500 TFs [72]. Here, TFs were charac-
terised into three groups MethylPlus, where the TF preferred to bind methylated sequences,
MethylMinus, where little to no TF binding was found for methylated binding sites and
LittleEffect, where methylation had little to no effect on binding. We collected classes
for 14 TFs with performance measures across the different methods and compared perfor-
mance for each class. Interestingly, we found that TFs classified as MethylPlus consistently
showed significantly lower performance compared to that of MethylMinus in DeepBind
(Figure 3.11b, p=9.9x1073), gkmSVM (p=6.1x10"3) and PWMs (p=2.8x10~*) (Fig-
ure 3.11b). MethylPlus TFs included included SP1, RFXS5, POU2F2, and GATA3, which
demonstrated low average AUROCs across methods RFX3 (0.53), SP1 (0.49), POU2F2
(0.55), GATA3 (0.59). Indeed, TFs such as RFX3 and SP1 methylation has been shown
to positively regulate binding [310, 311]. This suggests that TFs relying on methylation
for binding are likely to perform worse when only sequence information is used for model
training.

TFs are known to be able to detect three-dimensional shape of DNA [312]. We utilised
data from Mathelier et al., where models were trained that incorporated DNA shape features
to show performance of binding can be improved [71]. We identify TFs that rely on DNA
shape for binding by computing the percent increase in AUROC (A%) for models. The
percent increase is binned values into three bins, < 5, 6 — 10, and > 10, which represent
minimal improvement, medium improvement and strong improvement. We found that TFs
that showed strong improvement had significantly lower performance when compared to
those that showed minimal improvement for PWMs (p=4.4x 10~3) and gkmSVM (p=0.039).
Significance was borderline significant for DeepBind (p=0.061) and DeepSEA (p=0.035).
This can be explained by the fact that deep learning approaches should at least in part be
able to extract DNA shape features from the sequences they are trained on (Figure 3.11c).
TFs in which DNA shape aided binding prediction (>10%) included SRF (mean AUROC
=0.62, A% = 23), BRCA1 (mean AUROC = 0.48, A% = 15), NFYB (mean AUROC =
0.50, A% = 12.6), MEF2A (mean AUROC = 0.62, A% = 12), MAFK (mean AUROC =
0.68, A% = 11.7), TBP (mean AUROC = 0.53, A% = 11), PAXS (mean AUROC = 0.63,
A% = 10.1), and SP1 (mean AUROC = 0.50, A% = 10.1). In contrast, TFs where DNA
shape played a minimal role in binding prediction included ELF1 (mean AUROC = 0.65,
A% = 1.8), TFAP2C (mean AUROC = 0.62, A% = 2.6), BHLHE40 (mean AUROC = 0.69,
A% = 3.5), and USF2 (mean AUROC = 0.65, A% = 3.8). This suggests DNA shape as a

valuable feature when assessing variant impact on TF-binding.
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Finally, we explore the impact of PTMs on TFs binding. PTMs are key regulators of
transcriptional activity and are known to govern binding specificity [313]. We asked if TFs
that are more likely regulated by PTMs also performed poorly. We collected 1,645 PTM sites
for seven modifications in 43 TFs from PhosphoSitePlus [117]. We binned the TFs by the
number of PTM sites they harboured by percentiles. In many cases, we found that heavily
modified TFs such as BCLAF1 (mean AUROC = 0.49, n = 192), POLR2A (mean AUROC =
0.52,n=171), EP300 (mean AUROC = 0.59, n = 139) and SMC3 (mean AUROC =0.57,
n = 90) showed significantly lower performance levels, compared to TFs that harboured
fewer than 10 PTM sites in DeepBind (p=6.6x107), DeepSEA (p=5.6x107>), gkmSVM
(p=2.1x10"%) and PWMs (p=1.6x1073, Figure 3.11d). We similarly utilised 42 PTM
sites across 17 TFs known to be regulatory and compared performance of TFs with a single
regulatory PTM to those with more than one. We observed a similar trend, where TFs such as
BRCA1 (mean AUROC =0.48, n = 6), SP1 (mean AUROC = 0.50, n =5), and NFKB1 (mean
AUROC = 0.51, n =4) with a high number of known regulatory PTMs displayed significantly
lower performance across DeepBind (p=0.011) and gkmSVM (p=0.042) Figure 3.11d).

For certain TFs with distinct sequence specificities, elucidating impact of variants can be
more challenging due to the sequence specificity depending on a multitude of factors that
involve mechanisms beyond proximal sequence information alone. These results demonstrate

the importance of such factors, in silico, when assessing variant impact in TFBSs.

3.3 Methods

3.3.1 Collection of allele-specific binding data

ASB data were collected from five studies [106, 104, 295, 105, 296]. In each study, ChIP-seq
reads are mapped to both alleles of heterozygous variants in individuals or cell lines. A count
for the number of reads mapping to the maternal and paternal allele of each locus is provided

by the studies. Allelic read imbalance is computed across all studies using a binomial test:

Pbinomial<X = k) = <Z) pk(l _p)nik (31)

where 7 is the total number of reads mapped at a given loci, p is the probability of success,
which is fixed to 0.5. This assesses deviation from the expected 50/50 read count. Finally,
SNP positions for hg18-mapped variants are converted to hgl19 using 1ift0Over [314] and
loci that did not map were discarded.
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Fig. 3.11 Alternative mechanisms that contribute to poor variant-impact prediction. Perfor-
mance, as measured by AUROCSs across DeepBind, DeepSEA, gkmSVM and PWMs for
(a) Number of TF-TF interactions, (b) MethylPlus versus MethylMinus TFs (c) TFs where
binding is influenced by DNA shape and (d) PTMs. Significance p-values are based on a
one-sided Wilcoxon test.

3.3.2 Transcription factor binding model training and scoring

DeepBind models for a total of 94 TFs based on SELEX and ChIP-seq datasets were obtained
from Alipanahi et al. [68]. Performance of each model was evaluated by applying models to
left out test sequences (sequences not used to train the model) and random genomic regions.
In the cases where there were multiple DeepBind models per TF, the model with the highest
performance was selected. Scoring was carried out using the deepbind executable v0.11
with default parameters. Scores for DeepSEA were obtained through the online web server
http://deepsea.princeton.edu/. Models for a total of 62 TFs were used that matched DeepBind
models by cell line.


http://deepsea.princeton.edu/
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A total of 54 PFMs for 54 TFs with a DeepBind model were collected from JASPAR
[287]. If a TF has more than one model, the model with the latest accession version is
used. Motif enrichment data carried out using MEME-ChIP [308] on ChIP-seq data used to
train DeepBind models was used to construct a second set of PWMs. Each contained a set
of enriched motifs along with matching ChIP-seq sequences and an e-value reflecting the
enrichment significance. Motifs with an e-value > 0.05 or less than 10 associated sequences
were discarded and the sequences associated with the top five enriched motifs were used to
construct PWMs. The "signif" PWM set was defined as the PWM for each TF with the most
significant e-value, whereas in the "best" PWM set the top five most significant PWM was
used for scoring and the PWM that gave off the highest variant effect prediction was used. All
PWDMs were constructed using the toPWM function of the TFBStools package [315] and the
PWMscoreStartingAt function of the Biostrings package was used to score sequences
using the generated PWMs [316].

The gkmtrain command from the LS-GKM library (https://github.com/Dongwon-
Lee/lsgkm) was used to train gkmSVM models [103] with default parameters, except for
word length option “-I” set to 10. ChIP-seq and SELEX sequences were used as positive
sequences, and random genomic sequences with the same length were used as negative
sequences. The deltaSVM scores were generated from using the gkmpredict command
along with the deltasvm.pl script (http://www.beerlab.org/deltasvm/). Finally, pre-trained
GERYV models for a total of 60 TFs were obtained from http://gerv.csail.mit.edu/ ChIP-seq
experiments from ENCODE project and the preprocess and score options of the run.r

script with default options was used to score the impact of variants.

3.3.3 Variant impact scoring metrics
DeepBind and PWMs

Given a PWM or DeepBind model, we define a window of size k using the width of the
PWM or the detector length of the DeepBind model (see [68]), respectively. Given a variant
at position g, we score both the wildtype and mutant sequences starting g — k to g + k at
increments of k for a set of raw wildtype scores wi,w», ..., wy and mutant scores my,...,ny.
Given the set of indices S = 1,...,k, the delta raw (AR) and delta track (AT) metrics are

computed as follows:

i* = argmax
|mi—w;|VieS (3.2)

AR = My — Wi


https://github.com/Dongwon-Lee/lsgkm
https://github.com/Dongwon-Lee/lsgkm
http://www.beerlab.org/deltasvm/
http://gerv.csail.mit.edu/
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Fig. 3.12 The conversion of raw scores into probabilities of binding using generalised linear
models.

To compute P,z scores we score a given an individual raw score, we compute a fore-
ground and background distribution of raw scores using a set of positive and negative
sequence respectively. The negative sequences are defined as 10,000 randomly sampled
genomic sequences of size k. The positive sequences for JASPAR PWMs are defined as
generated sequences from the PWM, whereas for MEME-ChIP PWMs this is defined as
the corresponding matching ChIP-seq sequences used to construct the PWM. The positive
sequences as the ChIP-seq or SELEX sequences used to train the DeepBind models. We
assume the background distribution follows a Gaussian distribution N ~ .4 (u,, c,) and
learn the parameters of the true positive distributions by fitting a two-component Gaussian
model mixture model. Here, one component is fixed to u,, o, and the true positive parameters
are learned as l,, 0. A total of 10,000 random samples are generated using the given the
parameters of background and used to train a generalised linear model, which is used to
compute a posterior probability (Figure 3.12) of binding (Fy;,q) and not binding (Pt pinding)-
The Py;nq scores are computed for both the wildtype PbY, ..., Pb;’ and mutant PbY, ..., Pb)
k-mers. The P,y pinging SCOTEs are computed similarly as PnY,...,Pn}’ and Pny',...,Pn].
The delta Py;,,q (AP) score is then computed similarly to that of AR:

i*= argmax
|Pb—PbY|VieS (3.4)

AP = P! — Pb}!
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The probabilistic scores of a 1oss (P,) and gain (Pyu,) events are computed by multi-
plying the likelihood of the wildtype allele binding and the mutant allele not binding for loss,

and vice versa for gain:

P, = argmax Pb}-Pn} (3.5)
PbY-Pr"VieS

Pguin = argmax Pb}"-Pn} (3.6)
Pb-PRYVieS

Both probabilities are then combined into individual scores Py, and P, as follows:

Py = _Ploss + Pgain (37)

Pcomb _ Pgaina if Pgain > Ploss (38)

—P,s, otherwise

DeepSEA

Given a probability of binding in the wildtype and mutant alleles, as p,, and p,, respectively,
DeepSEA utilises two scoring schemes: the difference (DSp) and log fold change (DSy)
computed as follows:

DSp = pm — pw (3.9)

Py —log(72 ) (3.10)

—FMm 1_pw

DSy = log(1

gkmSVM

Given k-mer weights computed for wildtype and mutant sequences flanking the variant posi-
tion as @/, ..., W, and @",..., @}, the deltaSVM (ASV M) score is computed as follows:

n=10
ASVM =Y o — (3.11)
3.3.4 Allele frequencies and non-coding variant impact predictions

Allele frequencies for the 1000 genomes project, EXAC variants and ESP6500 project, along
with non-coding variant impact predictions for CADD, Eigen and GWAVA were obtained
from the ANNOVAR tool [317], using the table_annovar.pl script.
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3.3.5 Performance measures

ROC and PR curves were generated by assessing the TPR (or recall), FPR and precision.
The ROC curves compare the FPR against the TPR, whereas PR curves compare the TPR
against the PPV (or precision). Given the number of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN), these are computed as follows:

TP
TPR= —
TP+FN
FP
FPR= —— (3.12)
FP+TN
TP
PPV =—
TP+FP

All ROC and PR curves, along with area under the curve measures were computed using
the PRROC R package [318].

3.4 Discussion

Non-coding variation has the ability to greatly alter gene expression and influence disease
phenotypes. Understanding the impact of non-coding variation is an ongoing challenge in
genetics. One of the primary modes for this is through impacting TFBSs. Yet, despite the
wealth of TF specificity available through high throughput technologies, accurate in silico
prediction of TFBS-altering variants remains a non-trivial task.

This chapter describes efforts to compare TF-based variant impact predictors using ASB
variants as a gold standard. Since both alleles exist in the same cellular environment, ASB
variants serve as a valuable source to assess performance of TF-binding models at assessing
impact of variants. We have shown that the ability for machine learning models, in particular,
deep learning methods, to significantly reduce the number of false positives allows for more
accurate variant impact predictions. Deep learning approaches are able to utilise the full
extent of ChIP-seq and SELEX data to learn far more complex positional dependencies in
binding sites. Deep learning approaches are also not confined to the exact motif location and
therefore can model sequence context of the binding site, which has been shown to contribute
to binding [64, 319].

We finally show that TFs with poor performance at assessing variant impact often rely
on additional mechanisms such as binding partners, methylation, DNA shape and PTMs
(Figure 3.11).



3.4 Discussion 87

Assessing TF-DNA binding and how it is influenced by genetic variation in silico is a
much more complex process than once thought. Current methods available for interpreting
effects of TFBS variants rely primarily on binding specificity. Although this provides a useful
framework for prioritizing non-coding variants, as demonstrated by results, even the most
sophisticated methods are often unable to capture the full extent of altered binding in the
genome. This can be attributed to several reasons. First, there are several other mechanisms
that have been known to significantly contribute to binding specificity such as epigenetic
modifications, cooperative binding, geometric shapes of DNA, PTM modifications and more.
Epigenetics, in particular, methylation, can play a major role in enhancing or inhibiting
TF-binding [320, 72]. The recent study by Yin et al. carried out methylation-sensitive
SELEX in 542 TFs and identified many methylation-dependent TFs [72]. Epigenetics can
also greatly affect regions TFs can occupy. Nucleosome occupancy, for instance, results in
closed chromatin which is inaccessible to TFs. Indeed, DNAase hypersensitivity sequencing
(DHS-seq) has revealed regions of open chromatin in many cell lines, which have been shown
to improve binding prediction [321]. PTMs is another major regulator of TF activity through
altering its structural conformation, stability or sub-cellular localization thereby affecting
binding [313]. For instance, phosphorylation of p53 on S378 allows it be recognized by
14-3-3 proteins, which associate with pS3 and significantly enhances DNA-binding [322].
Second, binding preferences of a TFs have been shown to be heterogeneous across different
cell lines. For instance, Arvey et al. comprehensively analysed ChIP-seq data for 67 TFs
across multiple different and found that many cell-type-specific sequence models were able
to capture binding variability, which was primarily due to differences in heteromeric complex
formations [323]. Since the samples and cell lines from which ASB variants were obtained
do not always match that of the experiments used to generate TF-specificity models, this is a
potential confounding factor of poor performing models.

Another factor greatly limiting the prediction of TFBS-altering variants is the availability
of TF motifs. It is estimated that the human genome contains approximately 1,400 TFs
containing DBDs [324]. Although the current catalogue of TF-binding specificity has
significantly expanded in the past decade with the aid of high throughput approaches such as
ChIP-seq, SELEX and PBMs, almost half of identified TFs are yet to have their specificity
determined [325]. This is perhaps due to technical limitations, such as transient binding or
expression of the TF. The lack of such data further hampers ability for us to systematically
understand variant impact in TFBSs.

Significant advances in interpreting non-coding variation have been greatly aided by the
emergence of deep learning methods to the field of genetics over the past few years. However,

accurate assessment of variant impact on TFBSs will require models to systematically



Assessing performance of methods for predicting impact of variants on transcription factor
88 binding

integrate additional epigenetic, proteomic and genetic data in order to account for mechanisms

beyond sequence specificity in a cell-type-specific manner.



Chapter 4

Functional consequences of single
nucleotide variants across different
molecular features

In this chapter, I describe a comprehensive effort to compile and benchmark commonly-used
sequence and structure-based predictors of mutational consequences, which are used to
precompute the effects of coding and non-coding variants in the reference genomes of H.
sapiens, S. cerevisiae, and E. coli. I utilise this data to analyse known pathogenic disease
variants and provide mechanistic hypotheses for causal variants of unknown function.
Lab members Danish Memon and Marco Galardini have contributed multiple sequence
alignments used for SIFT and FoldX-generated data to the project for H. sapiens and E. coli.
All work was otherwise carried out by myself under the supervision of Pedro Beltao. Parts of

this work were published in the following article:

Marco Galardini, Alexandra Koumoutsi, Lucia Herrera-Dominguez, Juan Antonio
Cordero Varela, Anja Telzerow, Omar Wagih, Morgane Wartel, Olivier Clermont, Erick
Denamur, Athanasios Typas and Pedro Beltrao (2017). Phenotype prediction in an Es-
cherichia coli strain panel. Biorxiv, page 141879.

4.1 Introduction

GWASSs have come a long way at identifying causal genetic variants. Over the past decade,
thousands of associations have been made between genetic variation and phenotypic traits
including disease risk [326]. However, GWASs are inherently limited in their ability to
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explain the underlying mechanism that is likely influenced by the variant in question. This
missing mechanistic layer poses several roadblocks in the comprehensive understanding of
how variants influence phenotypic variability.

In previous chapters, I have discussed the importance of modelling sequence specificity
mediating both kinase-substrate phosphorylation and TF-binding and their role in uncovering
mechanistic consequences of genetic variation. In addition to such mechanisms, variants
occurring in coding and noncoding regions can influence a diversity of molecular functions.
For instance, non-coding variants can affect chromatin accessibility [327], splice sites [328],
and epigenetic modifications [329]. Coding variants can affect PTM sites [121, 146], protein
folding and stability [330], protein interaction interfaces [226], sub-cellular localization
[331], as well as introduce premature stop codons. Understanding the disrupted biological
mechanisms underlying genetic variation is key to many applications in genetics such as
genetically engineering organisms, assessing drug efficacy and drug discovery [332-334].

The ability to predict the degree to which genetic variation would alter such mechanisms
offers a time and cost-effective alternative over classical experimental validations and can
greatly facilitate the understanding of mechanisms underlying causal variants. A multitude of
in silico predictors aimed at predicting such effects have been proposed [146, 189, 305], yet,
for the average user, they are often cumbersome to set up and use and/or require significant
computational power and time. For instance, structure-based protein stability predictors
can take on the order of minutes to hours to assess the impact of a single variant [189].
Furthermore, the currently available tools do not comprehensively combine effects across
different molecular mechanisms [335] or are limited to analysing coding or noncoding
variation [305].

In this chapter, I first investigated natural and disease-variation in both H. sapiens and
S. cerevisiae in the context of functional elements in the genome to show that such regions
display higher evolutionary constraint. Accordingly, I have compiled and benchmarked
commonly-used sequence and structure-based predictors of mutational consequences and
predicted the effect of all possible amino acid and nucleotide variants in the reference
genomes of H. sapiens, S. cerevisiae, and E. coli. The impact of variants was measured in the
context of conserved protein regions, protein stability, PPI interfaces, PTMs, kinase-substrate
interactions, SLiMs, start and stop codons, and TFBSs. This data is deposited in the mutfunc
platform, which allows for prioritization of variants while providing insight into the altered
mechanisms.

Because all data is precomputed, variants can be rapidly annotated and prioritised. The
data available in mutfunc was validated by analysing both natural and disease genetic variation

data in S. cerevisiae and H. sapiens data. For instance, we have shown that genes deemed
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essential for survival are less likely to harbour impactful variants and that common genetic
variants are less likely to be impactful. Variants curated to be relevant for function or deemed
pathogenic were also more likely to be predicted as impactful. We further demonstrate the
utility of mutfunc by analysing clinical variants that identified in disease patients but have an
uncertain significance of pathogenicity. Mutfunc is a valuable resource that will facilitate the

understanding of the mechanistic impacts of genetic variation.

4.2 Results

4.2.1 Functional genomic regions display evolutionary constraint

across S. cerevisiae and H. sapiens

We first aimed to investigate how both natural and disease variants manifest themselves
within functional regions of the genome. We asked if certain functional regions relevant
to protein structures, PTMs and TFBSs were under evolutionary constraint or negative
selection. If these regions are indeed critical for function, arising deleterious variants would
be purged over time in order to retain function. The evolutionary constraint, defined as ¢, can
be measured by taking the ratio between observed mutation counts in a region of interest
and random regions, where, values below 1 confer negative selection, and values above 1
confer positive selection. To do this, publicly available genetic variation data for both S.
cerevisiae and H. sapiens were used. For S. cerevisiae, 896,772 natural variants for over
400 S. cerevisiae strains were collated from four studies [336-339], of which 478,857 were
coding variants. For H. sapiens, over 3.2M coding variants from over 65,000 individuals
were obtained from the EXAC consortium [298] (Methods, section 4.3.1).

Buried protein regions and interaction interfaces exhibit negative selection

It is well established that buried residues contribute more to protein stability relative to
surface residues [340] and have been shown on a smaller scale to harbour fewer mutations
[341]. To assess this on a larger scale, variants from S. cerevisiae and H. sapiens were
mapped to a total of 9,837 resolved protein structures and homology models (n=6,737 H.
sapiens, n=3,100 S. cerevisiae) and residues were grouped based on the computed relative
surface accessibilities (RSAs) of residues (Methods, section 4.3.4). Residues were binned
into four RSA groups (0-25%, 26-50%, 51-75% and >76%). The number of mutations falling
within positions of each bin is then counted and compared to counts observed by the same

number of random positions in the protein, permuted 1,000 times. Buried residues were
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found to harbour fewer variants in both S. cerevisiae and H. sapiens, relative to those of
higher RSA (Figure 4.1a, p<1.28x1073%),

This was similarly measured in structures of PPI interfaces. A total of 9,883 structures
(n=7,693 H. sapiens, n=2,190 S. cerevisiae) for binary PPIs were collected from Interac-
tome3D [205]. The difference in RSA between, ARSA, between monomeric proteins and
proteins in the interaction complex, was used as a measure of how buried or exposed a residue
was within an interface (Methods, section 4.3.4). Residues were grouped into four ARSA
bins, similar to those defined for stability. Residues buried within interface residues were
found to harbour far fewer variants compared to those that are exposed, with a low ARSA
(Figure 4.1b, p<2.28 x 10733,

The strong negative selection observed in buried residues with respect to both monomeric
proteins and interaction interfaces suggest that they are of higher functional relevance, which
is in agreement with what is reported regarding the importance of buried residues in the
stability of proteins [340] and interaction interfaces [342].
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Fig. 4.1 The evolutionary constraint in monomeric protein structures, interaction interfaces
and PTMs. (a) Regions buried within a protein structure with a low RSA typically exhibit
higher evolutionary constraint. Similarly, (b) regions buried within interaction interfaces
exhibit a high ARSA and demonstrate stronger evolutionary constraint. P-values represent a
one-sided Wilcoxon test. (c) Evolutionary constraint on PTMs, where numbers reflect the
number of PTM sites for each modification. (d) PTMs with a higher number of neighbouring
PTMs are much under stronger constraint, compared to those that exist individually.

Post-translational modification regions exhibit negative selection

To explore PTM-associated variation, a total of 296,147 and 26,560 H. sapiens and S.
cerevisiae PTM sites were gathered from publicly available databases and the common PTMs
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included ubiquitination, acetylation, phosphorylation, methylation and O-linked glycosilation
(Methods, section 4.3.5). The frequency of variant frequency within +5 flanking residues
of modified sites was compared to that of randomly sampled residues. The random set
is defined as non-PTM matching residues sampled from the same proteins harbouring the
modifications. Different PTMs exhibited variable levels of constraint with modifications like
O-linked glycosilation displaying the strongest (Figure 4.1c, ¢=0.64 H. sapiens, c=0.58 S.
cerevisiae), followed by methylation (c=0.84 H. sapiens, c=0.62 S. cerevisiae). In contrast,
modifications such as ubiquitination demonstrated lower constraint (c=0.85 H. sapiens,
c=0.97 S. cerevisiae). This could be partly explained by the fact that ubiquitination is
far more robust to genetic variation. There have been numerous documented cases in the
literature suggesting that the disruption of one ubiquitination site has little impact on the
targeting and degradation of the protein since the ubiquitination of a proximal lysine will
often achieve a similar function [343, 344].

Clusters of PTM sites, where a high number of PTM modifications are observed, have
been shown to confer functionally relevant regions of the protein [283]. An example of
this is the multi-phosphorylation cascade in beta-catenin, where the phosphorylation of
several neighbouring phosphosites must be achieved in order for beta-catenin to be targeted
for degradation [345]. To test whether clusters of PTM sites confer stronger evolutionary
constraint, PTM sites were binned depending on the number of neighbouring PTMs within a
410 window and the variants were analysed within each bin. A strong positive relationship
was observed between the number of neighbouring PTMs and negative selection. Sites with
5 or more other neighbouring PTMs demonstrated much stronger negative selection when
compared to those that occurred individually (Figure 4.1d, p<5.41x1075). This suggests
that such clusters could indeed represent signalling hotspots, relevant for carrying out critical

biological functions.

Transcription factor binding sites exhibit negative selection

We next sought to measure the constraint of non-coding variation in TFBSs in the S. cerevisiae
genome. To do this, we predicted genes likely regulated by a TF by identifying differentially
expressed genes in TF-knock-out strains (Methods, section 4.3.7). This resulted in a network
of 1,711 TF-gene relationships across 93 TFs. Using a total of 176 PWMs from JASPAR
[346] the corresponding ChIP-seq or ChIP-chip regions in promoters of associated genes
were scanned. A total of 4,523 potential binding sites were identified across 93 TFs. The
constraint was measured by computing the ratio of variant frequency within the predicted
binding sites to that of random genomic sites of the same length and within the same gene

promoter and ChIP regions. Interestingly, TFs that were relevant for regulating genes in
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response to lack of nutrients (PHD1, SFP1) and oxidative/osmotic stresses (SKN7, MOT3)
were not found to be under negative selection. This is in contrast to TFs that regulate
more basic cellular function such as those involved in the expression of respiratory genes
(HAP4), termination of RNA polymerase I transcription (REB1), and general transcription
activation, repression and chromatin silencing (RAP1), which exhibited a much higher degree
of negative selection (Figure 4.2a).

Clusters of multiple TFs (heterotypic clusters) or single TFs (homotypic clusters) are
have been shown to have increased importance in the regulation of gene expression, likely
through promoting cooperative TF binding [347, 348, 348]. To assess evolutionary con-
straint within heterotypic and homotypic TFBS clusters, predicted binding sites were binned
based on the number of neighbouring TFBSs within a 50 bp window and constraint was
measured for each bin, similar to PTMs. Clusters of TFBSs displayed high negative selection
(Figure 4.2b), where binding sites with 6 or more adjacent neighbours showing signifi-
cantly stronger negative selection (c=0.37) compared to those that occurred individually
(Figure 4.2b, ¢=0.77, p=1.26x1073%), suggesting that regions harbouring a higher number
of TFBSs likely represent functional regulatory hotspots.

Given that TFBSs were overall constrained, we next asked if positions relevant for
binding were under stronger negative selection. Using the PWMSs, the position-specific
information content (IC) was computed and used as a proxy for binding relevance. For
TFs with greater than 20 putative binding sites, the IC of positions was binned based on
whether it was low (<0.5), medium (0.5-1.5) and high (>1.5). Positions with high IC were
found to display significantly stronger negative selection compared to those with low IC
((Figure 4.2d), p=0.017). Examining position-specific constraint for individual TFs further

demonstrates the relevance of high IC positions (Figure 4.2¢).

4.2.2 mutfunc: a one-stop resource for mechanistic effects of single

nucleotide variants

Given that functionally-relevant regions of the genome are under negative selection, we sought
to better understand the mechanistic impact of point mutations affecting these functional
elements. To do this, a set of commonly-used predictors were used to assess the impact of
every possible single amino acid or nucleotide substitution across H. sapiens, S. cerevisiae,
and E. coli, where applicable. We precomputed data of variants that impact conserved protein
regions, protein stability, protein interaction interfaces, kinase-substrate phosphorylation and
other PTMs, linear motifs, TFBSs and start and stop codons (Methods, section 4.3.8). These
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Fig. 4.2 Evolutionary constraint of TFBSs in S. cerevisiae. (a) Variability in constraint
amongst bindings sites for TFs with at least 40 sites. (b) TFBSs that co-exist with other
binding sites are under stronger constraint. P-value shown is computed using a one-sided
Wilcoxon test (c) Position-specific constraint shows that positions of higher relevance for
binding in TFs with at least 20 sites are under stronger constraint. P-value shown is computed
using a one-sided Kolmogorov-Smirnov test. The clear correlation between the positions
relevant for binding and constraint is visually represented through (d) four examples where
the bar plots reflect the position-specific constraint in (blue) and around (grey) the binding
site, along with sequence logos for the binding specificities.

results were deposited in a web tool, mutfunc, which offers a quick and interactive way by
which users can gain mechanistic insight into variants of interest.
A compiled resource of precomputed mechanistic variant impact

To measure the impact on conserved regions, we constructed 29,027 multiple sequence
alignments for proteins of the three organisms (n=19,497 H. sapiens, n=5,498 S. cerevisiae,
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n=4,032 E. coli), and used the SIFT algorithm [244] to assess the impact of all possible
291.7M variants (n=212.2M H. sapiens, n=53.4M yeast, n=26.1M E. coli). To measure
the impact on protein stability, the FoldX algorithm [189] was applied to 17,893 structures
(including homology models) across the three organisms, and precomputed effects of 66.3
million all substitutions (n=42.7M H. sapiens, n=10.3M S. cerevisiae, n=13.4M E. coli,
Methods, section 4.3.4). We identified interface residues in 10,675 structures of binary PPIs
from Interactome3D across the three organisms and similarly applied FoldX to compute the
effects of all 11.2M possible mutations on binding stability (n=7.2M H. sapiens, n=2.3M
S. cerevisiae, n=1.6M E. coli). To identify variants that could impact kinase-substrate sites,
we used MIMP [146] to predict the impact of all possible 541,161 variants (n=485,736 H.
sapiens, n=55,425 §. cerevisiae) falling within +5 residues of a known kinase-substrate
phosphorylation site (phosphosite) on a kinase’s specificity. Specificities for 56 kinases in
H. sapiens and 46 kinases in S. cerevisiae were considered. For all other PTMs such as
methylation, ubiquitination, and acetylation that do not exhibit explicit flanking sequence
specificities, a variant was considered damaging if it directly altered the modified site. This
resulted in a total of 6.3M possible variants that could alter such PTM sites across the three
organisms (n=5.8M H. sapiens, n=537,434 §. cerevisiae, n=9,177 E.coli). For linear motifs,
we gathered 1,668 experimentally identified linear motifs (n=1,525 H. sapiens, n=143 S.
cerevisiae), along with their derived regular expression pattern from the ELM database [161]
and computed the impact of all possible variants 226,920 (n=205,120 H. sapiens, n=21,800
S. cerevisiae) on binding patterns. Finally, for TFBSs, for organisms without well-defined
functional TFBSs (H. sapiens and S. cerevisiae), we defined putative TF-gene regulatory
network using TF-knockdown expression data and/or ChIP-seq/ChIP-chip, as previously
described. We then used PWMs to identify putative binding sites, and predict the impact
of all possible 3.6M variant substitutions (n=3.3M H. sapiens, n=236,382 yeast, n=46,768
E. coli) on specificities of 217 TFs (n=72 H. sapiens, n=104 S. cerevisiae, n=41 E. coli). It
is noteworthy to mention that although in Chapter 3 (section 3.2.3) we show that machine
learning-based approaches outperform PWMs (used here) at predicting TFBS variant impact,
the work presented in this chapter was carried out prior to that of Chapter 3.

The precomputed mechanistic variant effects data are stored in a normalised MySQL
database in a mechanism-specific manner (Figure 4.3). All variants are stored within a
primary mutation table, which then relates to the individual mechanism-specific tables in a
one-to-many manner. The mutation table also references a position table containing positions
of all variants, which in turn references a gene/chromosome table in a many-to-one manner.

All these tables are indexed to allow for rapid lookup amongst millions of entries.
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Fig. 4.3 The MySQL mutfunc database schema showing the structure of the database, tables,
and relationships. The primary table MUT (yellow) stores all possible DNA and amino acid
variants, which relate to mechanism-specific tables (red). These then relate to additional
tables (blue) containing information on the affected mechanisms.

The mutfunc web server user interface

The mutfunc user interface provides an intuitive, user-friendly and interactive way by which
users can query the database using their own variants. Both DNA or protein substitutions
can be provided to mutfunc in one of two formats, plain text format or the variant call
format (VCF). The plain text format is a simplified format for variants, where variants are
line separated. Variants should be formatted as follows NAME_X123Y or NAME_123_X_Y,
where NAME is name of the gene (UniProt accessions, gene names or IDs are acceptable) or
chromosome (number or NCBI IDs), 123 is the position of the variant, and X and Y are the
wildtype and mutant amino acid or base, respectively (Listing 4.1). Alternatively, the VCF
format can be used, which is a format commonly used by variant calling pipelines. In its

simplest form, a VCF file is a five-column tab-delimited file containing the chromosome,
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position, id, wildtype and mutant alleles of a DNA variant (Listing 4.2). Both formats can be
provided either via the text box or by uploading a file.

Listing 4.1 Plain text format example Listing 4.2 VCF format example

chr1_61177_G/A chril7 10987590 ID1 G T
YPL228W_N274C chri0 23508363 ID2 A G
MY04_K1366N chri6 52599188 ID3 C T
YJL158C K63A chrl6 20932709 ID4 T C

Variants are processed then queried against the database. If DNA variants fall within a
coding region and encode a nonsynonymous substitution the corresponding protein variant is
also queried against the database. Since all predictions are precomputed, mutfunc is able to
analyse an extremely large number of variants typically within seconds.

An interactive report of variant effects is returned to the user, which contains a table
of variants matching the database (Figure 4.4a). The predicted effect of each variant are
categorised into six classes: (1) PTMs and linear motifs (2) Stability (3) Interfaces (4)
Conservation (5) TFBS (6) Start-stop codons. Each row in the table contains a series of
coloured and labelled badges, where each badge is coloured and labelled distinctively based
on the mechanism class (Figure 4.4b). Expanding the row allows for mechanistic effects
to be further explored, providing additional information on the prediction made such as the
score as provided by the predictor, visual representations of the variant, and external links
to references. For instance, details of a variant affecting protein stability or interfaces will
show FoldX-predicted AAG values, alongside an interactive visualization of the variant in
the context of the three-dimensional structure. Variants impacting conserved regions will
show SIFT scores and an MSA of the affected position in context. Variants impacting SLiMs,
PTMs or TFBSs will show the local sequence context before and after the mutation as well
as sequence logos if a motif is involved (Figure 4.4b).

Variants of a single protein can be visually inspected using the interactive protein viewer
(Figure 4.4c). Using an adapted version of the neXtProt [349] feature viewer, variants within
a protein are visualised in the context of different protein feature tracks including protein
domains from PFAM [350], regions of disorder from MobiDB [351], secondary structure
from UniProt [149] and PTMs. A separate track is separately displayed for each class of
variants. The viewer allows interactive zooming and interfaces with the results table i.e.
selecting a variant in the viewer will highlight the corresponding row.

Results can be filtered by gene or chromosome keywords and by different classes of
variants. All results can also be exported for analysis offline, in which an archive of tab-

delimited flat (one for each variant class) files are made available to download. All jobs are
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stored for 48 hours, after which all submitted data and generated results are removed from
the server.

The mutfunc resource serves as a useful platform for small and large-scale studies,
allowing variants to be mechanistically explained and prioritised.

4.2.3 Validation of predictions

To demonstrate the ability of predictions provided in mutfunc, we aimed to explore the
properties of a large number of predictions generated for yeast and H. sapiens. We explored
the deleteriousness of variants in the context of essential genes as well as allele frequency.
We further leveraged a number of data sets that have manually curated variants as either

being deleterious to function or having no effect in order to validate predictions.

Essential genes harbour fewer deleterious variants

Essential genes are those required for survival and are often identified by disrupting the gene
and assessing the viability of the organism or cell. In S. cerevisiae, roughly 20% (1,114)
genes have been identified as essential well over a decade ago by the Saccharomyces Genome
Deletion Project (SGDP) consortium. More recently, this has been made possible in H.
sapiens through CRISPR and gene trapping technology [352, 353]. For instance, Blomen et
al. identified roughly 8% (1,734) of H. sapiens genes as essential in two cell lines [352].
Utilising knowledge of essential genes in both S. cerevisiae and H. sapiens, we explored
how often essential genes exhibit variants impacting conserved regions (sift score < 0.05),
protein stability and interface residues (AAG > 2), altering start codons or stop codons (non-
sense and nonstop variants). We counted deleterious variants in essential and non-essential
genes, normalised by the length of the protein. We found that essential genes consistently
demonstrated significantly lower frequencies of variants predicted to affect conservation,
stability, interfaces and alter start and stop codons in across H. sapiens and S. cerevisiae (Fig-
ure 4.5). Specifically, conservation showed the most significant separation between essential
and non-essential genes (p=1.04x 1074 H. sapiens, p=1.52x10722 S. cerevisiae), followed
by protein stability (p=1.82x10~!2 human, p=7.07x 10710 S. cerevisiae). Although in S.
cerevisiae fewer deleterious interface variants impact essential genes (p=5.43x10"%), in
H. sapiens there was surprisingly no observed difference (p=0.70, Figure 4.5c). Finally,
of the variants affecting the start and stop codons, nonsense variants showed the highest
significance (p=8.49x 10~ H. sapiens, p=1.08x 107> S. cerevisiae), followed by start loss
and nonstop variants (Figure 4.5d-f). However, similar to interfaces, start loss variants did
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not show a significant difference in H. sapiens (p=0.51), whereas S. cerevisiae exhibited mild
significance (Figure 4.5f, p=0.012).

These results demonstrate that essential genes, in most cases, harbour fewer variants
that would affect its function, confirming both the essentiality of the genes as well as the
reliability of predictions made.
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Fig. 4.5 Essential genes harbour fewer variants impacting mechanisms across H. sapiens
(top) and S. cerevisiae (bottom). (a-f) Box plots show the count of variants, normalised
by protein length for essential and non-essential genes in each mechanism. P-values are
calculated based on a one-sided Wilcoxon test.

Common variants are more tolerated

Variants that occur commonly in the population should by definition less likely to have
strong effects on molecular phenotypes. To confirm this, we analysed the predicted impact
of variants in the context of allele frequencies. Variant effect predictions for conservation,
stability, and interfaces were binned by their MAF into 5 groups (0-1%, 1-5%, 5-20%,

20-50% and >50%) and the distribution of variant impact scores in each bin was assessed.
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Both conservation and stability showed a clear linear relationship between the MAF and
predictor score across H. sapiens and S. cerevisiae. Variants with a MAF < 1% showed an
average SIFT score of 0.27 and 0.4 in H. sapiens and S. cerevisiae, respectively, compared
to variants with MAF > 50%, which showed significantly higher SIFT scores of 0.60 and
0.60 (p<2.2x10716). Stability effects for variants followed similar trends with < 1% MAF
variants showing an average AAG of 1.5 and 0.75 in H. sapiens and S. cerevisiae, respectively,
compared to 0.2 and 0.15 in high MAF variants (> 50%). Interfaces did not follow such
trends, likely due to the highly imbalanced number of variants across MAF bins.

Grouping MAFs by bins often relies on having a significant number of MAF values per
bin. To more directly compare distributions of MAFs, we compared the quantiles of MAF
distributions of impactful variants to that of all nonsynonymous variants. For conservation,
stability and interface predictions, deleterious variants were defined by cutoffs of s < 0.05
for conservation, and AAG > 2 for stability and interface predictions. Results showed that
impactful variants typically exhibited significantly lower MAF values with the exception of
both nonstop and start lost variants (Figure 4.6b). Variants affecting PTMs in S. cerevisiae
also did not show a significant difference (Figure 4.6b).

The AF is a useful metric to consider when interpreting variant effects. These results

demonstrate that it is often the case predicted deleterious variants demonstrate lower AF.

Predicted deleterious variants are enriched in functionally important variants

We next tested the ability of predictors included in mutfunc to identify functionally significant
variants in S. cerevisiae and H. sapiens. For H. sapiens we used a total of 34,600 variants
annotated to be pathogenic (n=17,167) or benign (n=17,433) in ClinVar database[354]. For
S. cerevisiae we utilised 8,083 variants consolidate by Jelier et al. [355] as either tolerated
(n=5,271) or affecting function (n=2,812) (Methods, section 4.3.1).

Using the quantitative score of conservation, stability, and interface predictions, we
assessed the performance at which predicted scores are able to discriminate functional
variants. Predictors consistently demonstrated satisfactory performance across both H.
sapiens and S. cerevisiae. Predictions based on SIFT performed the best at discriminating
pathogenic variants from benign (AUC H. sapiens = 0.87, S. cerevisiae = 0.92), followed by
FoldX interfaces (AUC H. sapiens = 0.64, S. cerevisiae = 0.72) and FoldX stability (AUC
H. sapiens = 0.70, S. cerevisiae = 0.62, Figure 4.7a). A possible explanation for stability
and interface predictors having lower performance is that they explain only individual
mechanisms and, therefore, misclassified variants are likely involved in alternate mechanism

driving the pathogenicity.
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Fig. 4.6 Common variants are less impactful across H. sapiens and S. cerevisiae. (a-c) Bar
plot of mean SIFT scores and predicted AAG values for variants within different MAF bins.
Error bars represent the standard error and p-values are calculated based on a one-sided
Wilcoxon test. (d) Quantile-quantile plots of MAFs between observed MAFs of variants
impacting a mechanism and expected MAFs of all coding variants.

Other heuristic-based predictors such as SLiMs and PTMs that provide a binary classifi-
cation of deleteriousness were also checked if variants predicted to be affecting a cellular
mechanism were enriched in pathogenic/deleterious variants. For each class of predictions,
the proportion of functional variants is computed and compared against a background set of
variants using a one-sided Fisher’s exact test to obtain a p-value describing the significance
of observing the proportion by random chance. This was carried out on variants that lie
within a SLiM and disrupt or retain the regular expression, variants that impact PTM and
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non-PTM residues, and variants altering start and stop codons. We found that, despite
low numbers, variants disrupting regular expression patterns of linear motifs were enriched
(p=5.23x1073 H. sapiens, p=0.12 S. cerevisiae). The insignificant p-value observed in S.
cerevisiae is likely due to a scarcity of observed SLiM-disrupting variants. Similarly, in S.
cerevisiae, variants altering PTM sites were shown to be enriched in deleterious variants
(p=8.44x1077). This observation did not extend to H. sapiens, likely due to the much higher
quantity of PTMs, many of which are non-functional [283]. Finally, variants that disrupt
start codons as well as nonsense and nonstop variants all displayed high proportions of
deleterious/pathogenic variants (>80%), which was significantly higher than the proportion
of all variants (p<2.14x10~* H. sapiens, p=0.052 S. cerevisiae).

The results here demonstrate that predictors utilised in mutfunc are capable of identifying
variants of functional significance, further demonstrating the practicality of mutfunc.
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Fig. 4.7 Validation of predictors in mutfunc using functional and pathogenic variants in S.
cerevisiae and H. sapiens. (a) The predicted impact of variants on conservation, stability and
interaction interfaces can accurately distinguish functional variants. (b) Functional variants
are enriched in those predicted to alter SLiMs, PTMs and start and stop codons. Bar plots
show the proportion of variants in each bin deemed functional. Numbers above each bar plot
denote the number of variants. All p-values are calculated using a one-tailed Fisher’s exact
test.
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4.2.4 Predicting mechanistic insight into variants of uncertain signifi-

cance

Variants that have been identified through genetic testing but are yet to be deemed benign
or pathogenic are termed variants of uncertain significance (VUS). The interpretation of
such variants is a common challenge in genetics, one that is often aided by computational
predictors. We sought to employ the mutfunc database to predict protein-coding VUSs. A
total of 64,692 variants labelled with “uncertain significance” were collected from ClinVar
[354], along with the disease phenotype in which they were tested for. VUSs were annotated
using mutfunc and 21,584 variants were predicted impactful by at least one of the mechanistic
predictors, not including SIFT (n=7,547 stability, n=751 interfaces, n=139 linear motifs,
2,372 PTMs, 57 kinase-binding). We focus on variants predicted to impact the structural
integrity of proteins (stability and interaction interfaces) since they hold the highest coverage.

Over 38% (751/1981) of VUSs are predicted to interfere with interface binding stability.
VUSs were retained if (1) the protein also harbours a pathogenic variant predicted by the same
predictor as impactful and (2) both the pathogenic variant and VUSs are identified in patients
carrying the same disease. This allows us to focus on higher confidence VUS predictions
for which we know a pathogenic variant alters the same mechanism. We demonstrate a few
examples of VUSs that are predicted to alter binding to highlight the utility of predictions
in mutfunc. For instance, primary hyperoxaluria is a disease caused primarily by mutations
in the GRHPR gene, a glyoxylate and hydroxypyruvate reductase [356, 357]. Enzymatic
activity of GRHPR requires homodimerization [358]. The VUS R171H is predicted to
impact a conserved region as well as the homodimerization stability (AAG = 2.19, s <
0.018), thereby impinging on the function of GRHPR. Interestingly there have been two
other pathogenic variants R302H and E113K that are implicated in primary hyperoxaluria
and are also predicted to impact conserved regions and binding stability (AAG > 2.15, s <
0.012), further supporting the evidence of an altered mechanism for the VUS. Similar to this
example, mutations in fumarate hydratase (FH) have been shown to play crucial roles in
fumarase deficiency and cancer [359] and regular function for FH is attained through the
formation of a homotetramer [359]. A number of VUSs throughout the FH homotetramer
interfaces identified in fumarase deficient patients have been predicted as disrupting binding
stability, such as the S334R mutation, which shows a AAG of 6.31, which would result in
loss-of-function of FH. The pathogenic variants R233C and D341N have been predicted
as impacting binding stability (AAG > 2.81) and are implicated in cancer and fumarase
deficiency, respectively.

Similar to interface variants, we analysed variants that destabilise the protein structure. We

identified 1,182 VUSs predicted to alter stability in proteins containing pathogenic variants
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also predicted destabilizing. For example, in the ubiquitin ligase PARK2, implicated in
Parkinson’s disease, two rare VUSs (R42H, V148E) identified in Parkinson’s disease patients
are predicted to destabilise the protein (AAG > 4.7, Figure 4.8d). PARK2 also contains other
pathogenic variants implicated in Parkinson’s disease and predicted to be destabilizing. In the
tumour suppressor serine/threonine-protein kinase STK11, pathogenic and VUS identified in
Peutz-Jeghers syndrome patients show AAG scores predicting destabilisation (Figure 4.8e).
In particular, the VUS G242W shows an exceptionally high destabilizing score (AAG >
38.96).

The analysis here demonstrates how mutfunc could be applied to systematically describe

altered mechanisms through candidate disease variants.

4.3 Methods

4.3.1 Genetic variant data collection

A total of 896,772 genetic variants occurring in for 405 haploid and diploid S. cerevisiae
strains were collected from four studies [336-339]. All but one study by Strope et al. [336]
provided processed variant calls in VCF format. Variants were called for the Strope et
al. study using the following pipeline. Raw reads were obtained from the ENA resource
[360]. Adapter sequences were removed using cutadapt v1.8.1 [361] and reads were mapped
to the S. cerevisiae genome version 64 using BWA-MEM v(0.7.8 [362]. Duplicate reads
were discarded using picard v1.96 (https://github.com/broadinstitute/picard) and reads were
realigned using the GATK indel realigner v3.3 [363]. Base alignment qualities were computed
using samtools v1.2 [364] and variants were called using freebayes v0.9.21-15-g8a06a0b
[365] and the following parameters -no-complex, -genotype-qualities, -ploidy 1
and -theta 0.006. The VCF was filtered for calls with QUAL > 30, GQ > 30 and DP >
4. VCF for individual S. cerevisiae strains were combined and coding variants were called
using the predictCoding function of the VariantAnnotation R package [366].

A total of 3,198,692 coding variants in H. sapiens for over 65,000 individuals was
collected from the ExAC consortium [298] in the ANNOVAR [317] output format along
with corresponding adjusted allele frequencies. Ensembl transcript positions were mapped
to UniProt by performing Needleman-Wunsch global alignment of translated Ensembl
transcript sequences against the UniProt sequence using the pairwiseAlignment function
in the Biostrings R package. The mapping between Ensembl transcript IDs (v81) and UniProt
accessions was obtained from the biomaRt R package [367]. In the case that multiple alleles
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Fig. 4.8 In silico validation of VUSs using mutfunc predictions. (a-c) Three examples of
interaction interfaces containing variants predicted to impact binding stability. Subunits of
the interaction complex are coloured in dark grey and white, and respective interface residues
in dark green and green. (b) Two examples of variants predicted to impact protein stability.
Pathogenic variants are labelled "P" in red, and VUSs "U" in blue.

mapped to the sample single amino acid substitution, the one with the highest adjusted allele
frequency was retained.

A total of 139,167 variants were obtained from ClinVar [354]. Only variants that did
not match one of the following clinical significance terms were removed: ’Benign’, *Be-
nign/Likely benign’,’Likely benign’, ’Likely pathogenic’, ’Pathogenic/Likely pathogenic’,
and ’Pathogenic’. Variants with a review status of 'no assertion criteria provided’ were
also removed, as those reflect variants that have been assigned clinical significance without
any particular criteria. The final filtered set contained 39,597 variants. Of these variants,
44% were classified as pathogenic or likely pathogenic. For S. cerevisiae, a total of 8,083
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manually curated variants were obtained from [355], 34.5% (2,812) of which were labelled
as deleterious. Variants were collected from a combination of the UniProt database [149],
Protein Mutant Database [368], Saccharomyces genome database [369] and mutations that
are identified in essential genes [370].

4.3.2 Evolutionary constraint

The evolutionary constraint, defined as ¢, is computed by taking the ratio between observed
mutation counts in a region of interest and that of random regions.

To assess the difference between c in buried vs. exposed protein structures and interfaces,
variants are counted in each of the four bins of RSA. An equal number of variants are then
sampled 100 times and the number of variants in each bin are counted. The observed and
expected counts for each bin are divided for 100 values of c.

For PTMs, the observed number of mutations in and around the modified site is counted.
The expected number of mutations is calculated by sampling an equal number of un-modified
sites in the same genes harbouring the observed PTMs. This is repeated 100 times, for each
of which c is calculated.

For TFBSs, the observed number of variants is computed by counting the number of
mutations in predicted TFBSs which also overlap with ChIP-seq or ChIP-chip regions. This
is compared to mutation counts in random regions of the same length in the ChIP-seq or
ChIP-chip regions. This is similarly repeated 100 times.

There are a number of limitations related to this approach of computing evolutionary con-
straint. Namely, it does not consider variable mutation rates between nucleotides. Mutation
rates have been shown to vary significantly in regions with base composition biases [371],
local recombination rates [372], chromatin structure [373] and many other factors. Including

these would allow for more accurate constraint measurements.

4.3.3 Essential genes

A total of 2,501 essential genes identified using gene trapping technology in two haploid H.
sapiens cell lines KBM7 and HAP1 were obtained from [352]. These were further filtered
for genes that were essential in both cell lines, for a total of 1,734 genes. A total of 1,156
essential genes in S. cerevisiae were obtained from the Saccharomyces Genome Deletion
Project [374].
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4.3.4 Predicting impact on protein stability and protein interaction in-
terfaces

Experimentally determined structures were obtained from the protein data bank (PDB). Large
structures that did not have a corresponding PDB file were downloaded in mmCIF format and
converted to PDBs using the PyMOL Python library v1.2r3pre [375]. Mapping of coordinates
from PDB to UniProt residues was derived from the SIFTS database [376]. Structures with
a resolution above 3 were discarded and a single representative structure maximising the
coverage of the protein was retained. Homology modelling was carried out for proteins with
no experimentally determined structures using ModPipe version 2.2.0 [377] and the following
parameters: -hits_mode 1110 and -score_by_tsvmod OFF. For each protein, the model
with the highest normalised DOPE score was retained. Experimental and homology modelled
structures for protein interactions were obtained from the Interactome3D database [205].
Relative solvent accessibility (RSA) for all residue atoms was computed using NACCESS
[378] for proteins individually, and in the interaction complex. Interface residues were
defined as those with any change in RSA. All other cases of RSA were computed using
freeSASA v1.1 [379].

The impact of variant on stability was computed using FoldX v4.0 [189]. All struc-
tures were first split by chain into individual PDB files and repaired using the RepairPDB
command, with default parameters. The Pssm command is then used to predict AG with
numberOfRuns=5. This performs the mutation multiple times with variable rotamer con-
figurations, to ensure the algorithm has achieved convergence. The average AG of all runs
is computed and the AAG is computed as the difference between the wildtype and mutant.
The impact of variants on interaction interfaces is measured similarly, with the exception of

structures being provided in binary interaction, rather than individual chains.

4.3.5 Predicting the impact of variants on PTMs and linear motifs

For S. cerevisiae, a total of 20,056 phosphosites and 2,219 kinase-substrate associations
were obtained from the PhosphoGRID database [380]. A total of 1,070 of other PTM sites
was obtained from the dbPTM database [116]. For H. sapiens, all PTM data, including that
of phosphorylation and kinase-substrate associations were obtained from PhosphoSitePlus
[252], for a total of 296,147 sites. For E. coli, a total of 483 PTM sites were obtained from
dbPTM [116]. Linear motif data for S. cerevisiae and H. sapiens, including annotated linear
motif binding sites and regular expression patterns, were obtained from the ELM database
[381].
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Impact of variants on phosphosites and flanking regions was measured using the MIMP
algorithm [146], with default parameters. For other PTMs, a variant was predicted to be
impactful if it affected the modified residue. For linear motifs, a variant was predicted to be
impactful if it causes a loss of match for associated regular expression pattern.

4.3.6 Predicting the functional impact of variants using conservation

All protein alignments were built against UniRefS0 [382], wusing the
seqgs_chosen_via_median_info.csh script in SIFT 5.1.1 [244]. The siftr R pack-
age (https://github.com/omarwagih/siftr), an implementation of the SIFT algorithm that was
developed by myself, was used to generate SIFT scores with parameters ic_thresh=3.25

and residue_thresh=2.

4.3.7 Transcription factor binding sites

A total of 177 S. cerevisiae TFs binding models were collected in form of a position frequency
matrices (PFMs) from JASPAR [287] and converted to position weight matrices (PWMs)
using the TFBSTools R package [315]. PWMs were trimmed to eliminate consecutive
stretches of low information content (<0.2) on either terminus. To identify genes likely
regulated by a particular TF, a combination of TF-knockout expression and ChIP-chip
experiments were used, as similarly described in [383]. Genome-wide gene expression
profiles for 837 gene-knockout strains were obtained from three studies [384-386], 148 of
which were a known TF with a defined PWM. Studies provided either a Z-score or p-value
for each gene as a measure of over or under-expression, relative to the distribution of values
for all genes. Two-tailed p-values were computed from Z-scores when a p-value was not
provided [384]. In cases where TF knockout was repeated between studies, the lowest p-value
for each gene was used. ChIP-chip tracks for 355 TFs were collected from four studies
[387-390], via the Saccharomyces genome database [369]. Of the 355 of the TFs, 144
(56%) had a defined PWM. Potential binding sites were then only searched for in TF-gene
pairs with a p-value below 0.01 and the corresponding ChIP-chip region upstream of the
regulated gene. A normalised log score of 0.80 was used as the cutoff for defining putative
binding sites. Similarly, for H. sapiens, 454 TF PWMs were generated from JASPAR PFMs.
ENCODE clustered ChIP-seq data were obtained for 161 TFs, of which 72 had a PWM.
Only those regions were scored against the corresponding PWM. For E.coli, a total of 1,905
TF-matching sequences across 84 TFs were obtained from RegulonDB [391] and used to
construct PWMs. A total of 2,416 experimentally identified TFBS were obtained for 79/84
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TFs from RegulonDB. These sites were used as putative binding sites for downstream variant
predictions.

Potential target sequences could then scored against the PWM using the log-scoring
scheme defined in [60] and normalised to the best and worst matching sequence to the PWM.
The resulting score lies between 0 and 1, where 1 signifies strong predicted binding by
the factor, whereas 0O signifies predicted lack of binding. Potential binding sites are scored
in the presence (s,;) and absence (s,;) of a variant. Three separate metrics are used to
quantify the change in binding between the reference and alternate allele. The first one is
simply the difference in the normalised log score, S,,; — S,;, where a large positive value
indicates loss of binding. The second is the difference in binding percentile. Here, random
oligonucleotides are used to generate a negative distribution of log normalised scores for
each TF. The percentile of each wildtype p,,; and mutant scores p,,; is computed from this
distribution, and the difference, p,; — p, is used to quantify the magnitude of impact.
The last is the difference in the relative information content. This can be thought of as the
difference of letter height in a sequence logo. Given that the wildtype and mutant bases have
relative frequencies of f,,; and f,,;, respectively and a position has an IC value of 7, then this
is computed as (fir - Y) — (fime - ¥)- This value ranges from 0 to 2, where 0 indicates little to

no impact on a critical base, and 2 indicates a strong one.

4.3.8 Implementation of mutfunc

Described predictors were used to precompute effects for all amino acid and nucleotide
substitutions. The resulting data serves as the basis for mutfunc, allowing users to rapidly
query thousands of variants on predictions that would otherwise take on the order of days or
weeks to compute, particularly those involving 3D structures.

The mutfunc web server at http://mutfunc.com is free and open to all users and requires
no login. The web application uses the Java and Scala-based Play Framework v1.3.7 backend
(http://www.playframework.org) along with a MySQL database. The front-end utilises a
modified version of the the Twitter Bootstrap UI library (http://twitter.github.com/bootstrap).
Visualization tools used include a modified version of the neXtProt feature viewer v0.1.52
(https://github.com/calipho-sib/feature-viewer) for interactive visualisation of protein se-
quence features, WebGL protein viewer v1.1 for interactive visualisation of protein structures
v1.8.1 (https://github.com/biasmv/pv), and a modified version of the JSAV v.1.10 library
(https://github.com/AndrewCRMartin/JSAV) for visualization of multiple sequence align-
ments.
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4.4 Discussion

A complete understanding of how genetic variation drives phenotypic variability relies
majorly on understanding the mechanisms they impinge on and how this propagates through
to phenotype. Computational predictors that utilise both sequence and structure features have
been developed to aid this process. In this chapter, I have described the mutfunc resource,
in which numerous predictors were used to precompute millions of variant effects across H.
sapiens, S. cerevisiae, and E. coli. 1 have further explored predictions made in the context
of natural and disease variation in both H. sapiens and S. cerevisiae genomes and validated
the performance of predictors. Such predictors have shown a promising capacity at not only
identifying causality of a variant but also which mechanisms they likely impact.

The increasing availability of individual genomes is allowing for the detection of many
common and rare variants in both coding and non-coding regions. Such variants can easily
be queried in mutfunc, allowing for rapid hypothesis-driven annotation and prioritisation.
Currently, conservation effects hold the highest coverage, (H. sapiens 98.6%, S. cerevisiae
87.9%, and 96.1% E. coli) followed by stability (H. sapiens 18.9%, S. cerevisiae 16.9%, and
49.2% E. coli) and interfaces (H. sapiens 2.20%, S. cerevisiae 2.84%, and 4.45% E. coli).
Other mechanisms like kinase-substrate phosphorylation, SLiMs, and TFBSs have much
lower coverage and depend on the availability of external, often manually curated, data. As
additional data become available, mutfunc will be updated to improve coverage.

Hypotheses derived from in silico predictions, such as those provided in mutfunc, should
be exploited with caution. Despite the accuracy of many predictors, the inherent effect
of a genetic variation in vivo can be far more complex and depend on both genetic and
environmental factors [392]. Several studies have shown that many variants annotated as
disease-causing or predicted as deleterious have been identified in healthy humans [393],
emphasizing the discretion required when deeming a variant deleterious. One of the major
factors confounding variant effect predictions is epistatic effects, where the impact of a
variant can be mitigated or aggravated by the occurrence of alternative genetic variants
[394]. The genetic background in which a variant exists is therefore critical to understanding
genomic regions that have undergone co-evolution to suppress deleterious effects. Ultimately,
in silico predictions should not be used as actionable clinical evidence, but rather to guide
follow-up validation experiments, which could then either confirm or deny the role of the
variant in the underlying mechanism [395].

The utility of mutfunc lies within the precomputed effects of individual point mutations
allowing a large number of variants to be rapidly queried without the need for on-the-fly
computations, which can often be time-consuming. Within such a framework, epistatic

effects cannot be precomputed due to a large number of possible combinations. Similarly,
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many other types of genetic variation that largely contribute to phenotypes such as CNVs
and indels [396, 397] cannot be consistently precomputed in mutfunc due to their atypical
structure. Other aspects mutfunc that could be improved in future versions. For instance,
despite there being several well-studied mechanisms available in mutfunc, there are many
mechanisms that are yet to be integrated, such as splicing, protein localization, and epigenetic
modifications. Some of these mechanisms are not currently included in mutfunc since they
remain difficult to predict with existing poor accuracy options. The development of accurate
predictors of molecular phenotypes relies upon both the biological understanding of molecular
determinants underpinning the mechanism as well as the availability of experimentally-
verified training data. Lastly, many organisms in which genetic variation is commonly
studied are not included in mutfunc. These include as M. musculus, D. melanogaster and
A. thaliana, which contain an abundance of data on PTMs, SLiMs, structural data and
TFBSs. Predictors employed here could thus be applied to provide mechanistic variant
impact predictions for these organisms, expanding the utility of mutfunc.

Understanding how disrupted cellular mechanisms propagate to changes in phenotypes is
critical for variant interpretation. For instance, predicting the disruption of a phosphorylation
event alone is less constructive if the functional role of the phosphorylation event is not
known. Much effort has gone into identifying molecular phenotypes associated with a
particular cellular event. For instance, prioritizing functional PTMs and understanding their
function [283], investigating the role of particular PPIs in disease [398], and identifying
TFBSs that are likely to influence expression [399, 400]. Such studies are critical to aiding
the interpretation of mechanisms predicted to be disrupted by genetic variation.

All in all, mutfunc is a unique resource that will greatly facilitate the identification of the
molecular mechanisms altered by point mutations that lead to phenotypic differences and

can be broadly applied to different model organisms.






Chapter 5

Gene-level aggregation of mechanistic
variant impact for gene-phenotype

associations

In this chapter, I describe the use of mechanistic variant impact predictors to construct gene
burden scores in a panel of 93 S. cerevisiae strains. Phenotypic screening of S. cerevisiae
strains under 43 different conditions was carried out, further allowing for the testing of
gene-phenotype associations. All analysis was carried out by my self, under the supervision
of Pedro Beltrao. I was not involved in the generation of experimental data. Phenotypic
screens were carried out by lab member Bede Busby and the processing and scoring of

phenotyped data was carried out by lab member Marco Galardini.

5.1 Introduction

Rare genetic variants extensively contribute to disease biology [401]. Yet, traditional GWASs
is often unable to implicate rare variants in phenotypic differences primarily due to their low
prevalence. Such associations would often require the genotyping of sufficiently large cohorts,
which is in many cases is impractical or infeasible. For cases where sufficient data is available,
the high number of statistical tests combined with stringent multiple testing correction often
result in the dissipation of any signal. In addition, the design of GWASs revolves around
genotyping chips for a set of tag variants, which rely on linkage-disequilibrium for imputation
of rare variants from a reference panel like the HapMap project [402]. However, the marker
variant must be observed in the reference panel in order for successful imputation, which

may not always be the case. Much effort has gone into designing rare variant association
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studies that involve whole genome and exome sequencing as well as rare variant genotyping,
yet, these approaches focus on achieving a higher number of samples, which will not always
guarantee sufficient improvement statistical power [403].

One way to tackle the lack of statistical power for association studies is to combine
the effects of rare variants by predicting their impact on gene function or "gene burden".
This, in turn, can be used to carry out gene-phenotype associations. Studies utilising gene
burden for associations have employed different approaches to quantify the effect of rare
variants. For instance, DeBoever et al. used 18,228 protein truncating variants (PTVs),
including nonstop, nonsense and frameshift variants to generate gene burden scores which
were associated with 135 phenotypes from the UK Biobank and uncovered 27 high confidence
associations [404]. Iorio et al. utilised prior information on known cancer driver variants
and copy number variants to define whether a gene is affected across 1,001 cancer cell
lines and computed associations across drug response profiles for 265 drugs uncovering
many known and novel associations [405]. Olde Loohuis et al. quantified gene burden by
assessing deleteriousness of rare coding variants by assessing PTVs, splice-site variants and
deleteriousness predictions by predictors like SIFT and PolyPhen. Through the analysis of
rare variants in 1,042 schizophrenia patients against 961 controls, they were able to uncover
many schizophrenia-associated genes under high burden [406]. While such approaches are
effective at improving our understanding of rare variant impact, they commonly focus a
single predictor or rely on previously identified pathogenic variants. Little has been done
to comprehensively assess effects across multiple predictors. In addition, predictors of
deleteriousness such as SIFT are unable to explain the altered biological mechanism.

The use of mechanistic variant impact predictors can significantly contribute to improving
statistical power while shedding light on the altered mechanisms caused by rare variants
beyond single variant-based testing. In this chapter, we aimed to test this using S. cere-
visiae as a case study. We utilised coding variants from whole genome sequences for 93 S.
cerevisiae strains and collect pre-computed mechanistic variant effects for protein stability
(FoldX), conservation (SIFT) and PTVs to define gene burden scores (see section 4.2.2).
We phenotyped corresponding growth profiles of 166 strains across 43 conditions including
common drugs, nutrient stressors and environmental stressors. The resulting data was used
to test gene-phenotype associations and uncover several known and novel associations. We
further show that gene burden can be expanded to compute complex-level burden, which
provides additional power to statistical tests.
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5.2 Results

5.2.1 Phenotypic variation across S. cerevisiae strains

We first phenotyped growth for a panel of 166 S. cerevisiae strain in 43 conditions including
common drugs (e.g. ketoconazole, benomyl, caspofungin, cisplatin, rapamycin), nutrient
stressors (e.g. glucose, glycerol, sorbitol, amino acid deprivation, nitrogen starvation), and
other environmental stressors (e.g. high heat, anaerobic conditions, UV light, sodium chlo-
ride). Colony sizes for strains were quantified using the IRIS software [407] then normalised
and scored relative to all strains in a condition to produce a phenotypic measure defined
as the S-score, where a positive value indicates higher growth and negative values indicate
poorer growth (Methods, section 5.3.1). S-scores for biological replicates demonstrated a
high degree of concordance (r = 0.91, p<2.22x107'®, Figure 5.1a), demonstrating a high
degree of confidence in phenotypic measurements.

Hierarchical clustering of growth phenotypes revealed known clusters of related stressors
(Figure 5.1a). Clusters of similar phenotypic profiles included, (1) UV light, cisplatin and
MMS, which are all DNA damaging agents (mean pairwise r = 0.51) (2) nystatin and
caspofungin, which act by interfering with the fungal cell membrane (r = 0.49) (3) rotenone,
DMSO and pH levels of 7.5-8.5 all inflict oxidative stress (mean pairwise r = 0.46) (4)
caffeine and rapamycin, both involved in multiple signalling pathways, namely that of TOR
(r = 0.41), and (5) 5-fluorouracil and 6-azauracil, which both act by altering nucleotide
pool levels ultimately influencing transcriptional elongation (r = 0.42). Furthermore, strains
belonging to the same population structure [336] or environmental origin often showed
similar phenotypic profiles (Figure 5.1b).

Since strains belonging to the same population structure typically arise from a common
ancestor, we asked if strains with similar SNP profiles also show similar phenotypic trends.
We collected variants for 56% (93/166) of phenotyped strains from Strope et al. [336]
(Methods, section 5.3.2) and computed SNP profile distances and phenotypic distances for all
4,278 pairs of strains using the Euclidean distance measure. We found that strains extremely
similar in their SNP profiles were also phenotypically similar (Figure 5.1c). However,
at increased genotype distance, pairs of strains exhibit a much higher variability in the
phenotypic distance. This suggests that predicting phenotypic distance amongst strains
displaying heterogeneous genotypes is a non-trivial task.

The screened phenotypes presented here, along with collected variants for 93 strains

serve as a useful starting point for performing subsequent gene-phenotype associations.
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Fig. 5.1 Phenotypic screening of 166 S. cerevisiae strains. (a) Concordance between S-
score measurements between two biological replicates. (b) Heatmap of S-scores showing
hierarchical clustering of both strains and conditions reveals clusters of phenotypically
similar strains and conditions. (c) Comparison of pairwise genotype and phenotype distances
between strains shows little observable correlation.

5.2.2 Mechanistic gene burden scores identify novel gene-phenotype

associations

We next sought to define gene-level burden scores to aid the interpretation of phenotypic
variability amongst strains. To compute gene-level burden scores for a given protein, we
utilised mechanistic predictions for conservation (SIFT), protein stability (FoldX) and protein

truncating variants (PTVs, including start loss, nonstop and nonsense variants) (Figure 5.2a).
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Fig. 5.2 Gene-level aggregation of variant effects. (a) Diagram demonstrating the aggregation
of variant impact. Each variant is first assigned a probability of deleteriousness, which is
aggregated at the gene level using the maximum impact. (b) The probability of deleteriousness
for FoldX and SIFT is computed by assessing the proportion of deleterious variants in gold-
standard data for FoldX and SIFT. A logistic regression model (red line) is fit to compute
subsequent probabilities. (c) Once gene burden is computed for each gene and strain, gene-
phenotype associations can be carried out by comparing growth of strains containing high
and low P4 scores for a particular gene.

We first standardise the variant impact predictions for each of the mechanistic predictors.
Scores produced by predictors are recalibrated to reflect the likelihood they are deleterious
(Pje1). For SIFT, a curated gold standard set of 8,083 variants in 1,346 S. cerevisiae genes with
known tolerated or deleterious effects were obtained from Jelier et al. [355]. The negative
natural logarithm of the SIFT score was binned by 0.5 and for each bin, the proportion of
deleterious variants was computed. A binomial logistic regression was fit to the proportion
values and used to compute subsequent Py,; values for subsequent SIFT scores. For FoldX,
964 gold-standard mutations across 34 experimentally identified proteins structures with
both experimentally quantified AAG values and FoldX-predicted AAG values were obtained
from Guerois et al. [408]. A variant was labelled destabilising if AAG was greater than
1. Mutations were binned by predicted AAG at intervals of 0.4 and for each bin, the
proportion of destabilising variants was computed. A binomial logistic regression model
was similarly fit to the data and used to compute subsequent P,,; for FoldX-predicted AAG
values (Figure 5.2b). For PTVs, we resorted to using heuristics to define P,; values. Variants
disrupting start or stop codons were assigned a value of 1. Since nonsense variants occurring
closer to the C-terminal of a protein are less likely to impact function, we only assign P,

value of 1 for nonsense variants occurring in the first 50% of the protein, otherwise a value
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of 0 is assigned. Gene burden scores are then computed as the variant with the maximum
Py, score and describes the predicted likelihood that a protein has an affected function (Pyr).
This allows for effects of rare variants to be combined across different protein positions
and predictors, which can then be used to identify gene-level phenotype associations by
comparing phenotypic readout for strains with high gene burden compared to those with low
gene burden (Figure 5.2¢).

Using natural variation data for the 93 strains, we computed Psr scores for all genes.
If a gene did not contain any coding variants, a Pyr score of 0 is assigned. Scores were
binned based on high (P4r> 0.90) or low (P4r< 0.90) gene burden. Using a linear model,
associations were carried out for 1,446 genes (with at least three strains containing a Pyr>
0.90) against growth phenotypes across 43 conditions (Methods, section 5.3.1). All reported
p-values were corrected using the false discovery rate (FDR) method. In addition to statistical
significance, to ensure sufficient magnitude in growth phenotypes, we compute the effect size
using the Glass’ A approach. Here, change in mean values relative to the standard deviation
of one group is measured. We compute two Glass A values, relative to both groups and report
the minimal absolute A, signed by the direction of the association (Methods, section 5.3.4).

We identified a total of 626 statistically significant gene-phenotype associations at
(p<1x1073 and FDR < 10%, Figure 5.3a). A total of 83% (520/626) of are negative
associations i.e. decreased growth, and 17% (106/626) were positive. To validate associa-
tions we utilised chemical genetic data where genes are knocked out in the reference strain
and allowed to grow under various conditions. The growth defect for a knock out can then
be used to associate a gene with a particular condition. Although these experiments are
carried out in the reference strain and conditions rarely match in concentration, this data
provides a useful starting point to systematically validate associations. We collected genes
associated with 35/43 of the assayed conditions using data from high-throughput chemical
genetic screens [409] as well as literature-curated cases from the Saccharomyces Genome
Database (Methods, section 5.3.3). Of all significant negative associations, a total of 9%
(48/520) are validated by the chemical genetic data. It is also important to note that not
all gene-phenotype association have been tested in the chemical genetic data, and thus this
number could, in theory, be higher. Increasing the effect size threshold shows an increasing
trend in the proportion of validated associations (Figure 5.3b). At A > 1, 13% (38/282) are
validated and at A > 1.7, 24% (15/64) are validated, suggesting that associations of higher
effect sizes are more reliable. To assess whether these values are obtained by chance, we
sampled the same number of genes from the pool of 1,446 tested genes at each of the effect
thresholds and similarly measured the proportion of these gene-condition pairs observed in

the chemical genetic data. This was repeated 1,000 times for each threshold. We found that
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Fig. 5.3 Significant identified associations. (a) A volcano plot showing significant associa-
tions. The size of each point is proportional to the number of strains containing a high Psr
score. Associations validated by chemical genetics are coloured in purple. (b) The proportion
of associations validated by chemical genetics at different effect size thresholds for observed
(black) and randomly permutated (red) associations. Grey ribbon represents the one standard
deviation. (c¢) The number of associations across different conditions where positive and
negative associations are shown in green and dark grey, respectively. (d) Phenotypic variance
across strains compared against the number of significant associations.
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at lower effect sizes expectation was near random. However, at larger effect sizes (A > 1.7),
observed proportions were significantly higher (p=0.03, Figure 5.3b).

We next checked if larger phenotypic variability for a condition results in a higher number
of identified associations. However, no strong correlation was observed between growth
variability and the number of identified associations at A > 1 (r = 0.27, p=7.19x 1072,
Figure 5.3c-d). Specifically, conditions such as high heat, sodium chloride and amino acid
deprivation showed high phenotypic variability and a high number of identified associations.
However, many conditions that showed high phenotypic variability showed very few asso-
ciations, such as low pH (n=2) and high glucose (n=1). Interestingly, several conditions
including paraquat, ketoconazole and nystatin seemed to explain the majority of identified
positive associations suggesting that coding variation are advantageous in such conditions.
Why this is the case remains unclear.
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Fig. 5.4 Examples of high confidence associations. Each example shows the S-score of the
negative (red) and positive (blue) group in a given condition. Horizontal black lines represent
the median S-score.

To explore resulting associations we focus on a subset of 366 associations with a high
effect size (JA| > 1, Figure 5.4). For instance, high heat associated with mutations in
the heat shock protein HSP31 (A=-1.13, p=4.65x 10_4), outer mitochondrial membrane
GTPase GEM1 (A=-2.09, p=5.12x10"%) and acetyl-CoA carboxylase ACCI (A=-1.51,
p=5.49x10~%), all of which when knocked out in the reference strain result in growth
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defects under high heat [410—412]. Nutrient stressors like sodium chloride showed signif-
icant associations to the ABC transporter VMR1 (A=-1.46, p=2.99 x 10~%). Amino acid
deprivation showed significant associations with numerous genes involved in the uptake,
catabolism, and biosynthesis of amino acids including BAP2 (A=-1.58, p=7.40x1079),
PDC6 (A=-1.53, p=6.02x107%), ARO9 (A=-1.49, p=8.46x107%) and SER33 (A=-2.15,
p=1.83x107%). Common drugs like Caffeine, which is involved in cell cycle arrest and
DNA damage [413, 414] showed associations to genes like the cell cycle checkpoint pro-
tein RAD24 (A=-1.71, p=3.23x10~*) and the SUMO-ligase WSSI (A=1.17, p=1.65x1077)
which is involved in DNA repair. The anti-fungal drug ketoconazole interferes with ergos-
terol synthesis, thereby disrupting the cell membrane. The phosphatidylinositol synthase
PIS] is key for biosynthesis of cell membrane polyphosphoinositides, and strains carrying
impactful mutations show stronger growth in ketoconazole (A=2.13, p=4.08x10™*). The
ATP-binding multi-drug resistance transporter PDRS is another gene negatively associated
with ketoconazole (A=-1.26, p=2.40x107>) as well as other drugs including 6-azauracil
(A=-1.08, p=3.78 x 10~%) and cycloheximide (A=-1.02, p=8.91x 1075). Given its general
role in drug resistance [415], it is appropriate that mutations disrupting gene function would
result in such growth defects. Hydroxyurea is a drug that arrests DNA replication and is
involved with DNA damage and is associated with the DNA damage inducible protein DDI3
(A=-1.57, p=8.76x 10~*), which is over-expressed 100-fold by DNA damaging agents [416].
Paraquat is a drug that induces oxidative stress by interfering with the electron transport
chain. We find the heat shock protein HSP31 strongly positively associated with paraquat
(A=1.06 p=4.57x10~*). Heat shock proteins have been previously identified to suppress
paraquat-induced effects in rat and H. sapiens [417, 418] suggesting the existence of a
similar mechanism in S. cerevisiae. Other genes positively associated with paraquat include
reductases YJRO96W (A=1.43, p=1.32x10"*) and LYS2 (A=1.75, p=2.01 x10~%) as well as
the hydrolase YSAI (A=1.42, p=9.26x10~%, Figure 5.4).

Investigation of variants responsible for associations reveals the collective impact rare
variants have on a gene. For instance, the GLN4-heat association is driven by destabilising
rare mutations in glutaminyl-tRNA synthetase domain (Figure 5.5a) whereas the ACCI-
heat association is driven by both destabilising and conservation-affecting variants in the
biotin carboxylase domain (Figure 5.5b). The VMR I-sodium chloride association is driven
by two nonsense variants in the ABC transmembrane domain and conservation-affecting
variants in and around the ABC transporter domain (Figure 5.5¢). The RAD24-caffeine
association is driven by three conservation-affecting mutations within the Rad17-like domain
(Figure 5.5d). The DDI3-hydroxyurea association driven by a start loss variant and two
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Fig. 5.5 (a-f) Variant impact plots for six genes from figure 5.4. Coloured boxes represent
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conservation-affecting variants. Finally, the PIS/-ketoconazole association is driven by two
nonstop variants.

The suggested gene burden approach has proven valuable at revealing many known and
novel gene-phenotype associations through combining effects of rare variants to increase

statistical power.

5.2.3 Complex burden scores further improve association power

Genes often form complexes that carry out the majority of cellular processes. Altering
any constituent parts of a complex could, therefore, result in a similar phenotypic outcome.
Assessing burden on a complex level could thus provide additional power when conducting
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associations. To test this, we collected gene sets for 408 S. cerevisiae complexes from the
CYC2008 resource [419]. The complex-level burden was computed by taking the maximum
P4F score across all genes in a complex (Methods, section 5.3.4). For 258 complexes that that
contained at least two high P4 genes across strains, associations were carried out against the
43 conditions similarly to that of gene-level associations.

We identified 75 significant complex-phenotype associations (p<1x 1073, FDR < 10%),
25 (33%) of which had a high effect size (A > 1). The 25 associations involved 15 conditions
and were constituted of 17 (68%) negative associations and 8 (32%) positive associations.
Complex-level burden scores were able to uncover associations not possible on the gene-level.
For instance, high heat was shown to be associated with the FBP complex responsible for
protein degradation (A=1.01 p=5.7x10~%, Figure 5.6a). Members of the FBP complex
with affected function (Pyr> 0.90) VID24, GID7, FYVI0 and RMD5 are not detected by
gene-level burden associations, yet 3/4 show heat sensitivity within chemical genetic data
[411]. The drug 5-fluorouracil suppresses DNA replication by blocking synthesis of the
pyrimidine nucleotide thymidine and significantly associates with the guanyl-nucleotide
exchange factor complex (A=1.25 p=7.4x 1074, Figure 5.6b). Benomyl interferes with
microtubule stability and associates with the AP-2 adapter complex, which is responsible
for clathrin-mediated endocytosis (Figure 5.6¢). Clatherin is also involved in stabilising
microtubules that attach to kinetochores during meiosis [420]. Similarly, the AP-1 adaptor
complex associates with ketoconazole (A=1.61 p=2.2x 1074, Figure 5.6d). Since ketocona-
zole alters cell membrane by interfering with ergosterol biosynthesis and ergosterol play key
roles in endocytosis, this potentially explains the link between mutations in members of the
AP-1 adaptor complex and ketoconazole. The transcription factor TFIIH complex positively
associates with ketoconazole (A=2.03 p=1.1x10~*, Figure 5.6e), which can possibly be ex-
plained by the transcriptional repression and activating functions of ketoconazole. Lastly, the
DNA replication factor C positively associates with ultraviolet light (A=1.26 p=8.2x 1074,
Figure 5.6f), which could be explained by the DNA-damaging properties of UV light.

Complex-level burden provides additional power when testing gene-phenotype associa-
tions, particularly when the sample size is limited. Associations performed on the pathway

or domain level may also provide additional insight into novel associations.
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Fig. 5.6 Aggregating effects on a complex level. (a-f) Examples of complex level associations.
For each example, the growth of strains predicted to have at least one complex member
altered (blue) is compared against those that do not (red). Complex members are shown
connected by an edge if they are known in the BioGRID database [261] to physically interact.
The values indicated on node labels denote the number of strains with a high P4r score for

that gene.
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5.3 Methods

5.3.1 Phenotyping of S. cerevisiae strains

Phenotyping for 166 S. cerevisiae strains across 43 conditions was performed by lab member
Bede Busby. The screening was carried out in 1536 format on synthetic complete media
with the addition of the appropriate chemical at a specific concentration. The Singer RoToR
(Singer instruments, UK) was used to replicate screening plates in 1536 format. Agar plates
were pinned onto the conditioned media in quadruples and allowed to grow for 48 or 72 hours
at 30 degrees centigrade (unless specified otherwise). A total of four technical replicates
were carried out. For each technical replicate, up to 12 biological replicates were carried out.

After incubation, plates were imaged and the processing of plate images was carried out
by lab member Marco Galardini. Colony sizes were extracted using IRIS version v0.9.7
[407] with the "Colony growth" profile, which extracts colony size, circularity and opacity
from each colony in each plate. Individual strains were scored using the E-MAP software,
which transforms colony sizes into S-scores [421]. In brief, a surface correction algorithm is
applied to each plate, the outer frame effect is corrected by bringing the two outermost rows
and columns to the plate middle median. All the plates are then normalized to the overall
median, followed by a variance correction (Figure 5.7a). Finally, the S-score is calculated
based on a modified t-test, as defined by Collins et al. [421]:

f— Ho

"= var(@) +var (o)

(5.1)

Here, I and (i) are the median observed and expected colony sizes across technical
replicates, respectively. Expected colony sizes are computed as growth for a strain across all
conditions. The resulting S-scores are quantile normalized in each condition separately (Fig-
ure 5.7b). Final S-scores are then computed by averaging S-scores of biological replicates.

5.3.2 Genetic variants for S. cerevisiae strains

Genetic variants for the 93 strains analysed here were called from whole genome reads
obtained from Strope et al. [336]. Variants with a MAF > 20% were discarded. Additional
information on data collection and variant calling can be found in section 4.3.1.
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Fig. 5.7 S-score calculation and normalisation. (a) Normalisation of raw quantified colony
sizes and calculation of the S-score. (b) Quantile normalization of S-scores.

5.3.3 Chemical genetic data

Chemical genetic data for heterozygous and homozygous knockout reference strains
were obtained from Hillenmeyer et al [409] for 5,900 genes across 568 conditions.
The files hom.z_tdist_pval_nm.pub and het.z_tdist_pval_nm.goodbatch.pub were
used. Conditions were manually matched to assayed conditions in section 5.3.1 and genes
were considered associated with the condition if their p-value was below 1 x 1073, as rec-
ommended by the authors. For cases where data for multiple generations or replicates are
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reported or the phenotype is observed for both heterozygous and homozygous knockdowns,
the association with the most significant p-value is retained. The final set contained 7,944
gene-phenotype associations across 5,883 genes and 28 conditions.

Chemical genetic data for null strain mutants from various other high-throughput and
low-throughout studies was obtained from the Saccharomyces Genome Database [422]
through the phenotype_data_sgd.tab file. The "phenotype" and "chemical" columns
were manually matched to assayed conditions section 5.3.1 resulting in a total of 15,194
gene-phenotype associations across 3,508 genes and 30 conditions.

5.3.4 Computing gene and complex-burden scores and associations

. . . . V1 V,
For a gene g, given a list of n variants vy, - - ,v, with Py scores of P, ---, P}, the gene-

level burden scores are computed as:

Pip = P, 5.2
AF 1r21a§Xn del (5.2)

Similarly, given a set of k genes g1, ..., g, in a complex with Pyr scores of Pj’}:, e ,Pj},

complex-burden scores are computed as:

Fear = lrg?gkpf} (5.3)

All associations were carried out using the MatrixXEQTL R package [423] with the
modelLINEAR mode. The package was developed for rapidly conducting hundreds of thou-
sands of associations between variants and gene expression, although the methods are
generally applicable. The significance of the association is then measured using a #-statistic.
Here, binarised P4 scores are used as genotypes where a Pyr score above or below 0.9 is
given a value 1 and 0, respectively and growth phenotypes are used in lieu of gene expression.
A p-value threshold of 0.001 is used for all associations and multiple testing correction is
carried out using the false discovery rate method.

The effect size was computed using Glass’ A. For the case (p) and control (n) group,
differences in the mean is computed relative to the standard deviation of one of the groups.
Given the mean (l;) and standard deviation (o;) for a given group i this is computed as:

A= He—Hn (5.4)
Oi

To ensure sufficient effect size in either direction, this is computed in either direction

and the final effect size, A, is reported as the minimum absolute value of effect sizes in both

directions, signed by the direction of the association:
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A=¢-min{A,,A,}

=1, if u, < uy, (5.5)
E =
1, otherwise

5.4 Discussion

In this chapter, we describe an approach to combine effects of PTVs, SIFT-predicted deleteri-
ousness and FoldX-predicted stability impact to collectively define a gene burden score.

While the maximum predicted variant impact is used here, there exist several other
approaches at computing gene burden. For instance, Jelier et al. additively modelled gene
burden by taking the product of probabilities that a variant is neutral [355]. Although it
is true that the impact of variants accumulate additively, the measure of deleteriousness
(Py.1) as defined here does not directly reflect the intrinsic probability of deleteriousness.
For instance, a Py,; score of 0.3 that is based on a protein stability predictor will not always
indicate there is 30% chance of this variant impacting function. This would result in the
inflation of gene P4r scores should the gene harbour numerous mutations with mild Py,
scores. Benchmarking which gene burden scoring metric is appropriate remains a challenging
task due to the lack of gold-standard gene-phenotype associations. Chemical genetic screens
available for S. cerevisiae is a potentially useful resource, yet, there are several inherent
limitations. First, the chemical genetic data is often carried out in a reference strain which
may not always reflect individual-specific growth behaviour. Second, the conditions in which
these screens are carried out do not necessarily match growth phenotypes used to conduct
the associations. These limitations would not allow us to accurately detect false positive
associations. Approaches such as individual-specific gene knock-in experiments, where the
endogenous gene is replaced with a wildtype copy of the reference strain gene, would provide
a valuable way by which the accuracy gene burden scores could be measured.

There are several notable drawbacks to the use of in silico variant impact predictors for
gene burden. First and foremost, there is the issue of false positives. Predictors used here
measure variant impact independently relative to the reference individual. However, the
genetic context of an individual has been shown to play significant roles in dictating variant
impact. For instance, phenomena like epistatic interactions between variants commonly
occur, where the occurrence of a variant can suppress or aggravate effects another variant
[424]. Commonly used variant impact predictors such as SIFT and FoldX were not designed

to account for such context-specific effects, resulting in the misclassification of many variants.
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Second, predictors provide no information on whether an impactful variant confers gain or
loss-of-function. Such information would improve both statistical power and interpretation
of gene burden association tests. Future improvement of variant impact predictors will,
therefore, be paramount to gene burden association tests.

In addition to predictors, there are several limitations with respect to the associations
carried out. First, although the 93 strains utilised here are geographically and environmentally
heterogeneous [336], it is possible that sub-populations of strains exist. This population
structure could thus be a potential confounding factor. Strains that belong to the same sub-
population are likely to exhibit similar phenotypes and therefore many identified associations
may be due to strains belonging to the same sub-population. Second, the number of strains
utilised here limits the number of genes that can be tested: for the 93 strains, we were able
to perform associations for about 25% of the S. cerevisiae genome (1,446) that had at least
three high P4 scores. Relative to H. sapiens, the number sequenced S. cerevisiae strains still
remains low at 500 strains, and even fewer with sufficient phenotypic growth data [336-339].
A larger number of strains would provide additional variation and allow for associations
to be carried out for a larger number of genes and allow for testing associations within
sub-populations. Lastly, genes that do not harbour any genetic variation are assigned a Pyr
score of 0, which may not always be accurate since there are other types of mutations beyond
SNVs, including indels, frameshift mutations, and copy number variations (CNVs) that were
not accounted for here. The inclusion of such variation in the future could further improve
the calculation of gene burden scores. Lastly, strains that are more distant from the reference
strain are more likely to have suppressed effects of deleterious variants. Thus, approaches
that are able to generate strain-specific variant impact scores or normalise against distance
from the reference strain would allow for more accurate individual P4y scores.

Although there are several aspects of the described approach that could be improved, this
study offers initial insight into the use of mechanistic variant impact, particularly protein
stability, in the calculation of gene burden scores. Incorporation of additional mechanisms in
the future will allow for us to comprehensively and accurately carry out hypothesis-driven
gene burden associations that can be traced back to individual variants for which we could
then mechanistically explain. Future expansion to human would offer unprecedented insight

into disease risk and potential therapeutics.






Chapter 6
Summary and future directions

The arrival of next-generation sequencing technologies has brought about an abundance of
individual genome data and a new era of genetics. The analysis of genomic data is, however,
bottlenecked by variant interpretation, where an individual’s genetic variants can be classified
as pathogenic or benign. This has prompted an out pour of bioinformatic tools aimed at
aiding variant interpretation. The abundance of corresponding molecular and organism-level
phenotype data corresponding to an individual genome has also driven many association-
based studies as a means of identifying causal variants. These approaches have been routinely
applied to large-scale datasets in both human and model organisms to both guide clinical
validation of variants and aid drug development [425, 426]. Uncovering the biology behind
genetic variants will, therefore, have many implications in personalised therapies and drug
development

The purpose of this thesis was to explore cellular mechanisms that are regularly influ-
enced by genetic variation. A significant portion of this thesis discusses the role of sequence
specificity-mediated interactions, specifically TF binding and kinase-substrate phosphoryla-
tion. Because these interactions are mediated by short motifs, they play a key role in variant
interpretation. In Chapter 2, we discussed a computational approach that was developed to
predict kinase-substrate specificity without any prior information on kinase-specific target
sites. By leveraging functional interaction data and the abundance of available phosphoryla-
tion data, we were able to uncover predicted specificities for over half the human kinases.
We have also shown that this approach can also easily be expanded to other PTM-binding
domains. Since kinase target sites are frequently mutated in disease, and specifically cancer
[148], the ability to uncover additional specificities allows for a better understanding of
how phosphorylation is altered in disease. Much like kinase-substrate phosphorylation, TF
binding also depends on DNA sequence specificity. In Chapter 3, we explored five compu-

tational methods used for the modelling of TF-binding and assessing the variant impact on
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TFBSs. Using variants known to alter TF-binding from allele-specific ChIP-seq data, we
systematically assessed the performance of specificity models in the five methods at predict-
ing variant impact across over 40 TFs. We defined and compare the performance several
variant impact scoring metrics across the methods and show that machine learning-based
significantly outperform the PWM, which is commonly used to assess variant impact [427—
429]. We highlight differences in performance across different TFs and explore alternative
mechanisms that may contribute to the inability to assess variant impact using sequence
specificity information alone.

These methods, including others, have the ability to shed light on altered mechanisms
caused by genetic variants. In Chapter 4, we compile predictors for mechanistic variant
impact, including protein stability, PPIs interfaces, PTMs, kinase-substrate phosphorylation,
TF-binding, short linear motifs, and start and stop codons. We use these tools to pre-
compute variant impact predictions that we provide through the mutfunc web server. This
interactive tool allows for rapid annotation and prioritisation of variants in a mechanistic
light, without requiring the cumbersome set up of any of the individual predictors. We
validate the predictions generated by analysing natural and disease variants in human and
yeast genomes. We show that variants altering mechanisms are more likely rare than common
and that they are depleted in essential genes. We also analysed known pathogenic variants
to show that altered mechanisms are enriched in pathogenic variants and show that these
mechanistic variant impact predictions can be used to shed light on clinical variants of
uncertain significance.

Identifying variants associated with phenotypic trait differences using traditional GWAS
requires the variant to be, to a certain degree, prevalent in the population. Since many disease
phenotypes are driven by rare genetic variants, identifying such associations with traditional
variant-based association methods is not always feasible [430]. In Chapter 5 we utilised the
predictions in mutfunc to predict mechanistic consequences of rare variants in a panel of 93
yeast strains and define gene burden scores. We carried out phenotypic screening for the
corresponding strains in over 40 different conditions and employed this data in combination
with gene burden scores to perform gene-phenotype associations, uncovering many known
and novel associations. We demonstrate the added benefit of generating gene burden scores
using mechanistic variant impact predictions over variant-level associations and show that
this can be taken a step further by assessing complex-level burden.

Understanding the mechanistic basis for variants is very much an open question in the
field of genetics and has fundamental roles variant interpretation. As such, there are numerous
future avenues that can be taken. Specifically, with the advent of deep learning methods

and increasing abundance of molecular-level phenotypic data, there exist many possibilities
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to employ deep learning in modelling cellular mechanisms for which current approaches
do not perform well at such as protein localisation [431], splicing [432], PTMs [433], and
more. These models could, in turn, be used for variant impact prediction. Furthermore,
high throughput experimental assaying of variant impact on protein function, such deep
mutational scanning, are increasingly generating data that could be utilised for the training
of variant impact predictors.

A primary drawback of many existing variant impact predictors is their inability to
account for differences in genetic background. More specifically, they revolve around
the assumption that genetic variants act individually when many diseases can be driven
by the additive effect of numerous variants [434, 435]. The increased development of
methods that can quantitatively model the cooperative impact of variants will allow for more
accurate individual-specific variant impact predictions. Furthermore, additional factors such
as epigenetics can greatly affect the deleteriousness of a variant [436]. Thus, the incorporation
of additional context-specific omics data such as epigenomics, proteomics and metabolomics
is fundamental to better understanding the role of such factors in cellular processes and
accurately modelling tissue and cell type-specific variant impact.

Interpretation of variant impact predictors output is another key area of future research.
As genetic testing becomes more prevalent in the clinical setting, the ability for healthcare
professionals to be able to interpret and act on variant impact predictions is becoming more
of a concern. The standardisation of predictor output is one way to aid variant interpretation
and simplify the comparison of variant impact across multiple methods. Such standardisation
would further streamline the incorporation of data from multiple predictors and improve the
utility of variant impact predictions in phenotype association methods. Developed methods
must also be user-friendly and intuitive to facilitate the construction of variant interpretation
pipelines and allow use by a wide range of expert and non-expert users.

Ultimately, a paradigm shift in variant interpretation and GWAS is required whereby
more light is shed on the affected biological mechanisms. To do this, our understanding
of biology must be incorporated into assessing variant impact through the development of
mechanistic variant impact predictors, which can be employed to assess higher order impact
on gene, complex and pathway levels. Such a layering approach will be able to capture the
propagation of variant impact through cellular processes and improve our ability to associate

genetic variation as a whole to phenotypic differences.






List of publications

Scientific articles

1. Wagih, O. (2017). ggseqlogo: a versatile R package for drawing sequence logos.

Bioinformatics

2. Yuan Chen, Rhys A Farrer, Charles Giamberardino, Sharadha Sakthikumar, Alexander
Jones, Timothy Yang, Jennifer L. Tenor, Omar Wagih, Marelize Van Wyk, Nelesh P
Govender, Thomas G Mitchell, Anastasia P Litvintseva, Christina A Cuomo, John R
Perfect (2017). Microevolution of serial clinical isolates of Cryptococcus neoformans
var. grubii and C. gattii. MBio, 8(2):e00166—17

3. Marco Galardini, Alexandra Koumoutsi, Lucia Herrera-Dominguez, Juan Antonio
Cordero Varela, Anja Telzerow, Omar Wagih, Morgane Wartel, Olivier Clermont,
Erick Denamur, Athanasios Typas, Pedro Beltrao (2017). Phenotype prediction in an
Escherichia coli strain panel. bioRxiv, page 141879

4. Haruna Imamura, Omar Wagih, Tomoya Niinae, Naoyuki Sugiyama, Pedro Beltrao,
Yasushi Ishihama (2017). Identification of putative PKA substrates with quantita-
tive phosphoproteomics and primary-sequence-based scoring. Journal of Proteome
Research, 16(4):1825-1830

5. Emanuel Goncgalves, Zrinka Raguz Nakic, Mattia Zampieri, Omar Wagih, David
Ochoa, Uwe Sauer, Pedro Beltrao, Julio Saez-Rodriguez (2017). Systematic analysis
of transcriptional and post-transcriptional regulation of metabolism in yeast. PLoS
computational biology, 13(1):e1005297

6. Justin D Smith, Sundari Suresh, Ulrich Schlecht, Manhong Wu, Omar Wagih, Gary
Peltz, Ronald W Davis, Lars M Steinmetz, Leopold Parts, Robert P St Onge (2016).
Quantitative CRISPR interference screens in yeast identify chemical-genetic interac-

tions and new rules for guide RNA design. Genome biology, 17(1):45



138

List of publications

7. Ashwani Kumar, Natalia Beloglazova, Cedoljub Bundalovic-Torma, Sadhna Phanse,

Viktor Deineko, Alla Gagarinova, Gabriel Musso, James Vlasblom, Sofia Lemak,
Mohsen Hooshyar, Zoran Minic, Omar Wagih, Roberto Mosca, Patrick Aloy, Ashkan
Golshani, John Parkinson, Andrew Emili, Alexander F Yakunin, Mohan Babu (2016).
Conditional epistatic interaction maps reveal global functional rewiring of genome

integrity pathways in Escherichia coli. Cell reports, 14(3):648-661

. Omar Wagih, Naoyuki Sugiyama, Yasushi Ishihama, Pedro Beltrao (2016). Uncovering

phosphorylation-based specificities through functional interaction networks. Molecular
& Cellular Proteomics, 15(1):236-245

. Jeffrey R Johnson, Silvia D Santos, Tasha Johnson, Ursula Pieper, Marta Strumillo,

Omar Wagih, Andrej Sali, Nevan J Krogan, Pedro Beltrao (2015). Prediction of
functionally important phospho-regulatory events in Xenopus laevis oocytes. PLoS
computational biology, 11(8):e1004362

Software tools and packages

1. ggseqlogo: a ’ggplot2’ extension for drawing publication-ready sequence logos

(https://cran.r-project.org/web/packages/ggseqlogo)

2. rmotifx: discovery of  biological sequence motifs in R

(https://github.com/omarwagih/rmotifx)

3. siftr: predicting the impact of mutations on protein function

(https://github.com/omarwagih/siftr)


https://cran.r-project.org/web/packages/ggseqlogo
https://github.com/omarwagih/rmotifx
https://github.com/omarwagih/siftr

References

[1]

(2]

[4]

[5]

[6]

[10]

The Genotype-Tissue Expression (GTEX) project. Nature genetics, 45(6):580-5, Jun
2013.

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A
Ozenberger, Kyle Ellrott, [lya Shmulevich, Chris Sander, and Joshua M Stuart. The

Cancer Genome Atlas Pan-Cancer analysis project. Nature genetics, 45(10):1113-20,
Oct 2013.

Genome-wide association study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature, 447(7145):661-78, Jun 2007.

S T Sherry, M H Ward, M Kholodov, J Baker, L. Phan, E M Smigielski, and K Sirotkin.
dbSNP: the NCBI database of genetic variation. Nucleic acids research, 29(1):308-11,
Jan 2001.

Z Wang and J Moult. SNPs, protein structure, and disease. Human mutation, 17(4):263—
70, Apr 2001.

Valeria Faa’, Alessandra Coiana, Federica Incani, Lucy Costantino, Antonio Cao, and
Maria Cristina Rosatelli. A synonymous mutation in the CFTR gene causes aberrant
splicing in an italian patient affected by a mild form of cystic fibrosis. The Journal of
molecular diagnostics : JMD, 12(3):380-3, May 2010.

Jubao Duan, Mark S Wainwright, Josep M Comeron, Naruya Saitou, Alan R Sanders,
Joel Gelernter, and Pablo V Gejman. Synonymous mutations in the human dopamine
receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human
molecular genetics, 12(3):205-16, Feb 2003.

Gong Zhang, Magdalena Hubalewska, and Zoya Ignatova. Transient ribosomal atten-
uation coordinates protein synthesis and co-translational folding. Nature structural &
molecular biology, 16(3):274—-80, Mar 2009.

Zuben E Sauna and Chava Kimchi-Sarfaty. Understanding the contribution of syn-
onymous mutations to human disease. Nature reviews. Genetics, 12(10):683-91, Aug
2011.

Yumi Yamaguchi-Kabata, Makoto K Shimada, Yosuke Hayakawa, Shinsei Minoshima,
Ranajit Chakraborty, Takashi Gojobori, and Tadashi Imanishi. Distribution and effects
of nonsense polymorphisms in human genes. PloS one, 3(10):e3393, 2008.



140

References

[11]

[16]

A Beaudet, A Bowcock, M Buchwald, L Cavalli-Sforza, M Farrall, M C King,
K Klinger, ] M Lalouel, G Lathrop, and S Naylor. Linkage of cystic fibrosis to two
tightly linked DNA markers: joint report from a collaborative study. American journal
of human genetics, 39(6):681-93, Dec 1986.

A CJones, C E Daniells, R G Snell, M Tachataki, S A Idziaszczyk, M Krawczak, J R
Sampson, and J P Cheadle. Molecular genetic and phenotypic analysis reveals differ-
ences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis.
Human molecular genetics, 6(12):2155-61, Nov 1997.

Pallav Bhatnagar, Shirley Purvis, Emily Barron-Casella, Michael R DeBaun, James F
Casella, Dan E Arking, and Jeffrey R Keefer. Genome-wide association study identifies
genetic variants influencing F-cell levels in sickle-cell patients. Journal of human
genetics, 56(4):316-23, Apr 2011.

Julius Gudmundsson, Patrick Sulem, Valgerdur Steinthorsdottir, Jon T Bergthors-
son, Gudmar Thorleifsson, Andrei Manolescu, Thorunn Rafnar, Daniel Gudbjartsson,
Bjarni A Agnarsson, Adam Baker, Asgeir Sigurdsson, Kristrun R Benediktsdottir,
Margret Jakobsdottir, Thorarinn Blondal, Simon N Stacey, Agnar Helgason, Steinunn
Gunnarsdottir, Adalheidur Olafsdottir, Kari T Kristinsson, Birgitta Birgisdottir, Shya-
mali Ghosh, Steinunn Thorlacius, Dana Magnusdottir, Gerdur Stefansdottir, Kristleifur
Kristjansson, Yu Bagger, Robert L Wilensky, Muredach P Reilly, Andrew D Mor-
ris, Charlotte H Kimber, Adebowale Adeyemo, Yuanxiu Chen, Jie Zhou, Wing-Yee
So, Peter C Y Tong, Maggie C Y Ng, Torben Hansen, Gitte Andersen, Knut Borch-
Johnsen, Torben Jorgensen, Alejandro Tres, Fernando Fuertes, Manuel Ruiz-Echarri,
Laura Asin, Berta Saez, Erica van Boven, Siem Klaver, Dorine W Swinkels, Katja K
Aben, Theresa Graif, John Cashy, Brian K Suarez, Onco van Vierssen Trip, Michael L
Frigge, Carole Ober, Marten H Hofker, Cisca Wijmenga, Claus Christiansen, Daniel J
Rader, Colin N A Palmer, Charles Rotimi, Juliana C N Chan, Oluf Pedersen, Gunnar
Sigurdsson, Rafn Benediktsson, Eirikur Jonsson, Gudmundur V Einarsson, Jose |
Mayordomo, William J Catalona, Lambertus A Kiemeney, Rosa B Barkardottir, Jef-
frey R Gulcher, Unnur Thorsteinsdottir, Augustine Kong, and Kari Stefansson. Two
variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects
against type 2 diabetes. Nature genetics, 39(8):977-83, Aug 2007.

Kai Wang, Robert Baldassano, Haitao Zhang, Hui-Qi Qu, Marcin Imielinski, Subra
Kugathasan, Vito Annese, Marla Dubinsky, Jerome I Rotter, Richard K Russell,
Jonathan P Bradfield, Patrick M A Sleiman, Joseph T Glessner, Thomas Walters,
Cuiping Hou, Cecilia Kim, Edward C Frackelton, Maria Garris, James Doran, Claudio
Romano, Carlo Catassi, Johan Van Limbergen, Stephen L Guthery, Lee Denson, David
Piccoli, Mark S Silverberg, Charles A Stanley, Dimitri Monos, David C Wilson, Anne
Griffiths, Struan F A Grant, Jack Satsangi, Constantin Polychronakos, and Hakon
Hakonarson. Comparative genetic analysis of inflammatory bowel disease and type 1
diabetes implicates multiple loci with opposite effects. Human molecular genetics,
19(10):2059-67, May 2010.

Till F M Andlauer, Dorothea Buck, Gisela Antony, Antonios Bayas, Lukas Bech-
mann, Achim Berthele, Andrew Chan, Christiane Gasperi, Ralf Gold, Christiane
Graetz, Jirgen Haas, Michael Hecker, Carmen Infante-Duarte, Matthias Knop, Tania
Kiimpfel, Volker Limmroth, Ralf A Linker, Verena Loleit, Felix Luessi, Sven G



References 141

[17]

[18]

[19]

[20]

Meuth, Mark Miihlau, Sandra Nischwitz, Friedemann Paul, Michael Piitz, Tobias
Ruck, Anke Salmen, Martin Stangel, Jan-Patrick Stellmann, Klarissa H Stiirner, Bjorn
Tackenberg, Florian Then Bergh, Hayrettin Tumani, Clemens Warnke, Frank Weber,
Heinz Wiendl, Brigitte Wildemann, Uwe K Zettl, Ulf Ziemann, Frauke Zipp, Janine
Arloth, Peter Weber, Milena Radivojkov-Blagojevic, Markus O Scheinhardt, Theresa
Dankowski, Thomas Bettecken, Peter Lichtner, Darina Czamara, Tania Carrillo-Roa,
Elisabeth B Binder, Klaus Berger, Lars Bertram, Andre Franke, Christian Gieger,
Stefan Herms, Georg Homuth, Marcus Ising, Karl-Heinz Jockel, Tim Kacprowski,
Stefan Kloiber, Matthias Laudes, Wolfgang Lieb, Christina M Lill, Susanne Lucae,
Thomas Meitinger, Susanne Moebus, Martina Miiller-Nurasyid, Markus M Nothen,
Astrid Petersmann, Rajesh Rawal, Ulf Schminke, Konstantin Strauch, Henry Volzke,
Melanie Waldenberger, Jiirgen Wellmann, Eleonora Porcu, Antonella Mulas, Maris-
tella Pitzalis, Carlo Sidore, Ilenia Zara, Francesco Cucca, Magdalena Zoledziewska,
Andreas Ziegler, Bernhard Hemmer, and Bertram Miiller-Myhsok. Novel multiple
sclerosis susceptibility loci implicated in epigenetic regulation. Science advances,
2(6):e1501678, 06 2016.

Yuan Zhou, Gu Zhu, Jac C Charlesworth, Steve Simpson, Rohina Rubicz, Harald Hh
Goring, Nikolaos A Patsopoulos, Caroline Laverty, Feitong Wu, Anjali Henders,
Jonathan J Ellis, Ingrid van der Mei, Grant W Montgomery, John Blangero, Joanne E
Curran, Matthew P Johnson, Nicholas G Martin, Dale R Nyholt, and Bruce V Taylor.
Genetic loci for Epstein-Barr virus nuclear antigen-1 are associated with risk of multi-
ple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England), 22(13):1655—
1664, Nov 2016.

Kai Wang, Wei-Dong Li, Clarence K Zhang, Zuoheng Wang, Joseph T Glessner,
Struan F A Grant, Hongyu Zhao, Hakon Hakonarson, and R Arlen Price. A genome-
wide association study on obesity and obesity-related traits. PloS one, 6(4):€18939,
Apr 2011.

R Dorajoo, A I F Blakemore, X Sim, R T-H Ong, D P K Ng, M Seielstad, T-Y
Wong, S-M Saw, P Froguel, J Liu, and E-S Tai. Replication of 13 obesity loci among
Singaporean Chinese, Malay and Asian-Indian populations. International journal of
obesity (2005), 36(1):159-63, Jan 2012.

Diana L Cousminer, Diane J Berry, Nicholas J Timpson, Wei Ang, Elisabeth Thiering,
Enda M Byrne, H Rob Taal, Ville Huikari, Jonathan P Bradfield, Marjan Kerkhof,
Maria M Groen-Blokhuis, Eskil Kreiner-Mgller, Marcella Marinelli, Claus Holst,
Jaakko T Leinonen, John R B Perry, Ida Surakka, Olli Pietildinen, Johannes Kettunen,
Verneri Anttila, Marika Kaakinen, Ulla Sovio, Anneli Pouta, Shikta Das, Vasiliki
Lagou, Chris Power, Inga Prokopenko, David M Evans, John P Kemp, Beate St Pour-
cain, Susan Ring, Aarno Palotie, Eero Kajantie, Clive Osmond, Terho Lehtimiki,
Jorma S Viikari, Mika Kdhonen, Nicole M Warrington, Stephen J Lye, Lyle J Palmer,
Carla M T Tiesler, Claudia Flexeder, Grant W Montgomery, Sarah E Medland, Al-
bert Hofman, Hakon Hakonarson, Monica Guxens, Meike Bartels, Veikko Salomaa,
Joanne M Murabito, Jaakko Kaprio, Thorkild I A Sgrensen, Ferran Ballester, Hans
Bisgaard, Dorret I Boomsma, Gerard H Koppelman, Struan F A Grant, Vincent W V
Jaddoe, Nicholas G Martin, Joachim Heinrich, Craig E Pennell, Olli T Raitakari, Jo-
han G Eriksson, George Davey Smith, Elina Hypponen, Marjo-Riitta Jirvelin, Mark I



142

References

[22]

McCarthy, Samuli Ripatti, and Elisabeth Widén. Genome-wide association and longi-
tudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing
and childhood adiposity. Human molecular genetics, 22(13):2735-47, Jul 2013.

Jiali Han, Peter Kraft, Hongmei Nan, Qun Guo, Constance Chen, Abrar Qureshi,
Susan E Hankinson, Frank B Hu, David L Dufty, Zhen Zhen Zhao, Nicholas G
Martin, Grant W Montgomery, Nicholas K Hayward, Gilles Thomas, Robert N
Hoover, Stephen Chanock, and David J Hunter. A genome-wide association study
identifies novel alleles associated with hair color and skin pigmentation. PLoS genetics,
4(5):e1000074, May 2008.

Myoung Keun Lee, John R Shaffer, Elizabeth J Leslie, Ekaterina Orlova, Jenna C
Carlson, Eleanor Feingold, Mary L. Marazita, and Seth M Weinberg. Genome-wide
association study of facial morphology reveals novel associations with FREM1 and
PARK?2. PloS one, 12(4):e0176566, 2017.

James N Ingle, Daniel J Schaid, Paul E Goss, Mohan Liu, Taisei Mushiroda, Judy-
Anne W Chapman, Michiaki Kubo, Gregory D Jenkins, Anthony Batzler, Lois Shep-
herd, Joseph Pater, Liewei Wang, Matthew J Ellis, Vered Stearns, Daniel C Rohrer,
Matthew P Goetz, Kathleen I Pritchard, David A Flockhart, Yusuke Nakamura, and
Richard M Weinshilboum. Genome-wide associations and functional genomic studies
of musculoskeletal adverse events in women receiving aromatase inhibitors. Journal

of clinical oncology : official journal of the American Society of Clinical Oncology,
28(31):4674-82, Nov 2010.

Kazuma Kiyotani, Taisei Mushiroda, Tatsuhiko Tsunoda, Takashi Morizono, Naoya
Hosono, Michiaki Kubo, Yusuke Tanigawara, Chiyo K Imamura, David A Flockhart,
Fuminori Aki, Koichi Hirata, Yuichi Takatsuka, Minoru Okazaki, Shozo Ohsumi,
Takashi Yamakawa, Mitsunori Sasa, Yusuke Nakamura, and Hitoshi Zembutsu. A
genome-wide association study identifies locus at 10g22 associated with clinical
outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Human
molecular genetics, 21(7):1665-72, Apr 2012.

Suyoun Chung, Siew-Kee Low, Hitoshi Zembutsu, Atsushi Takahashi, Michiaki
Kubo, Mitsunori Sasa, and Yusuke Nakamura. A genome-wide association study of

chemotherapy-induced alopecia in breast cancer patients. Breast cancer research :
BCR, 15(5):R81, 2013.

Susanna Atwell, Yu S Huang, Bjarni J Vilhjdlmsson, Glenda Willems, Matthew Horton,
Yan Li, Dazhe Meng, Alexander Platt, Aaron M Tarone, Tina T Hu, Rong Jiang,
N Wayan Muliyati, Xu Zhang, Muhammad Ali Amer, Ivan Baxter, Benjamin Brachi,
Joanne Chory, Caroline Dean, Marilyne Debieu, Juliette de Meaux, Joseph R Ecker,
Nathalie Faure, Joel M Kniskern, Jonathan D G Jones, Todd Michael, Adnane Nemri,
Fabrice Roux, David E Salt, Chunlao Tang, Marco Todesco, M Brian Traw, Detlef
Weigel, Paul Marjoram, Justin O Borevitz, Joy Bergelson, and Magnus Nordborg.
Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred
lines. Nature, 465(7298):627-31, Jun 2010.

Feng Tian, Peter J Bradbury, Patrick J Brown, Hsiaoyi Hung, Qi Sun, Sherry Flint-
Garcia, Torbert R Rocheford, Michael D McMullen, James B Holland, and Edward S



References 143

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Buckler. Genome-wide association study of leaf architecture in the maize nested
association mapping population. Nature genetics, 43(2):159-62, Feb 2011.

Wei-Xuan Fu, Yang Liu, Xin Lu, Xiao-Yan Niu, Xiang-Dong Ding, Jian-Feng Liu,
and Qin Zhang. A genome-wide association study identifies two novel promising
candidate genes affecting Escherichia coli F4ab/F4ac susceptibility in swine. PloS
one, 7(3):e32127, 2012.

T Ohta. Linkage disequilibrium due to random genetic drift in finite subdivided
populations. Proceedings of the National Academy of Sciences of the United States of
America, 79(6):1940—4, Mar 1982.

Montgomery Slatkin. Linkage disequilibrium—understanding the evolutionary past
and mapping the medical future. Nature reviews. Genetics, 9(6):477-85, Jun 2008.

David M Altshuler, Richard A Gibbs, Leena Peltonen, David M Altshuler, Richard A
Gibbs, Leena Peltonen, Emmanouil Dermitzakis, Stephen F Schaffner, Fuli Yu, Leena
Peltonen, Emmanouil Dermitzakis, Penelope E Bonnen, David M Altshuler, Richard A
Gibbs, Paul I W de Bakker, Panos Deloukas, Stacey B Gabriel, Rhian Gwilliam, Sarah
Hunt, Michael Inouye, Xiaoming Jia, Aarno Palotie, Melissa Parkin, Pamela Whittaker,
Fuli Yu, Kyle Chang, Alicia Hawes, Lora R Lewis, Yanru Ren, David Wheeler,
Richard A Gibbs, Donna Marie Muzny, Chris Barnes, Katayoon Darvishi, Matthew
Hurles, Joshua M Korn, Kati Kristiansson, Charles Lee, Steven A McCarrol, James
Nemesh, Emmanouil Dermitzakis, Alon Keinan, Stephen B Montgomery, Samuela
Pollack, Alkes L Price, Nicole Soranzo, Penelope E Bonnen, Richard A Gibbs,
Claudia Gonzaga-Jauregui, Alon Keinan, Alkes L Price, Fuli Yu, Verneri Anttila,
Wendy Brodeur, Mark J Daly, Stephen Leslie, Gil McVean, Loukas Moutsianas,
Huy Nguyen, Stephen F Schaffner, Qingrun Zhang, Mohammed J R Ghori, Ralph
McGinnis, William McLaren, Samuela Pollack, Alkes L Price, Stephen F Schaffner,
Fumihiko Takeuchi, Sharon R Grossman, Ilya Shlyakhter, Elizabeth B Hostetter,
Pardis C Sabeti, Clement A Adebamowo, Morris W Foster, Deborah R Gordon, Julio
Licinio, Maria Cristina Manca, Patricia A Marshall, Ichiro Matsuda, Duncan Ngare,
Vivian Ota Wang, Deepa Reddy, Charles N Rotimi, Charmaine D Royal, Richard R
Sharp, Changqing Zeng, Lisa D Brooks, and Jean E McEwen. Integrating common
and rare genetic variation in diverse human populations. Nature, 467(7311):52-8, Sep
2010.

Joanna K Ledwoni, Ewa E Hennig, Natalia Maryan, Krzysztof Goryca, Dorota
Nowakowska, Anna Niwinska, and Jerzy Ostrowski. Common low-penetrance risk
variants associated with breast cancer in Polish women. BMC cancer, 13:510, Oct
2013.

Stacey L Edwards, Jonathan Beesley, Juliet D French, and Alison M Dunning. Beyond
GWASs: illuminating the dark road from association to function. American journal of
human genetics, 93(5):779-97, Nov 2013.

Rachel B Brem, Gaél Yvert, Rebecca Clinton, and Leonid Kruglyak. Genetic dis-
section of transcriptional regulation in budding yeast. Science (New York, N.Y.),
296(5568):752-5, Apr 2002.



144

References

[35]

[39]

[42]

[43]

[44]

Andreas Massouras, Sebastian M Waszak, Monica Albarca-Aguilera, Korneel Hens,
Wiebke Holcombe, Julien F Ayroles, Emmanouil T Dermitzakis, Eric A Stone, Jef-
frey D Jensen, Trudy F C Mackay, and Bart Deplancke. Genomic variation and its im-
pact on gene expression in Drosophila melanogaster. PLoS genetics, 8(11):e1003055,
2012.

Human genomics. The Genotype-Tissue Expression (GTEX) pilot analysis: multitissue
gene regulation in humans. Science (New York, N.Y.), 348(6235):648-60, May 2015.

David Melzer, John R B Perry, Dena Hernandez, Anna-Maria Corsi, Kara Stevens,
Ian Rafferty, Fulvio Lauretani, Anna Murray, J Raphael Gibbs, Giuseppe Paolisso,
Sajjad Rafiq, Javier Simon-Sanchez, Hana Lango, Sonja Scholz, Michael N Weedon,
Sampath Arepalli, Neil Rice, Nicole Washecka, Alison Hurst, Angela Britton, William
Henley, Joyce van de Leemput, Rongling Li, Anne B Newman, Greg Tranah, Tamara
Harris, Vijay Panicker, Colin Dayan, Amanda Bennett, Mark I McCarthy, Aimo
Ruokonen, Marjo-Riitta Jarvelin, Jack Guralnik, Stefania Bandinelli, Timothy M
Frayling, Andrew Singleton, and Luigi Ferrucci. A genome-wide association study
identifies protein quantitative trait loci (pQTLs). PLoS genetics, 4(5):e1000072, May
2008.

Fabian Grubert, Judith B Zaugg, Maya Kasowski, Oana Ursu, Damek V Spacek,
Alicia R Martin, Peyton Greenside, Rohith Srivas, Doug H Phanstiel, Aleksandra
Pekowska, Nastaran Heidari, Ghia Euskirchen, Wolfgang Huber, Jonathan K Pritchard,
Carlos D Bustamante, Lars M Steinmetz, Anshul Kundaje, and Michael Snyder. Ge-
netic Control of Chromatin States in Humans Involves Local and Distal Chromosomal
Interactions. Cell, 162(5):1051-65, Aug 2015.

Nicholas E Banovich, Xun Lan, Graham McVicker, Bryce van de Geijn, Jacob F Deg-
ner, John D Blischak, Julien Roux, Jonathan K Pritchard, and Yoav Gilad. Methylation
QTLs are associated with coordinated changes in transcription factor binding, histone
modifications, and gene expression levels. PLoS genetics, 10(9):e1004663, Sep 2014.

Thomas A Pearson and Teri A Manolio. How to interpret a genome-wide association
study. JAMA, 299(11):1335-44, Mar 2008.

M Fried and D M Crothers. Equilibria and kinetics of lac repressor-operator interac-
tions by polyacrylamide gel electrophoresis. Nucleic acids research, 9(23):6505-25,
Dec 1981.

Michal Levo and Eran Segal. In pursuit of design principles of regulatory sequences.
Nature reviews. Genetics, 15(7):453-68, Jul 2014.

T K Blackwell and H Weintraub. Differences and similarities in DNA-binding prefer-
ences of MyoD and E2A protein complexes revealed by binding site selection. Science
(New York, N.Y.), 250(4984):1104-10, Nov 1990.

E Kowalska, F Bartnicki, K Pels, and W Strzalka. The impact of immobilized metal
affinity chromatography (IMAC) resins on DNA aptamer selection. Analytical and
bioanalytical chemistry, 406(22):5495-9, Sep 2014.



References 145

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Marko Djordjevic. SELEX experiments: new prospects, applications and data analysis
in inferring regulatory pathways. Biomolecular engineering, 24(2):179-89, Jun 2007.

Emmanuelle Roulet, Stéphane Busso, Anamaria A Camargo, Andrew J G Simpson,
Nicolas Mermod, and Philipp Bucher. High-throughput SELEX SAGE method for
quantitative modeling of transcription-factor binding sites. Nature biotechnology,
20(8):831-5, Aug 2002.

Artem Zykovich, Ian Korf, and David J Segal. Bind-n-Seq: high-throughput analysis
of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic
acids research, 37(22):e151, Dec 2009.

Tatjana Schiitze, Barbara Wilhelm, Nicole Greiner, Hannsjorg Braun, Franziska Peter,
Mario Mérl, Volker A Erdmann, Hans Lehrach, Zoltan Konthur, Marcus Menger,
Peter F Arndt, and Jorn Glokler. Probing the SELEX process with next-generation
sequencing. PloS one, 6(12):€29604, 2011.

M L Bulyk, E Gentalen, D J Lockhart, and G M Church. Quantifying DNA-protein
interactions by double-stranded DNA arrays. Nature biotechnology, 17(6):573—7, Jun
1999.

Michael F Berger and Martha L Bulyk. Protein binding microarrays (PBMs) for
rapid, high-throughput characterization of the sequence specificities of DNA binding
proteins. Methods in molecular biology (Clifton, N.J.), 338:245-60, 2006.

Sonali Mukherjee, Michael F Berger, Ghil Jona, Xun S Wang, Dale Muzzey, Michael
Snyder, Richard A Young, and Martha L Bulyk. Rapid analysis of the DNA-

binding specificities of transcription factors with DNA microarrays. Nature genetics,
36(12):1331-9, Dec 2004.

Eugene Bolotin, Hailing Liao, Tuong Chi Ta, Chuhu Yang, Wendy Hwang- Verslues,
Jane R Evans, Tao Jiang, and Frances M Sladek. Integrated approach for the identifi-
cation of human hepatocyte nuclear factor 4alpha target genes using protein binding
microarrays. Hepatology (Baltimore, Md.), 51(2):642-53, Feb 2010.

Colin R Lickwar, Florian Mueller, and Jason D Lieb. Genome-wide measurement of
protein-DNA binding dynamics using competition ChIP. Nature protocols, 8(7):1337—
53,2013.

Peter J Park. ChIP-seq: advantages and challenges of a maturing technology. Nature
reviews. Genetics, 10(10):669-80, Oct 2009.

C W Garvie and C Wolberger. Recognition of specific DNA sequences. Molecular
cell, 8(5):937-46, Nov 2001.

N M Luscombe, R A Laskowski, and ] M Thornton. Amino acid-base interactions: a
three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic
acids research, 29(13):2860-74, Jul 2001.

Andrei Lihu and Stefan Holban. A review of ensemble methods for de novo motif
discovery in ChIP-Seq data. Briefings in bioinformatics, 16(6):964—73, Nov 2015.



146 References

[58] G D Stormo, T D Schneider, L Gold, and A Ehrenfeucht. Use of the *Perceptron’
algorithm to distinguish translational initiation sites in E. coli. Nucleic acids research,
10(9):2997-3011, May 1982.

[59] G D Stormo. DNA binding sites: representation and discovery. Bioinformatics (Oxford,
England), 16(1):16-23, Jan 2000.

[60] Wyeth W Wasserman and Albin Sandelin. Applied bioinformatics for the identification
of regulatory elements. Nature reviews. Genetics, 5(4):276-87, Apr 2004.

[61] T K Man and G D Stormo. Non-independence of Mnt repressor-operator interaction
determined by a new quantitative multiple fluorescence relative affinity (QuMFRA)
assay. Nucleic acids research, 29(12):2471-8, Jun 2001.

[62] Sebastian J Maerkl and Stephen R Quake. A systems approach to measuring
the binding energy landscapes of transcription factors. Science (New York, N.Y.),
315(5809):233-7, Jan 2007.

[63] Martha L Bulyk, Philip L F Johnson, and George M Church. Nucleotides of tran-
scription factor binding sites exert interdependent effects on the binding affinities of
transcription factors. Nucleic acids research, 30(5):1255-61, Mar 2002.

[64] Jessica L Stringham, Adam S Brown, Robert A Drewell, and Jacqueline M Dresch.
Flanking sequence context-dependent transcription factor binding in early Drosophila
development. BMC bioinformatics, 14:298, Oct 2013.

[65] Alexander E Kel, Monika Niehof, Volker Matys, Riidiger Zemlin, and Jiirgen Borlak.
Genome wide prediction of HNF4alpha functional binding sites by the use of local
and global sequence context. Genome biology, 9(2):R36, 2008.

[66] Rahul Siddharthan. Dinucleotide weight matrices for predicting transcription factor
binding sites: generalizing the position weight matrix. PloS one, 5(3):€9722, Mar
2010.

[67] Christopher Fletez-Brant, Dongwon Lee, Andrew S McCallion, and Michael A Beer.
kmer-SVM: a web server for identifying predictive regulatory sequence features in
genomic data sets. Nucleic acids research, 41(Web Server issue):W544-56, Jul 2013.

[68] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predict-
ing the sequence specificities of DNA- and RNA-binding proteins by deep learning.
Nature biotechnology, 33(8):831-8, Aug 2015.

[69] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with
deep learning-based sequence model. Nature methods, 12(10):931-4, Oct 2015.

[70] Bart Hooghe, Stefan Broos, Frans van Roy, and Pieter De Bleser. A flexible integrative
approach based on random forest improves prediction of transcription factor binding
sites. Nucleic acids research, 40(14):e106, Aug 2012.

[71] Anthony Mathelier, Beibei Xin, Tsu-Pei Chiu, Lin Yang, Remo Rohs, and Wyeth W
Wasserman. DNA Shape Features Improve Transcription Factor Binding Site Predic-
tions In Vivo. Cell systems, 3(3):278-286.e4, Sep 2016.



References 147

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Yimeng Yin, Ekaterina Morgunova, Arttu Jolma, Eevi Kaasinen, Biswajyoti Sahu,
Syed Khund-Sayeed, Pratyush K Das, Teemu Kivioja, Kashyap Dave, Fan Zhong,
Kazuhiro R Nitta, Minna Taipale, Alexander Popov, Paul A Ginno, Silvia Domcke,
Jian Yan, Dirk Schiibeler, Charles Vinson, and Jussi Taipale. Impact of cytosine
methylation on DNA binding specificities of human transcription factors. Science
(New York, N.Y.), 356(6337), 05 2017.

Sheng Liu, Cristina Zibetti, Jun Wan, Guohua Wang, Seth Blackshaw, and Jiang Qian.
Assessing the model transferability for prediction of transcription factor binding sites
based on chromatin accessibility. BMC bioinformatics, 18(1):355, Jul 2017.

Matthew Slattery, Todd Riley, Peng Liu, Namiko Abe, Pilar Gomez-Alcala, Iris Dror,
Tianyin Zhou, Remo Rohs, Barry Honig, Harmen J Bussemaker, and Richard S Mann.
Cofactor binding evokes latent differences in DNA binding specificity between Hox
proteins. Cell, 147(6):1270-82, Dec 2011.

Anthony Mathelier, Calvin Lefebvre, Allen W Zhang, David J Arenillas, Jiarui Ding,
Wyeth W Wasserman, and Sohrab P Shah. Cis-regulatory somatic mutations and
gene-expression alteration in B-cell lymphomas. Genome biology, 16:84, Apr 2015.

Collin Melton, Jason A Reuter, Damek V Spacek, and Michael Snyder. Recurrent
somatic mutations in regulatory regions of human cancer genomes. Nature genetics,
47(7):710-6, Jul 2015.

Frederick Kinyua Kamanu, Yulia A Medvedeva, Ulf Schaefer, Boris R Jankovic, John
A C Archer, and Vladimir B Bajic. Mutations and binding sites of human transcription
factors. Frontiers in genetics, 3:100, 2012.

M J Reijnen, F M Sladek, R M Bertina, and P H Reitsma. Disruption of a binding site
for hepatocyte nuclear factor 4 results in hemophilia B Leyden. Proceedings of the
National Academy of Sciences of the United States of America, 89(14):6300-3, Jul
1992.

Shizhi Wang, Shenshen Wu, Qingtao Meng, Xiaobo Li, Jinchun Zhang, Rui Chen,
and Meilin Wang. FAS rs2234767 and rs1800682 polymorphisms jointly contributed
to risk of colorectal cancer by affecting SP1/STAT1 complex recruitment to chromatin.
Scientific reports, 6:19229, Jan 2016.

M Matsuda, N Sakamoto, and Y Fukumaki. Delta-thalassemia caused by disruption
of the site for an erythroid-specific transcription factor, GATA-1, in the delta-globin
gene promoter. Blood, 80(5):1347-51, Sep 1992.

Juliet D French, Maya Ghoussaini, Stacey L Edwards, Kerstin B Meyer, Kyriaki
Michailidou, Shahana Ahmed, Sofia Khan, Mel J Maranian, Martin O’Reilly, Kris-
tine M Hillman, Joshua A Betts, Thomas Carroll, Peter J Bailey, Ed Dicks, Jonathan
Beesley, Jonathan Tyrer, Ana-Teresa Maia, Andrew Beck, Nicholas W Knoblauch,
Constance Chen, Peter Kraft, Daniel Barnes, Anna Gonzalez-Neira, M Rosario Alonso,
Daniel Herrero, Daniel C Tessier, Daniel Vincent, Francois Bacot, Craig Luccarini,
Caroline Baynes, Don Conroy, Joe Dennis, Manjeet K Bolla, Qin Wang, John L
Hopper, Melissa C Southey, Marjanka K Schmidt, Annegien Broeks, Senno Ver-
hoef, Sten Cornelissen, Kenneth Muir, Artitaya Lophatananon, Sarah Stewart-Brown,



148

References

Pornthep Siriwanarangsan, Peter A Fasching, Christian R Loehberg, Arif B Ekici,
Matthias W Beckmann, Julian Peto, Isabel dos Santos Silva, Nichola Johnson, Zoe
Aitken, Elinor J Sawyer, Ian Tomlinson, Michael J Kerin, Nicola Miller, Frederik
Marme, Andreas Schneeweiss, Christof Sohn, Barbara Burwinkel, Pascal Guénel,
Thérese Truong, Pierre Laurent-Puig, Florence Menegaux, Stig E Bojesen, Bgrge G
Nordestgaard, Sune F Nielsen, Henrik Flyger, Roger L. Milne, M Pilar Zamora,
Jose Ignacio Arias Perez, Javier Benitez, Hoda Anton-Culver, Hermann Brenner,
Heiko Miiller, Volker Arndt, Christa Stegmaier, Alfons Meindl, Peter Lichtner, Rita K
Schmutzler, Christoph Engel, Hiltrud Brauch, Ute Hamann, Christina Justenhoven,
Kirsimari Aaltonen, Pédivi Heikkild, Kristiina Aittoméki, Carl Blomqvist, Keitaro
Matsuo, Hidemi Ito, Hiroji Iwata, Aiko Sueta, Natalia V Bogdanova, Natalia N An-
tonenkova, Thilo Dork, Annika Lindblom, Sara Margolin, Arto Mannermaa, Vesa
Kataja, Veli-Matti Kosma, Jaana M Hartikainen, Anna H Wu, Chiu-chen Tseng,
David Van Den Berg, Daniel O Stram, Diether Lambrechts, Stephanie Peeters, Ann
Smeets, Giuseppe Floris, Jenny Chang-Claude, Anja Rudolph, Stefan Nickels, Dieter
Flesch-Janys, Paolo Radice, Paolo Peterlongo, Bernardo Bonanni, Domenico Sardella,
Fergus J Couch, Xianshu Wang, Vernon S Pankratz, Adam Lee, Graham G Giles,
Gianluca Severi, Laura Baglietto, Christopher A Haiman, Brian E Henderson, Fredrick
Schumacher, Loic Le Marchand, Jacques Simard, Mark S Goldberg, France Labreche,
Martine Dumont, Soo Hwang Teo, Cheng Har Yip, Char-Hong Ng, Eranga Nishanthie
Vithana, Vessela Kristensen, Wei Zheng, Sandra Deming-Halverson, Martha Shrub-
sole, Jirong Long, Robert Winqvist, Katri Pylkés, Arja Jukkola-Vuorinen, Mervi Grip,
Irene L Andrulis, Julia A Knight, Gord Glendon, Anna Marie Mulligan, Peter Devilee,
Caroline Seynaeve, Montserrat Garcia-Closas, Jonine Figueroa, Stephen J Chanock,
Jolanta Lissowska, Kamila Czene, Daniel Klevebring, Nils Schoof, Maartje J Hooning,
John W M Martens, J Margriet Collée, Madeleine Tilanus-Linthorst, Per Hall, Jingmei
Li, Jianjun Liu, Keith Humphreys, Xiao-Ou Shu, Wei Lu, Yu-Tang Gao, Hui Cai, An-
gela Cox, Sabapathy P Balasubramanian, William Blot, Lisa B Signorello, Qiuyin Cai,
Paul D P Pharoah, Catherine S Healey, Mitul Shah, Karen A Pooley, Daechee Kang,
Keun-Young Yoo, Dong-Young Noh, Mikael Hartman, Hui Miao, Jen-Hwei Sng, Xuel-
ing Sim, Anna Jakubowska, Jan Lubinski, Katarzyna Jaworska-Bieniek, Katarzyna
Durda, Suleeporn Sangrajrang, Valerie Gaborieau, James McKay, Amanda E Toland,
Christine B Ambrosone, Drakoulis Yannoukakos, Andrew K Godwin, Chen-Yang
Shen, Chia-Ni Hsiung, Pei-Ei Wu, Shou-Tung Chen, Anthony Swerdlow, Alan Ash-
worth, Nick Orr, Minouk J Schoemaker, Bruce A J Ponder, Heli Nevanlinna, Melissa A
Brown, Georgia Chenevix-Trench, Douglas F Easton, and Alison M Dunning. Func-
tional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression
through long-range enhancers. American journal of human genetics, 92(4):489-503,
Apr 2013.

Nils Weinhold, Anders Jacobsen, Nikolaus Schultz, Chris Sander, and William Lee.
Genome-wide analysis of noncoding regulatory mutations in cancer. Nature genetics,
46(11):1160-5, Nov 2014.

C Solis, G I Aizencang, K H Astrin, D F Bishop, and R J Desnick. Uroporphyrinogen
IIT synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause
congenital erythropoietic porphyria. The Journal of clinical investigation, 107(6):753—
62, Mar 2001.



References 149

[84]

[85]

[87]

[88]

[89]

[90]

[91]

[92]

C Gragnoli, T Lindner, B N Cockburn, P J Kaisaki, F Gragnoli, G Marozzi, and G 1
Bell. Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear

factor-4 alpha binding site in the promoter of the hepatocyte nuclear factor-1 alpha
gene. Diabetes, 46(10):1648-51, Oct 1997.

L B Ludlow, B P Schick, M L Budarf, D A Driscoll, E H Zackai, A Cohen, and B A
Konkle. Identification of a mutation in a GATA binding site of the platelet glycoprotein
Ibbeta promoter resulting in the Bernard-Soulier syndrome. The Journal of biological
chemistry, 271(36):22076-80, Sep 1996.

Marco De Gobbi, Vip Viprakasit, Jim R Hughes, Chris Fisher, Veronica J Buckle,
Helena Ayyub, Richard J Gibbons, Douglas Vernimmen, Yuko Yoshinaga, Pieter
de Jong, Jan-Fang Cheng, Edward M Rubin, William G Wood, Don Bowden, and
Douglas R Higgs. A regulatory SNP causes a human genetic disease by creating a new
transcriptional promoter. Science (New York, N.Y.), 312(5777):1215-7, May 2006.

W S Yang, D N Nevin, R Peng, J D Brunzell, and S S Deeb. A mutation in the promoter
of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia
and low LPL activity. Proceedings of the National Academy of Sciences of the United
States of America, 92(10):4462—6, May 1995.

Jianming Wu, Christine Metz, Xiulong Xu, Riichiro Abe, Andrew W Gibson, Jeffrey C
Edberg, Jennifer Cooke, Fenglong Xie, Glinda S Cooper, and Robert P Kimberly. A
novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene
promoter alters Fas ligand expression: a candidate background gene in African Ameri-

can systemic lupus erythematosus patients. Journal of immunology (Baltimore, Md. :
1950), 170(1):132-8, Jan 2003.

Andrew W Dodd, Catherine M Syddall, and John Loughlin. A rare variant in the
osteoarthritis-associated locus GDFS5 is functional and reveals a site that can be

manipulated to modulate GDF5 expression. European journal of human genetics :
EJHG, 21(5):517-21, May 2013.

M Crossley, M Ludwig, K M Stowell, P De Vos, K Olek, and G G Brownlee. Recovery
from hemophilia B Leyden: an androgen-responsive element in the factor IX promoter.
Science (New York, N.Y.), 257(5068):377-9, Jul 1992.

Xing-Wu Zheng, Rama Kudaravalli, Theresa T Russell, Donna M DiMichele, Con-
stance Gibb, J Eric Russell, Paris Margaritis, and Eleanor S Pollak. Mutation in
the factor VII hepatocyte nuclear factor 4¢-binding site contributes to factor VII

deficiency. Blood coagulation & fibrinolysis : an international journal in haemostasis
and thrombosis, 22(7):624-7, Oct 2011.

Melina Claussnitzer, Simon N Dankel, Bernward Klocke, Harald Grallert, Viktoria
Glunk, Tea Berulava, Heekyoung Lee, Nikolay Oskolkov, Joao Fadista, Kerstin
Ehlers, Simone Wahl, Christoph Hoffmann, Kun Qian, Tina Rénn, Helene Riess,
Martina Miiller-Nurasyid, Nancy Bretschneider, Timm Schroeder, Thomas Skurk,
Bernhard Horsthemke, Derek Spieler, Martin Klingenspor, Martin Seifert, Michael J
Kern, Niklas Mejhert, Ingrid Dahlman, Ola Hansson, Stefanie M Hauck, Matthias
Bliiher, Peter Arner, Leif Groop, Thomas Illig, Karsten Suhre, Yi-Hsiang Hsu, Gunnar



150

References

[96]

Mellgren, Hans Hauner, and Helmut Laumen. Leveraging cross-species transcription

factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell,
156(1-2):343-58, Jan 2014.

Li Jia, Gilad Landan, Mark Pomerantz, Rami Jaschek, Paula Herman, David Reich,
Chunli Yan, Omar Khalid, Phil Kantoff, William Oh, J Robert Manak, Benjamin P
Berman, Brian E Henderson, Baruch Frenkel, Christopher A Haiman, Matthew Freed-
man, Amos Tanay, and Gerhard A Coetzee. Functional enhancers at the gene-poor
8924 cancer-linked locus. PLoS genetics, 5(8):e1000597, Aug 2009.

D I Martin, S F Tsai, and S H Orkin. Increased gamma-globin expression in a
nondeletion HPFH mediated by an erythroid-specific DNA-binding factor. Nature,
338(6214):435-8, Mar 1989.

Michael N Weedon, Ines Cebola, Ann-Marie Patch, Sarah E Flanagan, Elisa De Franco,
Richard Caswell, Santiago A Rodriguez-Segui, Charles Shaw-Smith, Candy H-H Cho,
Hana Lango Allen, Jayne Al Houghton, Christian L Roth, Rongrong Chen, Khalid
Hussain, Phil Marsh, Ludovic Vallier, Anna Murray, Sian Ellard, Jorge Ferrer, and
Andrew T Hattersley. Recessive mutations in a distal PTF1A enhancer cause isolated
pancreatic agenesis. Nature genetics, 46(1):61-64, Jan 2014.

Jennifer R Kulzer, Michael L Stitzel, Mario A Morken, Jeroen R Huyghe, Christian
Fuchsberger, Johanna Kuusisto, Markku Laakso, Michael Boehnke, Francis S Collins,
and Karen L Mohlke. A common functional regulatory variant at a type 2 diabetes

locus upregulates ARAP1 expression in the pancreatic beta cell. American journal of
human genetics, 94(2):186-97, Feb 2014.

Dominique J Verlaan, Soizik Berlivet, Gary M Hunninghake, Anne-Marie Madore,
Mathieu Lariviere, Sanny Moussette, Elin Grundberg, Tony Kwan, Manon Ouimet,
Bing Ge, Rose Hoberman, Marcin Swiatek, Joana Dias, Kevin C L Lam, Vonda
Koka, Eef Harmsen, Manuel Soto-Quiros, Lydiana Avila, Juan C Celed6n, Scott T
Weiss, Ken Dewar, Daniel Sinnett, Catherine Laprise, Benjamin A Raby, Tomi
Pastinen, and Anna K Naumova. Allele-specific chromatin remodeling in the
ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune
disease. American journal of human genetics, 85(3):377-93, Sep 2009.

Sabina Benko, Judy A Fantes, Jeanne Amiel, Dirk-Jan Kleinjan, Sophie Thomas,
Jacqueline Ramsay, Negar Jamshidi, Abdelkader Essafi, Simon Heaney, Christopher T
Gordon, David McBride, Christelle Golzio, Malcolm Fisher, Paul Perry, Véronique
Abadie, Carmen Ayuso, Muriel Holder-Espinasse, Nicky Kilpatrick, Melissa M Lees,
Arnaud Picard, I Karen Temple, Paul Thomas, Marie-Paule Vazquez, Michel Veke-
mans, Hugues Roest Crollius, Nicholas D Hastie, Arnold Munnich, Heather C Etchev-
ers, Anna Pelet, Peter G Farlie, David R Fitzpatrick, and Stanislas Lyonnet. Highly
conserved non-coding elements on either side of SOX9 associated with Pierre Robin
sequence. Nature genetics, 41(3):359-64, Mar 2009.

Laure Lecerf, Anthula Kavo, Macarena Ruiz-Ferrer, Viviane Baral, Yuli Watanabe,
Asma Chaoui, Veronique Pingault, Salud Borrego, and Nadege Bondurand. An im-
pairment of long distance SOX10 regulatory elements underlies isolated Hirschsprung
disease. Human mutation, 35(3):303-7, Mar 2014.



References 151

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Shoaib Al Zadjali, Yasser Wali, Fatma Al Lawatiya, David Gravell, Salam Alkindi,
Kareema Al Falahi, Rajagopal Krishnamoorthy, and Shahina Daar. The 3-globin pro-
moter -71 C>T mutation is a B+ thalassemic allele. European journal of haematology,
87(5):457-60, Nov 2011.

Cibele Masotti, Lucia M Armelin-Correa, Alessandra Splendore, Chin J Lin, Angela
Barbosa, Mari C Sogayar, and Maria Rita Passos-Bueno. A functional SNP in the
promoter region of TCOF1 is associated with reduced gene expression and YY1
DNA-protein interaction. Gene, 359:44-52, Oct 2005.

Fedik Rahimov, Mary L Marazita, Axel Visel, Margaret E Cooper, Michael J Hitchler,
Michele Rubini, Frederick E Domann, Manika Govil, Kaare Christensen, Camille
Bille, Mads Melbye, Astanand Jugessur, Rolv T Lie, Allen J Wilcox, David R Fitz-
patrick, Eric D Green, Peter A Mossey, Julian Little, Regine P Steegers-Theunissen,
Len A Pennacchio, Brian C Schutte, and Jeffrey C Murray. Disruption of an AP-
2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nature genetics,
40(11):1341-7, Nov 2008.

Dongwon Lee, David U Gorkin, Maggie Baker, Benjamin J Strober, Alessandro L
Asoni, Andrew S McCallion, and Michael A Beer. A method to predict the impact of
regulatory variants from DNA sequence. Nature genetics, 47(8):955-61, Aug 2015.

Jieming Chen, Joel Rozowsky, Timur R Galeev, Arif Harmanci, Robert Kitchen,
Jason Bedford, Alexej Abyzov, Yong Kong, Lynne Regan, and Mark Gerstein. A
uniform survey of allele-specific binding and expression over 1000-Genomes-Project
individuals. Nature communications, 7:11101, Apr 2016.

Wengiang Shi, Oriol Fornes, Anthony Mathelier, and Wyeth W Wasserman. Evaluating
the impact of single nucleotide variants on transcription factor binding. Nucleic acids
research, 44(21):10106-10116, Dec 2016.

Ines de Santiago, Wei Liu, Ke Yuan, Martin O’Reilly, Chandra Sekhar Reddy Chil-
amakuri, Bruce A J Ponder, Kerstin B Meyer, and Florian Markowetz. BaalChIP:
Bayesian analysis of allele-specific transcription factor binding in cancer genomes.
Genome biology, 18(1):39, Feb 2017.

Heng Tao, David R Cox, and Kelly A Frazer. Allele-specific KRT1 expression is a
complex trait. PLoS genetics, 2(6):€93, Jun 2006.

Ruslan Strogantsev, Felix Krueger, Kazuki Yamazawa, Hui Shi, Poppy Gould, Megan
Goldman-Roberts, Kirsten McEwen, Bowen Sun, Roger Pedersen, and Anne C
Ferguson-Smith. Allele-specific binding of ZFP57 in the epigenetic regulation of
imprinted and non-imprinted monoallelic expression. Genome biology, 16:112, May
2015.

Roel Nusse. Wnt signaling and stem cell control. Cell research, 18(5):523-7, May
2008.

S Wickner, M R Maurizi, and S Gottesman. Posttranslational quality control: folding,
refolding, and degrading proteins. Science (New York, N.Y.), 286(5446):1888-93, Dec
1999.



152

References

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Shimin Zhao, Wei Xu, Wenqing Jiang, Wei Yu, Yan Lin, Tengfei Zhang, Jun Yao,
Li Zhou, Yaxue Zeng, Hong Li, Yixue Li, Jiong Shi, Wenlin An, Susan M Hancock,
Fuchu He, Lunxiu Qin, Jason Chin, Pengyuan Yang, Xian Chen, Qunying Lei, Yue
Xiong, and Kun-Liang Guan. Regulation of cellular metabolism by protein lysine
acetylation. Science (New York, N.Y.), 327(5968):1000—4, Feb 2010.

Fuxiao Xin and Predrag Radivojac. Post-translational modifications induce significant
yet not extreme changes to protein structure. Bioinformatics (Oxford, England),
28(22):2905-13, Nov 2012.

Guangyou Duan and Dirk Walther. The roles of post-translational modifications in the
context of protein interaction networks. PLoS computational biology, 11(2):e1004049,
Feb 2015.

Pablo Minguez, Luca Parca, Francesca Diella, Daniel R Mende, Runjun Kumar,
Manuela Helmer-Citterich, Anne-Claude Gavin, Vera van Noort, and Peer Bork. Deci-
phering a global network of functionally associated post-translational modifications.
Molecular systems biology, 8:599, Jul 2012.

UniProt: the universal protein knowledgebase. Nucleic acids research, 45(D1):D158—
D169, Jan 2017.

Tzong-Yi Lee, Hsien-Da Huang, Jui-Hung Hung, Hsi-Yuan Huang, Yuh-Shyong Yang,
and Tzu-Hao Wang. dbPTM: an information repository of protein post-translational
modification. Nucleic acids research, 34(Database issue):D622—7, Jan 2006.

Peter V Hornbeck, Bin Zhang, Beth Murray, Jon M Kornhauser, Vaughan Latham,
and Elzbieta Skrzypek. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic acids research, 43(Database issue):D512-20, Jan 2015.

Kai-Yao Huang, Min-Gang Su, Hui-Ju Kao, Yun-Chung Hsieh, Jhih-Hua Jhong,
Kuang-Hao Cheng, Hsien-Da Huang, and Tzong-Yi Lee. dbPTM 2016: 10-year
anniversary of a resource for post-translational modification of proteins. Nucleic acids
research, 44(D1):D435-46, Jan 2016.

Monzy Thomas, Nahid Dadgar, Abhishek Aphale, Jennifer M Harrell, Robin Kunkel,
William B Pratt, and Andrew P Lieberman. Androgen receptor acetylation site
mutations cause trafficking defects, misfolding, and aggregation similar to expanded
glutamine tracts. The Journal of biological chemistry, 279(9):8389-95, Feb 2004.

E Grasbon-Frodl, Holger Lorenz, U Mann, R M Nitsch, Otto Windl, and H A Kret-
zschmar. Loss of glycosylation associated with the T183A mutation in human prion
disease. Acta neuropathologica, 108(6):476—84, Dec 2004.

Jirt Reimand, Omar Wagih, and Gary D Bader. Evolutionary constraint and disease
associations of post-translational modification sites in human genomes. PLoS genetics,
11(1):e1004919, Jan 2015.

G Manning, D B Whyte, R Martinez, T Hunter, and S Sudarsanam. The protein kinase
complement of the human genome. Science (New York, N.Y.), 298(5600):1912-34, 12
2002.



References 153

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Jeffrey A Ubersax and James E Ferrell. Mechanisms of specificity in protein phospho-
rylation. Nature reviews. Molecular cell biology, 8(7):530—-41, Jul 2007.

B E Kemp and R B Pearson. Protein kinase recognition sequence motifs. Trends in
biochemical sciences, 15(9):342—-6, Sep 1990.

Martin Lee Miller, Lars Juhl Jensen, Francesca Diella, Claus Jgrgensen, Michele
Tinti, Lei Li, Marilyn Hsiung, Sirlester A Parker, Jennifer Bordeaux, Thomas
Sicheritz-Ponten, Marina Olhovsky, Adrian Pasculescu, Jes Alexander, Stefan Knapp,
Nikolaj Blom, Peer Bork, Shawn Li, Gianni Cesareni, Tony Pawson, Benjamin E
Turk, Michael B Yaffe, Sgren Brunak, and Rune Linding. Linear motif atlas for
phosphorylation-dependent signaling. Science signaling, 1(35):ra2, Sep 2008.

Tzong-Yi Lee, Justin Bo-Kai Hsu, Wen-Chi Chang, and Hsien-Da Huang. RegPhos: a
system to explore the protein kinase-substrate phosphorylation network in humans.
Nucleic acids research, 39(Database issue):D777-87, Jan 2011.

Hamid D Ismail, Ahoi Jones, Jung H Kim, Robert H Newman, and Dukka B Kc.
RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random
Forest. BioMed research international, 2016:3281590, 2016.

M Ristow, D Miiller-Wieland, A Pfeiffer, W Krone, and C R Kahn. Obesity associated
with a mutation in a genetic regulator of adipocyte differentiation. The New England
Journal of medicine, 339(14):953-9, Oct 1998.

S Dupuis, C Dargemont, C Fieschi, N Thomassin, S Rosenzweig, J Harris, S M
Holland, R D Schreiber, and J L Casanova. Impairment of mycobacterial but not
viral immunity by a germline human STAT1 mutation. Science (New York, N.Y.),
293(5528):300-3, Jul 2001.

K L Toh, C R Jones, Y He, E J Eide, W A Hinz, D M Virshup, L J Ptacek, and Y H Fu.
An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.
Science (New York, N.Y.), 291(5506):1040-3, Feb 2001.

Seren M Echwald, Helle Bach, Henrik Vestergaard, Bjgrn Richelsen, Kurt Kristensen,
Thomas Drivsholm, Knut Borch-Johnsen, Torben Hansen, and Oluf Pedersen. A
P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2
diabetes and impaired serine phosphorylation of PTP-1B in vitro. Diabetes, 51(1):1-6,
Jan 2002.

Edward P Gelmann, David J Steadman, Jing Ma, Natalie Ahronovitz, H James Voeller,
Sheridan Swope, Mohammed Abbaszadegan, Kevin M Brown, Kate Strand, Richard B
Hayes, and Meir J Stampfer. Occurrence of NKX3.1 C154T polymorphism in men
with and without prostate cancer and studies of its effect on protein function. Cancer
research, 62(9):2654-9, May 2002.

Xiaoxian Li, Patrick Dumont, Anthony Della Pietra, Cory Shetler, and Maureen E
Murphy. The codon 47 polymorphism in p53 is functionally significant. The Journal
of biological chemistry, 280(25):24245-51, Jun 2005.



154

References

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Luisa Luna, Veslemgy Rolseth, Gunn A Hildrestrand, Marit Otterlei, Francoise
Dantzer, Magnar Bjgras, and Erling Seeberg. Dynamic relocalization of hOGG1
during the cell cycle is disrupted in cells harbouring the hOGG1-Cys326 polymorphic
variant. Nucleic acids research, 33(6):1813-24, 2005.

S Benzeno, F Lu, M Guo, O Barbash, F Zhang, ] G Herman, P S Klein, A Rustgi, and
J A Diehl. Identification of mutations that disrupt phosphorylation-dependent nuclear
export of cyclin D1. Oncogene, 25(47):6291-303, Oct 2006.

You-Take Oh, Kwang Hoon Chun, Byoung Duck Park, Joon-Seok Choi, and Seung Ki
Lee. Regulation of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 by protein

kinase Cdelta-mediated phosphorylation. Apoptosis : an international journal on
programmed cell death, 12(7):1339-47, Jul 2007.

Saverio Gentile, Negin Martin, Erica Scappini, Jason Williams, Christian Erxleben,
and David L Armstrong. The human ERG1 channel polymorphism, K897T, creates
a phosphorylation site that inhibits channel activity. Proceedings of the National
Academy of Sciences of the United States of America, 105(38):14704-8, Sep 2008.

Delaine K Ceholski, Catharine A Trieber, Charles F B Holmes, and Howard S Young.
Lethal, hereditary mutants of phospholamban elude phosphorylation by protein kinase
A. The Journal of biological chemistry, 287(32):26596—-605, Aug 2012.

William H Lagarde, Amanda J Blackwelder, John T Minges, Andrew T Hnat, Frank S
French, and Elizabeth M Wilson. Androgen receptor exon 1 mutation causes androgen
insensitivity by creating phosphorylation site and inhibiting melanoma antigen-A11

activation of NH2- and carboxyl-terminal interaction-dependent transactivation. The
Journal of biological chemistry, 287(14):10905-15, Mar 2012.

Fei-Yan Deng, Li-Jun Tan, Hui Shen, Yong-Jun Liu, Yao-Zhong Liu, Jian Li, Xue-
Zhen Zhu, Xiang-Ding Chen, Qing Tian, Ming Zhao, and Hong-Wen Deng. SNP
1s6265 regulates protein phosphorylation and osteoblast differentiation and influences
BMD in humans. Journal of bone and mineral research : the official journal of the
American Society for Bone and Mineral Research, 28(12):2498-507, Dec 2013.

Daniel H Ebert, Harrison W Gabel, Nathaniel D Robinson, Nathaniel R Kastan,
Linda S Hu, Sonia Cohen, Adrija J Navarro, Matthew J Lyst, Robert Ekiert, Adrian P
Bird, and Michael E Greenberg. Activity-dependent phosphorylation of MeCP2
threonine 308 regulates interaction with NCoR. Nature, 499(7458):341-5, Jul 2013.

C Ortiz-Padilla, D Gallego-Ortega, B C Browne, F Hochgrife, C E Caldon, R J Lyons,
D R Croucher, D Rickwood, C J Ormandy, T Brummer, and R J Daly. Functional
characterization of cancer-associated Gabl mutations. Oncogene, 32(21):2696-702,
May 2013.

Julien Gautherot, Daniele Delautier, Marie-Anne Maubert, Tounsia Ait-Slimane,
Gérard Bolbach, Jean-Louis Delaunay, Anne-Marie Durand-Schneider, Delphine
Firrincieli, Véronique Barbu, Nicolas Chignard, Chantal Housset, Michele Maurice,
and Thomas Falguieres. Phosphorylation of ABCB4 impacts its function: insights
from disease-causing mutations. Hepatology (Baltimore, Md.), 60(2):610-21, Aug
2014.



References 155

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

Eunice E Lee, Jing Ma, Anastasia Sacharidou, Wentao Mi, Valerie K Salato, Nam
Nguyen, Youxing Jiang, Juan M Pascual, Paula E North, Philip W Shaul, Marcel
Mettlen, and Richard C Wang. A Protein Kinase C Phosphorylation Motif in GLUT1
Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome. Molecular
cell, 58(5):845-53, Jun 2015.

Marcello Niceta, Emilia Stellacci, Karen W Gripp, Giuseppe Zampino, Maria Kousi,
Massimiliano Anselmi, Alice Traversa, Andrea Ciolfi, Deborah Stabley, Alessandro
Bruselles, Viviana Caputo, Serena Cecchetti, Sabrina Prudente, Maria T Fiorenza,
Carla Boitani, Nicole Philip, Dmitriy Niyazov, Chiara Leoni, Takaya Nakane,
Kim Keppler-Noreuil, Stephen R Braddock, Gabriele Gillessen-Kaesbach, Antonio
Palleschi, Philippe M Campeau, Brendan H L Lee, Celio Pouponnot, Lorenzo Stella,
Gianfranco Bocchinfuso, Nicholas Katsanis, Katia Sol-Church, and Marco Tartaglia.
Mutations Impairing GSK3-Mediated MAF Phosphorylation Cause Cataract, Deaf-
ness, Intellectual Disability, Seizures, and a Down Syndrome-like Facies. American
Journal of human genetics, 96(5):816-25, May 2015.

Omar Wagih, Jiiri Reimand, and Gary D Bader. MIMP: predicting the impact of
mutations on kinase-substrate phosphorylation. Nature methods, 12(6):531-3, Jun
2015.

Jason J Yi, Janet Berrios, Jason M Newbern, William D Snider, Benjamin D Philpot,
Klaus M Hahn, and Mark J Zylka. An Autism-Linked Mutation Disables Phosphory-
lation Control of UBE3A. Cell, 162(4):795-807, Aug 2015.

Jiiri Reimand, Omar Wagih, and Gary D Bader. The mutational landscape of phospho-
rylation signaling in cancer. Scientific reports, 3:2651, Oct 2013.

Rolf Apweiler, Amos Bairoch, Cathy H Wu, Winona C Barker, Brigitte Boeckmann,
Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez, Michele
Magrane, Maria J Martin, Darren A Natale, Claire O’Donovan, Nicole Redaschi, and
Lai-Su L Yeh. UniProt: the Universal Protein knowledgebase. Nucleic acids research,
32(Database issue):D115-9, Jan 2004.

Yul Kim, Chiyong Kang, Bumki Min, and Gwan-Su Yi. Detection and analysis
of disease-associated single nucleotide polymorphism influencing post-translational
modification. BMC medical genomics, 8 Suppl 2:S7, 2015.

Gil-Mi Ryu, Pamela Song, Kyu-Won Kim, Kyung-Soo Oh, Keun-Joon Park, and
Jong Hun Kim. Genome-wide analysis to predict protein sequence variations that
change phosphorylation sites or their corresponding kinases. Nucleic acids research,
37(4):1297-307, Mar 2009.

Yu Xue, Jian Ren, Xinjiao Gao, Changjiang Jin, Longping Wen, and Xuebiao Yao.
GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Molecular
& cellular proteomics : MCP, 7(9):1598-608, Sep 2008.

Jian Ren, Chunhui Jiang, Xinjiao Gao, Zexian Liu, Zineng Yuan, Changjiang Jin,
Longping Wen, Zhaolei Zhang, Yu Xue, and Xuebiao Yao. PhosSNP for systematic
analysis of genetic polymorphisms that influence protein phosphorylation. Molecular
& cellular proteomics : MCP, 9(4):623-34, Apr 2010.



156

References

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

Rune Linding, Lars Juhl Jensen, Gerard J Ostheimer, Marcel A T M van Vugt, Claus
Jorgensen, loana M Miron, Francesca Diella, Karen Colwill, Lorne Taylor, Kelly
Elder, Pavel Metalnikov, Vivian Nguyen, Adrian Pasculescu, Jing Jin, Jin Gyoon Park,
Leona D Samson, James R Woodgett, Robert B Russell, Peer Bork, Michael B Yaffe,
and Tony Pawson. Systematic discovery of in vivo phosphorylation networks. Cell,
129(7):1415-26, Jun 2007.

Pau Creixell, Erwin M Schoof, Craig D Simpson, James Longden, Chad J Miller,
Hua Jane Lou, Lara Perryman, Thomas R Cox, Nevena Zivanovic, Antonio Palmeri,
Agata Wesolowska-Andersen, Manuela Helmer-Citterich, Jesper Ferkinghoff-Borg,
Hiroaki Itamochi, Bernd Bodenmiller, Janine T Erler, Benjamin E Turk, and Rune
Linding. Kinome-wide decoding of network-attacking mutations rewiring cancer
signaling. Cell, 163(1):202-17, Sep 2015.

Ralph Patrick, Bostjan Kobe, Kim-Anh Lé Cao, and Mikael Bodén. PhosphoPICK-
SNP: quantifying the effect of amino acid variants on protein phosphorylation. Bioin-
formatics (Oxford, England), 33(12):1773-1781, Jun 2017.

Norman E Davey, Kim Van Roey, Robert J Weatheritt, Grischa Toedt, Bora Uyar,
Brigitte Altenberg, Aidan Budd, Francesca Diella, Holger Dinkel, and Toby J Gibson.
Attributes of short linear motifs. Molecular bioSystems, 8(1):268-81, Jan 2012.

Debasree Sarkar, Tanmoy Jana, and Sudipto Saha. LMPID: a manually curated
database of linear motifs mediating protein-protein interactions. Database : the
journal of biological databases and curation, 2015, 2015.

Tian Mi, Jerlin Camilus Merlin, Sandeep Deverasetty, Michael R Gryk, Travis J
Bill, Andrew W Brooks, Logan Y Lee, Viraj Rathnayake, Christian A Ross, David P
Sargeant, Christy L Strong, Paula Watts, Sanguthevar Rajasekaran, and Martin R
Schiller. Minimotif Miner 3.0: database expansion and significantly improved reduc-
tion of false-positive predictions from consensus sequences. Nucleic acids research,
40(Database issue):D252-60, Jan 2012.

John C Obenauer, Lewis C Cantley, and Michael B Yaffe. Scansite 2.0: Proteome-wide

prediction of cell signaling interactions using short sequence motifs. Nucleic acids
research, 31(13):3635—41, Jul 2003.

Holger Dinkel, Sushama Michael, Robert J Weatheritt, Norman E Davey, Kim
Van Roey, Brigitte Altenberg, Grischa Toedt, Bora Uyar, Markus Seiler, Aidan
Budd, Lisa Jodicke, Marcel A Dammert, Christian Schroeter, Maria Hammer, To-
bias Schmidt, Peter Jehl, Caroline McGuigan, Magdalena Dymecka, Claudia Chica,
Katja Luck, Allegra Via, Andrew Chatr-Aryamontri, Niall Haslam, Gleb Grebney,
Richard J Edwards, Michel O Steinmetz, Heike Meiselbach, Francesca Diella, and
Toby J Gibson. ELM—the database of eukaryotic linear motifs. Nucleic acids research,
40(Database issue):D242-51, Jan 2012.

A J Muslin, ] W Tanner, P M Allen, and A S Shaw. Interaction of 14-3-3 with signaling
proteins is mediated by the recognition of phosphoserine. Cell, 84(6):889-97, Mar
1996.



References 157

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Bhaswati Pandit, Anna Sarkozy, Len A Pennacchio, Claudio Carta, Kimihiko Oishi,
Simone Martinelli, Edgar A Pogna, Wendy Schackwitz, Anna Ustaszewska, Andrew
Landstrom, J Martijn Bos, Steve R Ommen, Giorgia Esposito, Francesca Lepri, Chris-
tian Faul, Peter Mundel, Juan P L6pez Siguero, Romano Tenconi, Angelo Selicorni,
Cesare Rossi, Laura Mazzanti, Isabella Torrente, Bruno Marino, Maria C Digilio,
Giuseppe Zampino, Michael J Ackerman, Bruno Dallapiccola, Marco Tartaglia, and
Bruce D Gelb. Gain-of-function RAF1 mutations cause Noonan and LEOPARD
syndromes with hypertrophic cardiomyopathy. Nature genetics, 39(8):1007-12, Aug
2007.

E Kalay, A P M de Brouwer, R Caylan, S B Nabuurs, B Wollnik, A Karaguzel, J G
A M Heister, H Erdol, F P M Cremers, C W R J Cremers, H G Brunner, and H Kremer.
A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher
syndrome. Journal of molecular medicine (Berlin, Germany), 83(12):1025-32, Dec
2005.

C B Anfinsen. Principles that govern the folding of protein chains. Science (New York,
N.Y.), 181(4096):223-30, Jul 1973.

C Clementi, H Nymeyer, and J N Onuchic. Topological and energetic factors: what
determines the structural details of the transition state ensemble and "en-route" inter-
mediates for protein folding? An investigation for small globular proteins. Journal of
molecular biology, 298(5):937-53, May 2000.

C Nick Pace, Hailong Fu, Katrina Lee Fryar, John Landua, Saul R Trevino, David
Schell, Richard L Thurlkill, Satoshi Imura, J Martin Scholtz, Ketan Gajiwala, Jozef
Sevcik, Lubica Urbanikova, Jeffery K Myers, Kazufumi Takano, Eric J Hebert, Bret A
Shirley, and Gerald R Grimsley. Contribution of hydrogen bonds to protein stability.
Protein science : a publication of the Protein Society, 23(5):652-61, May 2014.

C Nick Pace, J Martin Scholtz, and Gerald R Grimsley. Forces stabilizing proteins.
FEBS letters, 588(14):2177-84, Jun 2014.

D E Anderson, W J Becktel, and F W Dahlquist. pH-induced denaturation of proteins:
a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4
lysozyme. Biochemistry, 29(9):2403-8, Mar 1990.

I K McDonald and J M Thornton. Satisfying hydrogen bonding potential in proteins.
Journal of molecular biology, 238(5):777-93, May 1994.

Catherine A Royer. Probing protein folding and conformational transitions with
fluorescence. Chemical reviews, 106(5):1769—84, May 2006.

Roy M Daniel and Michael J Danson. Temperature and the catalytic activity of
enzymes: a fresh understanding. FEBS letters, 587(17):2738-43, Sep 2013.

Romain A Studer, Pascal-Antoine Christin, Mark A Williams, and Christine A Orengo.
Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proceedings
of the National Academy of Sciences of the United States of America, 111(6):2223-8,
Feb 2014.



158

References

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

A A Pakula and R T Sauer. Genetic analysis of protein stability and function. Annual
review of genetics, 23:289-310, 1989.

K Abdulla Bava, M Michael Gromiha, Hatsuho Uedaira, Koji Kitajima, and Akinori
Sarai. ProTherm, version 4.0: thermodynamic database for proteins and mutants.
Nucleic acids research, 32(Database issue):D120-1, Jan 2004.

K Nishikawa, S Ishino, H Takenaka, N Norioka, T Hirai, T Yao, and Y Seto. Con-
structing a protein mutant database. Protein engineering, 7(5):733, May 1994.

Peter D Stenson, Matthew Mort, Edward V Ball, Katy Shaw, Andrew Phillips, and
David N Cooper. The Human Gene Mutation Database: building a comprehen-
sive mutation repository for clinical and molecular genetics, diagnostic testing and
personalized genomic medicine. Human genetics, 133(1):1-9, Jan 2014.

S B Prusiner. Molecular biology of prion diseases. Science (New York, N.Y.),
252(5012):1515-22, Jun 1991.

J Collinge. Prion diseases of humans and animals: their causes and molecular basis.
Annual review of neuroscience, 24:519-50, 2001.

Sivakumar Boopathy, Tania V Silvas, Maeve Tischbein, Silvia Jansen, Shivender M
Shandilya, Jill A Zitzewitz, John E Landers, Bruce L Goode, Celia A Schiffer, and
Daryl A Bosco. Structural basis for mutation-induced destabilization of profilin 1
in ALS. Proceedings of the National Academy of Sciences of the United States of
America, 112(26):7984-9, Jun 2015.

Elizabeth P Rakoczy, Christina Kiel, Richard McKeone, Francois Stricher, and Luis
Serrano. Analysis of disease-linked rhodopsin mutations based on structure, function,
and protein stability calculations. Journal of molecular biology, 405(2):584—606, Jan
2011.

William Lin and Un Jung Kang. Characterization of PINK1 processing, stability, and
subcellular localization. Journal of neurochemistry, 106(1):464—74, Jul 2008.

Karen Nuytemans, Jessie Theuns, Marc Cruts, and Christine Van Broeckhoven. Ge-
netic etiology of Parkinson disease associated with mutations in the SNCA, PARK?2,
PINK1, PARK7, and LRRK2 genes: a mutation update. Human mutation, 31(7):763—
80, Jul 2010.

Shawn Witham, Kyoko Takano, Charles Schwartz, and Emil Alexov. A missense
mutation in CLIC2 associated with intellectual disability is predicted by in silico
modeling to affect protein stability and dynamics. Proteins, 79(8):2444-54, Aug 2011.

Kyoko Takano, Dan Liu, Patrick Tarpey, Esther Gallant, Alex Lam, Shawn Witham,
Emil Alexov, Alka Chaubey, Roger E Stevenson, Charles E Schwartz, Philip G Board,
and Angela F Dulhunty. An X-linked channelopathy with cardiomegaly due to a
CLIC2 mutation enhancing ryanodine receptor channel activity. Human molecular
genetics, 21(20):4497-507, Oct 2012.



References 159

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

Shaolei Teng, Anand K Srivastava, and Liangjiang Wang. Sequence feature-based
prediction of protein stability changes upon amino acid substitutions. BMC genomics,
11 Suppl 2:S5, Nov 2010.

Lukas Folkman, Bela Stantic, Abdul Sattar, and Yaoqi Zhou. EASE-MM: Sequence-
Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple
Models. Journal of molecular biology, 428(6):1394—1405, Mar 2016.

Liang-Tsung Huang, M Michael Gromiha, and Shinn-Ying Ho. iPTREE-STAB:
interpretable decision tree based method for predicting protein stability changes upon
mutations. Bioinformatics (Oxford, England), 23(10):1292-3, May 2007.

Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau,
and Luis Serrano. The FoldX web server: an online force field. Nucleic acids research,
33(Web Server issue): W382-8, Jul 2005.

Josef Laimer, Heidi Hofer, Marko Fritz, Stefan Wegenkittl, and Peter Lackner.

MAESTRO-multi agent stability prediction upon point mutations. BMC bioinformat-
ics, 16:116, Apr 2015.

Shuangye Yin, Feng Ding, and Nikolay V Dokholyan. Eris: an automated estimator
of protein stability. Nature methods, 4(6):466—7, Jun 2007.

Catherine L Worth, Robert Preissner, and Tom L Blundell. SDM-a server for predict-
ing effects of mutations on protein stability and malfunction. Nucleic acids research,
39(Web Server issue):W215-22, Jul 2011.

D Gilis and M Rooman. PoPMuSiC, an algorithm for predicting protein mutant
stability changes: application to prion proteins. Protein engineering, 13(12):849-56,
Dec 2000.

Wei Guan, Arkadas Ozakin, Alexander Gray, Jose Borreguero, Shashi Pandit, Anna
Jagielska, Liliana Wroblewska, and Jeffrey Skolnick. Learning Protein Folding Energy
Functions. Proceedings. IEEE International Conference on Data Mining, pages 1062—
1067, Dec 2011.

Emidio Capriotti, Piero Fariselli, and Rita Casadio. I-Mutant2.0: predicting stability
changes upon mutation from the protein sequence or structure. Nucleic acids research,
33(Web Server issue): W306-10, Jul 2005.

Giulia Gonnelli, Marianne Rooman, and Yves Dehouck. Structure-based mutant
stability predictions on proteins of unknown structure. Journal of biotechnology,
161(3):287-93, Oct 2012.

Andreas Ruepp, Brigitte Waegele, Martin Lechner, Barbara Brauner, Irmtraud Dunger-
Kaltenbach, Gisela Fobo, Goar Frishman, Corinna Montrone, and H-Werner Mewes.
CORUM: the comprehensive resource of mammalian protein complexes—2009. Nu-
cleic acids research, 38(Database issue):D497-501, Jan 2010.

D Xu, CJ Tsai, and R Nussinov. Hydrogen bonds and salt bridges across protein-
protein interfaces. Protein engineering, 10(9):999-1012, Sep 1997.



160

References

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

S Jones and J M Thornton. Analysis of protein-protein interaction sites using surface
patches. Journal of molecular biology, 272(1):121-32, Sep 1997.

L Lo Conte, C Chothia, and J Janin. The atomic structure of protein-protein recognition
sites. Journal of molecular biology, 285(5):2177-98, Feb 1999.

Changhui Yan, Feihong Wu, Robert L Jernigan, Drena Dobbs, and Vasant Honavar.
Characterization of protein-protein interfaces. The protein journal, 27(1):59-70, Jan
2008.

M C Lawrence and P M Colman. Shape complementarity at protein/protein interfaces.
Journal of molecular biology, 234(4):946-50, Dec 1993.

Jemima Hoskins, Simon Lovell, and Tom L Blundell. An algorithm for predicting
protein-protein interaction sites: Abnormally exposed amino acid residues and sec-

ondary structure elements. Protein science : a publication of the Protein Society,
15(5):1017-29, May 2006.

S Jones and J M Thornton. Prediction of protein-protein interaction sites using patch
analysis. Journal of molecular biology, 272(1):133-43, Sep 1997.

Roberto Mosca, Arnaud Céol, and Patrick Aloy. Interactome3D: adding structural
details to protein networks. Nature methods, 10(1):47-53, Jan 2013.

Jose M Duarte, Adam Srebniak, Martin A Schérer, and Guido Capitani. Protein
interface classification by evolutionary analysis. BMC bioinformatics, 13:334, Dec
2012.

Ranjit Prasad Bahadur, Pinak Chakrabarti, Francis Rodier, and Jo€l Janin. A dissection
of specific and non-specific protein-protein interfaces. Journal of molecular biology,
336(4):943-55, Feb 2004.

Emmanuel D Levy. A simple definition of structural regions in proteins and its use
in analyzing interface evolution. Journal of molecular biology, 403(4):660-70, Nov
2010.

E Kube, T Becker, K Weber, and V Gerke. Protein-protein interaction studied by site-
directed mutagenesis. Characterization of the annexin II-binding site on p11, a member
of the S100 protein family. The Journal of biological chemistry, 267(20):14175-82,
Jul 1992.

Timothy A Whitehead, Aaron Chevalier, Yifan Song, Cyrille Dreyfus, Sarel J Fleish-
man, Cecilia De Mattos, Chris A Myers, Hetunandan Kamisetty, Patrick Blair, lan A
Wilson, and David Baker. Optimization of affinity, specificity and function of designed
influenza inhibitors using deep sequencing. Nature biotechnology, 30(6):543-8, May
2012.

Douglas M Fowler, Carlos L Araya, Sarel J Fleishman, Elizabeth H Kellogg, Jason J
Stephany, David Baker, and Stanley Fields. High-resolution mapping of protein
sequence-function relationships. Nature methods, 7(9):741-6, Sep 2010.



References 161

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

Carlos L Araya and Douglas M Fowler. Deep mutational scanning: assessing protein
function on a massive scale. Trends in biotechnology, 29(9):435-42, Sep 2011.

Peng Xiong, Chengxin Zhang, Wei Zheng, and Yang Zhang. BindProfX: Assessing
Mutation-Induced Binding Affinity Change by Protein Interface Profiles with Pseudo-
Counts. Journal of molecular biology, 429(3):426-434, Feb 2017.

Jeffrey R Brender and Yang Zhang. Predicting the Effect of Mutations on Protein-
Protein Binding Interactions through Structure-Based Interface Profiles. PLoS compu-
tational biology, 11(10):e1004494, Oct 2015.

Minghui Li, Franco L Simonetti, Alexander Goncearenco, and Anna R Panchenko.
MutaBind estimates and interprets the effects of sequence variants on protein-protein
interactions. Nucleic acids research, 44(W1):W494-501, Jul 2016.

Iain H Moal and Juan Ferndndez-Recio. SKEMPI: a Structural Kinetic and Energetic
database of Mutant Protein Interactions and its use in empirical models. Bioinformatics
(Oxford, England), 28(20):2600-7, Oct 2012.

Sherlyn Jemimah, K Yugandhar, and M Michael Gromiha. PROXiMATE: a database
of mutant protein-protein complex thermodynamics and kinetics. Bioinformatics
(Oxford, England), 33(17):2787-2788, Sep 2017.

Timothy R Siegert, Michael J Bird, Kamlesh M Makwana, and Joshua A Kritzer.
Analysis of Loops that Mediate Protein-Protein Interactions and Translation into
Submicromolar Inhibitors. Journal of the American Chemical Society, 138(39):12876—
12884, Oct 2016.

Ruben Marrero, Ramiro Rodriguez Limardo, Elisa Carrillo, Guido A Kénig, and
Adrian G Turjanski. A computational study of the interaction of the foot and mouth
disease virus VP1 with monoclonal antibodies. Journal of immunological methods,
425:51-7, Oct 2015.

Dmitry V Chouljenko, Nithya Jambunathan, Vladimir N Chouljenko, Misagh Naderi,
Michal Brylinski, John R Caskey, and Konstantin G Kousoulas. Herpes Simplex Virus
1 UL37 Protein Tyrosine Residues Conserved among All Alphaherpesviruses Are
Required for Interactions with Glycoprotein K, Cytoplasmic Virion Envelopment, and
Infectious Virus Production. Journal of virology, 90(22):10351-10361, Nov 2016.

Raik Griinberg, Julia V Burnier, Tony Ferrar, Violeta Beltran-Sastre, Francois Stricher,
Almer M van der Sloot, Raquel Garcia-Olivas, Arrate Mallabiabarrena, Xavier Sanjuan,
Timo Zimmermann, and Luis Serrano. Engineering of weak helper interactions for
high-efficiency FRET probes. Nature methods, 10(10):1021-7, Oct 2013.

Pelagia Deriziotis, Brian J O’Roak, Sarah A Graham, Sara B Estruch, Danai Dim-
itropoulou, Raphael A Bernier, Jennifer Gerdts, Jay Shendure, Evan E Eichler, and
Simon E Fisher. De novo TBR1 mutations in sporadic autism disrupt protein functions.
Nature communications, 5:4954, Sep 2014.



162

References

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

Emma L Baple, Helen Chambers, Harold E Cross, Heather Fawcett, Yuka Nakazawa,
Barry A Chioza, Gaurav V Harlalka, Sahar Mansour, Ajith Sreekantan-Nair, Michael A
Patton, Martina Muggenthaler, Phillip Rich, Karin Wagner, Roselyn Coblentz, Con-
stance K Stein, James I Last, A Malcolm R Taylor, Andrew P Jackson, Tomoo Ogi,
Alan R Lehmann, Catherine M Green, and Andrew H Crosby. Hypomorphic PCNA
mutation underlies a human DNA repair disorder. The Journal of clinical investigation,
124(7):3137-46, Jul 2014.

Caroline M Dufty, Brendan J Hilbert, and Brian A Kelch. A Disease-Causing Variant
in PCNA Disrupts a Promiscuous Protein Binding Site. Journal of molecular biology,
428(6):1023-1040, Mar 2016.

Eduard Porta-Pardo, Luz Garcia-Alonso, Thomas Hrabe, Joaquin Dopazo, and Adam
Godzik. A Pan-Cancer Catalogue of Cancer Driver Protein Interaction Interfaces.
PLoS computational biology, 11(10):e1004518, Oct 2015.

H Billur Engin, Jason F Kreisberg, and Hannah Carter. Structure-Based Analysis
Reveals Cancer Missense Mutations Target Protein Interaction Interfaces. PloS one,
11(4):e0152929, 2016.

F R Blattner, G Plunkett, C A Bloch, N T Perna, V Burland, M Riley, J Collado-Vides,
J D Glasner, C K Rode, G F Mayhew, J Gregor, N W Davis, H A Kirkpatrick, M A
Goeden, D J Rose, B Mau, and Y Shao. The complete genome sequence of Escherichia
coli K-12. Science (New York, N.Y.), 277(5331):1453-62, Sep 1997.

A Alejandra Klauer and Ambro van Hoof. Degradation of mRNAs that lack a stop
codon: a decade of nonstop progress. Wiley interdisciplinary reviews. RNA, 3(5):649—
60, 2012.

Mario H Bengtson and Claudio A P Joazeiro. Role of a ribosome-associated E3
ubiquitin ligase in protein quality control. Nature, 467(7314):470-3, Sep 2010.

Lyudmila N Dimitrova, Kazushige Kuroha, Tsuyako Tatematsu, and Toshifumi Inada.
Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degrada-
tion by the proteasome. The Journal of biological chemistry, 284(16):10343-52, Apr
2009.

Geurt Schilders, Erwin van Dijk, Reinout Raijmakers, and Ger J M Pruijn. Cell and
molecular biology of the exosome: how to make or break an RNA. International
review of cytology, 251:159-208, 2006.

Yoon Ki Kim, Luc Furic, Luc Desgroseillers, and Lynne E Maquat. Mammalian
Staufen] recruits Upf1 to specific mRNA 3’UTRs so as to elicit mRNA decay. Cell,
120(2):195-208, Jan 2005.

Olga Anczukéw, Mark D Ware, Monique Buisson, Almoutassem B Zetoune, Do-
minique Stoppa-Lyonnet, Olga M Sinilnikova, and Sylvie Mazoyer. Does the nonsense-
mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2,
and p53 proteins? Human mutation, 29(1):65-73, Jan 2008.



References 163

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Maila Giannandrea, Fabrizia C Guarnieri, Niels H Gehring, Elena Monzani, Fabio
Benfenati, Andreas E Kulozik, and Flavia Valtorta. Nonsense-mediated mRNA decay
and loss-of-function of the protein underlie the X-linked epilepsy associated with the
W356x mutation in synapsin I. PloS one, 8(6):e67724, 2013.

Nadia Amrani, Matthew S Sachs, and Allan Jacobson. Early nonsense: mRNA decay
solves a translational problem. Nature reviews. Molecular cell biology, 7(6):415-25,
Jun 2006.

Vinay K Nagarajan, Christopher I Jones, Sarah F Newbury, and Pamela J Green.
XRN 5°—3’ exoribonucleases: structure, mechanisms and functions. Biochimica et
biophysica acta, 1829(6-7):590-603, 2013.

M Schloesser, S Arleth, U Lenz, R M Bertele, and J Reiss. A cystic fibrosis patient
with the nonsense mutation G542X and the splice site mutation 1717-1. Journal of
medical genetics, 28(12):878-80, Dec 1991.

Jie Sun, Ziqi Hao, Hunjin Luo, Chufeng He, Lingyun Mei, Yalan Liu, Xueping Wang,
Zhijie Niu, Hongsheng Chen, Jia-Da Li, and Yong Feng. Functional analysis of a
nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome
type 2. Journal of human genetics, 62(7):703-709, Jul 2017.

Irene Sargiannidou, Gun-Ha Kim, Styliana Kyriakoudi, Baik-Lin Eun, and Kleopas A
Kleopa. A start codon CMT1X mutation associated with transient encephalomyelitis
causes complete loss of Cx32. Neurogenetics, 16(3):193-200, Jul 2015.

Kim M Keeling and David M Bedwell. Suppression of nonsense mutations as a
therapeutic approach to treat genetic diseases. Wiley interdisciplinary reviews. RNA,
2(6):837-52, 2011.

Kim M Keeling. Nonsense Suppression as an Approach to Treat Lysosomal Storage
Diseases. Diseases (Basel, Switzerland), 4(4), Dec 2016.

Rasmus Nielsen. Molecular signatures of natural selection. Annual review of genetics,
39:197-218, 2005.

Thomas A Isenbarger, Christopher E Carr, Sarah Stewart Johnson, Michael Finney,
George M Church, Walter Gilbert, Maria T Zuber, and Gary Ruvkun. The most
conserved genome segments for life detection on Earth and other planets. Origins of
life and evolution of the biosphere : the journal of the International Society for the
Study of the Origin of Life, 38(6):517-33, Dec 2008.

Pauline C Ng and Steven Henikoff. SIFT: Predicting amino acid changes that affect
protein function. Nucleic acids research, 31(13):3812—-4, Jul 2003.

Eugene V Davydov, David L Goode, Marina Sirota, Gregory M Cooper, Arend Sidow,
and Serafim Batzoglou. Identifying a high fraction of the human genome to be under
selective constraint using GERP++. PLoS computational biology, 6(12):¢1001025,
Dec 2010.



164 References

[246] Ivan Adzhubei, Daniel M Jordan, and Shamil R Sunyaev. Predicting functional effect
of human missense mutations using PolyPhen-2. Current protocols in human genetics,
Chapter 7:Unit7.20, Jan 2013.

[247] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment
search tool. Journal of molecular biology, 215(3):403—-10, Oct 1990.

[248] P C Ng and S Henikoff. Predicting deleterious amino acid substitutions. Genome
research, 11(5):863-74, May 2001.

[249] Yongwook Choi, Gregory E Sims, Sean Murphy, Jason R Miller, and Agnes P Chan.
Predicting the functional effect of amino acid substitutions and indels. PloS one,
7(10):e46688, 2012.

[250] Steven Henikoff and Luca Comai. Single-nucleotide mutations for plant functional
genomics. Annual review of plant biology, 54:375-401, 2003.

[251] Anthony G Doran, Kim Wong, Jonathan Flint, David J Adams, Kent W Hunter, and
Thomas M Keane. Deep genome sequencing and variation analysis of 13 inbred
mouse strains defines candidate phenotypic alleles, private variation and homozygous
truncating mutations. Genome biology, 17(1):167, Aug 2016.

[252] Peter V Hornbeck, Jon M Kornhauser, Sasha Tkachev, Bin Zhang, Elzbieta Skrzypek,
Beth Murray, Vaughan Latham, and Michael Sullivan. PhosphoSitePlus: a com-
prehensive resource for investigating the structure and function of experimentally

determined post-translational modifications in man and mouse. Nucleic acids research,
40(Database issue):D261-70, Jan 2012.

[253] Holger Dinkel, Claudia Chica, Allegra Via, Cathryn M Gould, Lars J Jensen, Toby J
Gibson, and Francesca Diella. Phospho.ELM: a database of phosphorylation sites—
update 2011. Nucleic acids research, 39(Database issue):D261-7, Jan 2011.

[254] T S Keshava Prasad, Renu Goel, Kumaran Kandasamy, Shivakumar Keerthiku-
mar, Sameer Kumar, Suresh Mathivanan, Deepthi Telikicherla, Rajesh Raju, Beema
Shafreen, Abhilash Venugopal, Lavanya Balakrishnan, Arivusudar Marimuthu, Su-
topa Banerjee, Devi S Somanathan, Aimy Sebastian, Sandhya Rani, Somak Ray, C J
Harrys Kishore, Sashi Kanth, Mukhtar Ahmed, Manoj K Kashyap, Riaz Mohmood,
Y L Ramachandra, V Krishna, B Abdul Rahiman, Sujatha Mohan, Prathibha Ran-
ganathan, Subhashri Ramabadran, Raghothama Chaerkady, and Akhilesh Pandey. Hu-
man Protein Reference Database—2009 update. Nucleic acids research, 37(Database
issue):D767-72, Jan 2009.

[255] Bostjan Kobe, Thorsten Kampmann, Jade K Forwood, Pawel Listwan, and Ross I
Brinkworth. Substrate specificity of protein kinases and computational prediction of
substrates. Biochimica et biophysica acta, 1754(1-2):200-9, Dec 2005.

[256] Robert D Finn, Jody Clements, and Sean R Eddy. HMMER web server: interactive
sequence similarity searching. Nucleic acids research, 39(Web Server issue):W29-37,
Jul 2011.



References 165

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

Victor Neduva, Rune Linding, Isabelle Su-Angrand, Alexander Stark, Federico
de Masi, Toby J Gibson, Joe Lewis, Luis Serrano, and Robert B Russell. Systematic
discovery of new recognition peptides mediating protein interaction networks. PLoS
biology, 3(12):e405, Dec 2005.

Damian Szklarczyk, Andrea Franceschini, Michael Kuhn, Milan Simonovic, Alexan-
der Roth, Pablo Minguez, Tobias Doerks, Manuel Stark, Jean Muller, Peer Bork, Lars J
Jensen, and Christian von Mering. The STRING database in 2011: functional inter-
action networks of proteins, globally integrated and scored. Nucleic acids research,
39(Database issue):D561-8, Jan 2011.

Natarajan Kannan and Andrew F Neuwald. Evolutionary constraints associated with
functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK,
and CK2alpha. Protein science : a publication of the Protein Society, 13(8):2059-77,
Aug 2004.

Guozhi Zhu, Koichi Fujii, Natalya Belkina, Yin Liu, Michael James, Juan Herrero,
and Stephen Shaw. Exceptional disfavor for proline at the P + 1 position among
AGC and CAMK kinases establishes reciprocal specificity between them and the
proline-directed kinases. The Journal of biological chemistry, 280(11):10743-8, Mar
2005.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Bre-

itkreutz, and Mike Tyers. BioGRID: a general repository for interaction datasets.
Nucleic acids research, 34(Database issue):1D535-9, Jan 2006.

Andrea Franceschini, Damian Szklarczyk, Sune Frankild, Michael Kuhn, Milan
Simonovic, Alexander Roth, Jianyi Lin, Pablo Minguez, Peer Bork, Christian von
Mering, and Lars J Jensen. STRING v9.1: protein-protein interaction networks, with
increased coverage and integration. Nucleic acids research, 41(Database issue):D808—
15, Jan 2013.

Christian von Mering, Lars J Jensen, Berend Snel, Sean D Hooper, Markus Krupp,
Mathilde Foglierini, Nelly Jouffre, Martijn A Huynen, and Peer Bork. STRING:
known and predicted protein-protein associations, integrated and transferred across
organisms. Nucleic acids research, 33(Database issue):D433-7, Jan 2005.

Suraj Peri, J Daniel Navarro, Troels Z Kristiansen, Ramars Amanchy, Vineeth Suren-
dranath, Babylakshmi Muthusamy, T K B Gandhi, K N Chandrika, Nandan Desh-
pande, Shubha Suresh, B P Rashmi, K Shanker, N Padma, Vidya Niranjan, H C
Harsha, Naveen Talreja, B M Vrushabendra, M A Ramya, A J Yatish, Mary Joy, HN
Shivashankar, M P Kavitha, Minal Menezes, Dipanwita Roy Choudhury, Neelanjana
Ghosh, R Saravana, Sreenath Chandran, Sujatha Mohan, Chandra Kiran Jonnalagadda,
C K Prasad, Chandan Kumar-Sinha, Krishna S Deshpande, and Akhilesh Pandey.
Human protein reference database as a discovery resource for proteomics. Nucleic
acids research, 32(Database issue):D497-501, Jan 2004.

David M A Martin, Diego Miranda-Saavedra, and Geoffrey J Barton. Kinomer v.
1.0: a database of systematically classified eukaryotic protein kinases. Nucleic acids
research, 37(Database issue):1D244-50, Jan 2009.



166

References

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

[278]

Michael F Chou and Daniel Schwartz. Biological sequence motif discovery using
motif-x. Current protocols in bioinformatics, Chapter 13:Unit 13.15-24, Sep 2011.

T Tanoue, M Adachi, T Moriguchi, and E Nishida. A conserved docking motif in
MAP kinases common to substrates, activators and regulators. Nature cell biology,
2(2):110-6, Feb 2000.

A D Sharrocks, S H Yang, and A Galanis. Docking domains and substrate-specificity
determination for MAP kinases. Trends in biochemical sciences, 25(9):448-53, Sep
2000.

M Wang, M Weiss, M Simonovic, G Haertinger, S P Schrimpf, M O Hengartner, and
C von Mering. PaxDb, a database of protein abundance averages across all three
domains of life. Molecular & cellular proteomics : MCP, 11(8):492-500, Aug 2012.

Haruna Imamura, Naoyuki Sugiyama, Masaki Wakabayashi, and Yasushi Ishihama.
Large-scale identification of phosphorylation sites for profiling protein kinase selectiv-
ity. Journal of proteome research, 13(7):3410-9, Jul 2014.

Jesse J Lipp, Michael C Marvin, Kevan M Shokat, and Christine Guthrie. SR protein

kinases promote splicing of nonconsensus introns. Nature structural & molecular
biology, 22(8):611-7, Aug 2015.

H Fu, R R Subramanian, and S C Masters. 14-3-3 proteins: structure, function, and
regulation. Annual review of pharmacology and toxicology, 40:617-47, 2000.

Catherine Johnson, Sandra Crowther, Margaret J Stafford, David G Campbell, Rachel
Toth, and Carol MacKintosh. Bioinformatic and experimental survey of 14-3-3-binding
sites. The Biochemical journal, 427(1):69-78, Mar 2010.

Annika E Wallberg, Soichiro Yamamura, Sohail Malik, Bruce M Spiegelman, and
Robert G Roeder. Coordination of p300-mediated chromatin remodeling and TRAP/-
mediator function through coactivator PGC-1alpha. Molecular cell, 12(5):1137-49,
Nov 2003.

Manuela Delvecchio, Jonathan Gaucher, Carmen Aguilar-Gurrieri, Esther Ortega, and
Daniel Panne. Structure of the p300 catalytic core and implications for chromatin
targeting and HAT regulation. Nature structural & molecular biology, 20(9):1040-6,
Sep 2013.

S K Hanks, A M Quinn, and T Hunter. The protein kinase family: conserved
features and deduced phylogeny of the catalytic domains. Science (New York, N.Y.),
241(4861):42-52, Jul 1988.

Kevin P O’Brien, Maido Remm, and Erik L L Sonnhammer. Inparanoid: a com-
prehensive database of eukaryotic orthologs. Nucleic acids research, 33(Database
issue):D476-80, Jan 2005.

Edward L Huttlin, Mark P Jedrychowski, Joshua E Elias, Tapasree Goswami, Ramin
Rad, Sean A Beausoleil, Judit Villén, Wilhelm Haas, Mathew E Sowa, and Steven P
Gygi. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell,
143(7):1174-89, Dec 2010.



References 167

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

A E Kel, E Gossling, I Reuter, E Cheremushkin, O V Kel-Margoulis, and E Wingender.
MATCH: A tool for searching transcription factor binding sites in DNA sequences.
Nucleic acids research, 31(13):3576-9, Jul 2003.

Naoyuki Sugiyama, Takeshi Masuda, Kosaku Shinoda, Akihiro Nakamura, Masaru
Tomita, and Yasushi Ishihama. Phosphopeptide enrichment by aliphatic hydroxy acid-
modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications.
Molecular & cellular proteomics : MCP, 6(6):1103-9, Jun 2007.

Flavio Meggio and Lorenzo A Pinna. One-thousand-and-one substrates of protein
kinase CK2? FASEB journal : official publication of the Federation of American
Societies for Experimental Biology, 17(3):349-68, Mar 2003.

Mariana Lemos Duarte, Darlene Aparecida Pena, Felipe Augusto Nunes Fer-
raz, Denise Aparecida Berti, Tiago José Paschoal Sobreira, Helio Miranda Costa-
Junior, Munira Muhammad Abdel Baqui, Marie-Hélene Disatnik, José Xavier-Neto,
Paulo Sérgio Lopes de Oliveira, and Deborah Schechtman. Protein folding creates
structure-based, noncontiguous consensus phosphorylation motifs recognized by ki-
nases. Science signaling, 7(350):ral05, Nov 2014.

Pedro Beltrao, Véronique Albanese, Lillian R Kenner, Danielle L Swaney, Alma
Burlingame, Judit Villén, Wendell A Lim, James S Fraser, Judith Frydman, and
Nevan J Krogan. Systematic functional prioritization of protein posttranslational
modifications. Cell, 150(2):413-25, Jul 2012.

Christian R Landry, Emmanuel D Levy, and Stephen W Michnick. Weak functional
constraints on phosphoproteomes. Trends in genetics : TIG, 25(5):193-7, May 20009.

Alan M Moses and Christian R Landry. Moving from transcriptional to phospho-
evolution: generalizing regulatory evolution? Trends in genetics : TIG, 26(11):462-7,
Nov 2010.

Christopher R Baker, Brian B Tuch, and Alexander D Johnson. Extensive DNA-
binding specificity divergence of a conserved transcription regulator. Proceedings of
the National Academy of Sciences of the United States of America, 108(18):7493-8,
May 2011.

Albin Sandelin, Wynand Alkema, Piar Engstrom, Wyeth W Wasserman, and Boris
Lenhard. JASPAR: an open-access database for eukaryotic transcription factor binding
profiles. Nucleic acids research, 32(Database issue):D91-4, Jan 2004.

Ashley K Tehranchi, Marsha Myrthil, Trevor Martin, Brian L Hie, David Golan, and
Hunter B Fraser. Pooled ChIP-Seq Links Variation in Transcription Factor Binding to
Complex Disease Risk. Cell, 165(3):730—41, Apr 2016.

Helena Kilpinen, Sebastian M Waszak, Andreas R Gschwind, Sunil K Raghav,
Robert M Witwicki, Andrea Orioli, Eugenia Migliavacca, Michaél Wiederkehr, Maria
Gutierrez-Arcelus, Nikolaos I Panousis, Alisa Yurovsky, Tuuli Lappalainen, Luciana
Romano-Palumbo, Alexandra Planchon, Deborah Bielser, Julien Bryois, Ismael Pa-
dioleau, Gilles Udin, Sarah Thurnheer, David Hacker, Leighton J Core, John T Lis,



168

References

[290]

[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]

Nouria Hernandez, Alexandre Reymond, Bart Deplancke, and Emmanouil T Dermitza-
kis. Coordinated effects of sequence variation on DNA binding, chromatin structure,
and transcription. Science (New York, N.Y.), 342(6159):744—7, Nov 2013.

Matthew T Weirauch, Atina Cote, Raquel Norel, Matti Annala, Yue Zhao, Todd R
Riley, Julio Saez-Rodriguez, Thomas Cokelaer, Anastasia Vedenko, Shaheynoor
Talukder, Harmen J Bussemaker, Quaid D Morris, Martha L. Bulyk, Gustavo
Stolovitzky, and Timothy R Hughes. Evaluation of methods for modeling transcription
factor sequence specificity. Nature biotechnology, 31(2):126-34, Feb 2013.

Narayan Jayaram, Daniel Usvyat, and Andrew C R Martin. Evaluating tools for
transcription factor binding site prediction. BMC bioinformatics, Nov 2016.

Alexander Kaplun, Mathias Krull, Karthick Lakshman, Volker Matys, Birgit Lewicki,
and Jennifer D Hogan. Establishing and validating regulatory regions for variant
annotation and expression analysis. BMC genomics, 17 Suppl 2:393, 06 2016.

Mauro A A Castro, Ines de Santiago, Thomas M Campbell, Courtney Vaughn,
Theresa E Hickey, Edith Ross, Wayne D Tilley, Florian Markowetz, Bruce A J
Ponder, and Kerstin B Meyer. Regulators of genetic risk of breast cancer identified by
integrative network analysis. Nature genetics, 48(1):12-21, Jan 2016.

Haoyang Zeng, Tatsunori Hashimoto, Daniel D Kang, and David K Gifford. GERV:
a statistical method for generative evaluation of regulatory variants for transcription
factor binding. Bioinformatics (Oxford, England), 32(4):490-6, Feb 2016.

Timothy E Reddy, Jason Gertz, Florencia Pauli, Katerina S Kucera, Katherine E
Varley, Kimberly M Newberry, Georgi K Marinov, Ali Mortazavi, Brian A Williams,
Lingyun Song, Gregory E Crawford, Barbara Wold, Huntington F Willard, and
Richard M Myers. Effects of sequence variation on differential allelic transcription
factor occupancy and gene expression. Genome research, 22(5):860-9, May 2012.

Yingying Wei, Xia Li, Qian-fei Wang, and Hongkai Ji. 1ASeq: integrative analysis
of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets. BMC
genomics, 13:681, Nov 2012.

Swneke D Bailey, Carl Virtanen, Benjamin Haibe-Kains, and Mathieu Lupien. ABC:
a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-
Seq experiments. Bioinformatics (Oxford, England), 31(18):3057-9, Sep 2015.

Monkol Lek, Konrad J Karczewski, Eric V Minikel, Kaitlin E Samocha, Eric Banks,
Timothy Fennell, Anne H O’Donnell-Luria, James S Ware, Andrew J Hill, Beryl B
Cummings, Taru Tukiainen, Daniel P Birnbaum, Jack A Kosmicki, Laramie E Duncan,
Karol Estrada, Fengmei Zhao, James Zou, Emma Pierce-Hoffman, Joanne Berghout,
David N Cooper, Nicole Deflaux, Mark DePristo, Ron Do, Jason Flannick, Menachem
Fromer, Laura Gauthier, Jackie Goldstein, Namrata Gupta, Daniel Howrigan, Adam
Kiezun, Mitja I Kurki, Ami Levy Moonshine, Pradeep Natarajan, Lorena Orozco,
Gina M Peloso, Ryan Poplin, Manuel A Rivas, Valentin Ruano-Rubio, Samuel A
Rose, Douglas M Ruderfer, Khalid Shakir, Peter D Stenson, Christine Stevens, Brett P
Thomas, Grace Tiao, Maria T Tusie-Luna, Ben Weisburd, Hong-Hee Won, Dongmei
Yu, David M Altshuler, Diego Ardissino, Michael Boehnke, John Danesh, Stacey



References 169

[299]
[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

Donnelly, Roberto Elosua, Jose C Florez, Stacey B Gabriel, Gad Getz, Stephen J Glatt,
Christina M Hultman, Sekar Kathiresan, Markku Laakso, Steven McCarroll, Mark I
McCarthy, Dermot McGovern, Ruth McPherson, Benjamin M Neale, Aarno Palotie,
Shaun M Purcell, Danish Saleheen, Jeremiah M Scharf, Pamela Sklar, Patrick F
Sullivan, Jaakko Tuomilehto, Ming T Tsuang, Hugh C Watkins, James G Wilson,
Mark J Daly, and Daniel G MacArthur. Analysis of protein-coding genetic variation
in 60,706 humans. Nature, 536(7616):285-91, 08 2016.

Nayanah Siva. 1000 Genomes project. Nature biotechnology, 26(3):256, Mar 2008.

Wengqing Fu, Timothy D O’Connor, Goo Jun, Hyun Min Kang, Goncalo Abecasis,
Suzanne M Leal, Stacey Gabriel, Mark J Rieder, David Altshuler, Jay Shendure,
Deborah A Nickerson, Michael J Bamshad, and Joshua M Akey. Analysis of 6,515
exomes reveals the recent origin of most human protein-coding variants. Nature,
493(7431):216-20, Jan 2013.

Graham R S Ritchie, lan Dunham, Eleftheria Zeggini, and Paul Flicek. Functional
annotation of noncoding sequence variants. Nature methods, 11(3):294—6, Mar 2014.

Iuliana Ionita-Laza, Kenneth McCallum, Bin Xu, and Joseph D Buxbaum. A spec-
tral approach integrating functional genomic annotations for coding and noncoding
variants. Nature genetics, 48(2):214-20, Feb 2016.

Martin Kircher, Daniela M Witten, Preti Jain, Brian J O’Roak, Gregory M Cooper,
and Jay Shendure. A general framework for estimating the relative pathogenicity of
human genetic variants. Nature genetics, 46(3):310-5, Mar 2014.

Ekta Khurana, Yao Fu, Vincenza Colonna, Xinmeng Jasmine Mu, Hyun Min Kang,
Tuuli Lappalainen, Andrea Sboner, Lucas Lochovsky, Jieming Chen, Arif Har-
manci, Jishnu Das, Alexej Abyzov, Suganthi Balasubramanian, Kathryn Beal, Dimple
Chakravarty, Daniel Challis, Yuan Chen, Declan Clarke, Laura Clarke, Fiona Cun-
ningham, Uday S Evani, Paul Flicek, Robert Fragoza, Erik Garrison, Richard Gibbs,
Zeynep H Giimiis, Javier Herrero, Naoki Kitabayashi, Yong Kong, Kasper Lage, Vaja
Liluashvili, Steven M Lipkin, Daniel G MacArthur, Gabor Marth, Donna Muzny,
Tune H Pers, Graham R S Ritchie, Jeffrey A Rosenfeld, Cristina Sisu, Xiaomu
Wei, Michael Wilson, Yali Xue, Fuli Yu, Emmanouil T Dermitzakis, Haiyuan Yu,
Mark A Rubin, Chris Tyler-Smith, and Mark Gerstein. Integrative annotation of
variants from 1092 humans: application to cancer genomics. Science (New York, N.Y.),
342(6154):1235587, Oct 2013.

Yao Fu, Zhu Liu, Shaoke Lou, Jason Bedford, Xinmeng Jasmine Mu, Kevin Y Yip,
Ekta Khurana, and Mark Gerstein. FunSeq2: a framework for prioritizing noncoding
regulatory variants in cancer. Genome biology, 15(10):480, 2014.

Dilmi Perera, Diego Chacon, Julie A I Thoms, Rebecca C Poulos, Adam Shlien,
Dominik Beck, Peter ] Campbell, John E Pimanda, and Jason W H Wong. OncoCis:
annotation of cis-regulatory mutations in cancer. Genome biology, 15(10):485, 2014.

Joshua L Payne and Andreas Wagner. Mechanisms of mutational robustness in
transcriptional regulation. Frontiers in genetics, 6:322, 2015.



170

References

[308]

[309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

[317]

[318]

[319]

Philip Machanick and Timothy L Bailey. MEME-ChIP: motif analysis of large DNA
datasets. Bioinformatics (Oxford, England), 27(12):1696-7, Jun 2011.

UIf Schaefer, Sebastian Schmeier, and Vladimir B Bajic. TcoF-DB: dragon database
for human transcription co-factors and transcription factor interacting proteins. Nucleic
acids research, 39(Database issue):D106-10, Jan 2011.

Cornelia G Spruijt, Felix Gnerlich, Arne H Smits, Toni Pfaffeneder, Pascal W T C
Jansen, Christina Bauer, Martin Miinzel, Mirko Wagner, Markus Miiller, Fariha Khan,
H Christian Eberl, Anneloes Mensinga, Arie B Brinkman, Konstantin Lephikov, Udo
Miiller, Jorn Walter, Rolf Boelens, Hugo van Ingen, Heinrich Leonhardt, Thomas
Carell, and Michiel Vermeulen. Dynamic readers for 5-(hydroxy)methylcytosine and
its oxidized derivatives. Cell, 152(5):1146-59, Feb 2013.

Igor N Zelko, Michael R Mueller, and Rodney J Folz. CpG methylation attenuates
Spl and Sp3 binding to the human extracellular superoxide dismutase promoter and
regulates its cell-specific expression. Free radical biology & medicine, 48(7):895-904,
Apr 2010.

Remo Rohs, Sean M West, Alona Sosinsky, Peng Liu, Richard S Mann, and Barry
Honig. The role of DNA shape in protein-DNA recognition. Nature, 461(7268):1248—
53, Oct 2009.

A J Whitmarsh and R J Davis. Regulation of transcription factor function by phos-
phorylation. Cellular and molecular life sciences : CMLS, 57(8-9):1172-83, Aug
2000.

W James Kent, Charles W Sugnet, Terrence S Furey, Krishna M Roskin, Tom H

Pringle, Alan M Zahler, and David Haussler. The human genome browser at UCSC.
Genome research, 12(6):996-1006, Jun 2002.

Ge Tan and Boris Lenhard. TFBSTools: an R/bioconductor package for transcription
factor binding site analysis. Bioinformatics (Oxford, England), 32(10):1555-6, May
2016.

H. Pages, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String objects
representing biological sequences, and matching algorithms, 2016. R package version
242.1.

Kai Wang, Mingyao Li, and Hakon Hakonarson. ANNOVAR: functional annotation
of genetic variants from high-throughput sequencing data. Nucleic acids research,
38(16):e164, Sep 2010.

Jan Grau, Ivo Grosse, and Jens Keilwagen. PRROC: computing and visualizing

precision-recall and receiver operating characteristic curves in R. Bioinformatics
(Oxford, England), 31(15):2595-7, Aug 2015.

Raluca Gordan, Ning Shen, Iris Dror, Tianyin Zhou, John Horton, Remo Rohs, and
Martha L Bulyk. Genomic regions flanking E-box binding sites influence DNA
binding specificity of bHLH transcription factors through DNA shape. Cell reports,
3(4):1093-104, Apr 2013.



References 171

[320]

[321]

[322]

[323]

[324]

[325]

[326]

[327]

[328]

[329]

[330]

Silvia Domcke, Anais Flore Bardet, Paul Adrian Ginno, Dominik Hartl, Lukas Burger,
and Dirk Schiibeler. Competition between DNA methylation and transcription factors
determines binding of NRF1. Nature, 528(7583):575-9, Dec 2015.

Roger Pique-Regi, Jacob F Degner, Athma A Pai, Daniel J Gaffney, Yoav Gilad, and
Jonathan K Pritchard. Accurate inference of transcription factor binding from DNA

sequence and chromatin accessibility data. Genome research, 21(3):447-55, Mar
2011.

M J Waterman, E S Stavridi, J L Waterman, and T D Halazonetis. ATM-dependent
activation of p53 involves dephosphorylation and association with 14-3-3 proteins.
Nature genetics, 19(2):175-8, Jun 1998.

Aaron Arvey, Phaedra Agius, William Stafford Noble, and Christina Leslie. Sequence

and chromatin determinants of cell-type-specific transcription factor binding. Genome
research, 22(9):1723-34, Sep 2012.

Juan M Vaquerizas, Sarah K Kummerfeld, Sarah A Teichmann, and Nicholas M Lus-
combe. A census of human transcription factors: function, expression and evolution.
Nature reviews. Genetics, 10(4):252-63, 04 2009.

Ivan V Kulakovskiy, Yulia A Medvedeva, Ulf Schaefer, Artem S Kasianov, Ilya E
Vorontsov, Vladimir B Bajic, and Vsevolod J Makeev. HOCOMOCO: a comprehensive

collection of human transcription factor binding sites models. Nucleic acids research,
41(Database issue):D195-202, Jan 2013.

Danielle Welter, Jacqueline MacArthur, Joannella Morales, Tony Burdett, Peggy Hall,
Heather Junkins, Alan Klemm, Paul Flicek, Teri Manolio, Lucia Hindorff, and Helen
Parkinson. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.
Nucleic acids research, 42(Database issue):D1001-6, Jan 2014.

Natsuhiko Kumasaka, Andrew J Knights, and Daniel J Gaffney. Fine-mapping cellular
QTLs with RASQUAL and ATAC-seq. Nature genetics, 48(2):206—13, Feb 2016.

Hui Y Xiong, Babak Alipanahi, Leo J Lee, Hannes Bretschneider, Daniele Merico,
Ryan K C Yuen, Yimin Hua, Serge Gueroussov, Hamed S Najafabadi, Timothy R
Hughes, Quaid Morris, Yoseph Barash, Adrian R Krainer, Nebojsa Jojic, Stephen W
Scherer, Benjamin J Blencowe, and Brendan J Frey. RNA splicing. The human

splicing code reveals new insights into the genetic determinants of disease. Science
(New York, N.Y.), 347(6218):1254806, Jan 2015.

Carola Rintisch, Matthias Heinig, Anja Bauerfeind, Sebastian Schafer, Christin Mieth,
Giannino Patone, Oliver Hummel, Wei Chen, Stuart Cook, Edwin Cuppen, Maria
Colomé-Tatché, Frank Johannes, Ritsert C Jansen, Helen Neil, Michel Werner, Michal
Pravenec, Martin Vingron, and Norbert Hubner. Natural variation of histone mod-

ification and its impact on gene expression in the rat genome. Genome research,
24(6):942-53, Jun 2014.

M Lorch, J] M Mason, R B Sessions, and A R Clarke. Effects of mutations on the
thermodynamics of a protein folding reaction: implications for the mechanism of
formation of the intermediate and transition states. Biochemistry, 39(12):3480-5, Mar
2000.



172

References

[331]

[332]

[333]

[334]

[335]

[336]

[337]

[338]

[339]

[340]

[341]

P Bjorses, M Halonen, J J Palvimo, M Kolmer, J Aaltonen, P Ellonen, J Perheentupa,
I Ulmanen, and L Peltonen. Mutations in the AIRE gene: effects on subcellular loca-
tion and transactivation function of the autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy protein. American journal of human genetics, 66(2):378-92,
Feb 2000.

Matthew R Nelson, Toby Johnson, Liling Warren, Arlene R Hughes, Stephanie L
Chissoe, Chun-Fang Xu, and Dawn M Waterworth. The genetics of drug efficacy:
opportunities and challenges. Nature reviews. Genetics, 17(4):197-206, Apr 2016.

Richard Labaudiniere. The increasing importance of genetic variation in drug discov-
ery and development. Current opinion in molecular therapeutics, 4(6):559—64, Dec
2002.

Stefan Lutz. Beyond directed evolution—semi-rational protein engineering and design.
Current opinion in biotechnology, 21(6):734-43, Dec 2010.

William McLaren, Laurent Gil, Sarah E Hunt, Harpreet Singh Riat, Graham R S
Ritchie, Anja Thormann, Paul Flicek, and Fiona Cunningham. The Ensembl Variant
Effect Predictor. Genome biology, 17(1):122, Jun 2016.

Pooja K Strope, Daniel A Skelly, Stanislav G Kozmin, Gayathri Mahadevan, Eric A
Stone, Paul M Magwene, Fred S Dietrich, and John H McCusker. The 100-genomes
strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic
variation and emergence as an opportunistic pathogen. Genome research, 25(5):762—
74, May 2015.

Brigida Gallone, Jan Steensels, Troels Prahl, Leah Soriaga, Veerle Saels, Beat-
riz Herrera-Malaver, Adriaan Merlevede, Miguel Roncoroni, Karin Voordeckers,
Loren Miraglia, Clotilde Teiling, Brian Steffy, Maryann Taylor, Ariel Schwartz,
Toby Richardson, Christopher White, Guy Baele, Steven Maere, and Kevin J Ver-
strepen. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.
Cell, 166(6):1397-1410.e16, Sep 2016.

Anders Bergstrom, Jared T Simpson, Francisco Salinas, Benjamin Barré, Leopold
Parts, Amin Zia, Alex N Nguyen Ba, Alan M Moses, Edward J Louis, Ville Mustonen,
Jonas Warringer, Richard Durbin, and Gianni Liti. A high-definition view of functional
genetic variation from natural yeast genomes. Molecular biology and evolution,
31(4):872-88, Apr 2014.

Yuan O Zhu, Gavin Sherlock, and Dmitri A Petrov. Whole Genome Analysis of 132
Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation. G3
(Bethesda, Md.), 6(8):2421-34, Aug 2016.

Hongyi Zhou and Yaoqi Zhou. Quantifying the effect of burial of amino acid residues
on protein stability. Proteins, 54(2):315-22, Feb 2004.

Jinfeng Liu, Yan Zhang, Xingye Lei, and Zemin Zhang. Natural selection of protein
structural and functional properties: a single nucleotide polymorphism perspective.
Genome biology, 9(4):R69, Apr 2008.



References 173

[342]

[343]

[344]

[345]

[346]

[347]

[348]

[349]

[350]

[351]

[352]

Lakshmipuram S Swapna, Ramachandra M Bhaskara, Jyoti Sharma, and
Narayanaswamy Srinivasan. Roles of residues in the interface of transient protein-
protein complexes before complexation. Scientific reports, 2:334, 2012.

Tianji Zhang, Brandy L Fultz, Sapna Das-Bradoo, and Anja-Katrin Bielinsky. Mapping
ubiquitination sites of S. cerevisiae Mcm10. Biochemistry and biophysics reports,
8:212-218, Dec 2016.

M S Rodriguez, J M Desterro, S Lain, D P Lane, and R T Hay. Multiple C-terminal
lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Molecular
and cellular biology, 20(22):8458-67, Nov 2000.

Dianqing Wu and Weijun Pan. GSK3: a multifaceted kinase in Wnt signaling. Trends
in biochemical sciences, 35(3):161-8, Mar 2010.

Anthony Mathelier, Oriol Fornes, David J Arenillas, Chih-Yu Chen, Grégoire Denay,
Jessica Lee, Wenqgiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, Allen W
Zhang, Francois Parcy, Boris Lenhard, Albin Sandelin, and Wyeth W Wasserman. JAS-
PAR 2016: a major expansion and update of the open-access database of transcription
factor binding profiles. Nucleic acids research, 44(D1):D110-5, Jan 2016.

Amos Tanay. Extensive low-affinity transcriptional interactions in the yeast genome.
Genome research, 16(8):962-72, Aug 2006.

Daphne Ezer, Nicolae Radu Zabet, and Boris Adryan. Homotypic clusters of transcrip-
tion factor binding sites: A model system for understanding the physical mechanics of
gene expression. Computational and structural biotechnology journal, 10(17):63-9,
Jul 2014.

Lydie Lane, Ghislaine Argoud-Puy, Aurore Britan, Isabelle Cusin, Paula D Duek,
Olivier Evalet, Alain Gateau, Pascale Gaudet, Anne Gleizes, Alexandre Masselot,
Catherine Zwahlen, and Amos Bairoch. neXtProt: a knowledge platform for human
proteins. Nucleic acids research, 40(Database issue):D76-83, Jan 2012.

Robert D Finn, Alex Bateman, Jody Clements, Penelope Coggill, Ruth Y Eberhardt,
Sean R Eddy, Andreas Heger, Kirstie Hetherington, Liisa Holm, Jaina Mistry, Erik
L L Sonnhammer, John Tate, and Marco Punta. Pfam: the protein families database.
Nucleic acids research, 42(Database issue):D222-30, Jan 2014.

Emilio Potenza, Tomas Di Domenico, lan Walsh, and Silvio C E Tosatto. MobiDB
2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic
acids research, 43(Database issue):D315-20, Jan 2015.

Vincent A Blomen, Peter Mdjek, Lucas T Jae, Johannes W Bigenzahn, Joppe Nieuwen-
huis, Jacqueline Staring, Roberto Sacco, Ferdy R van Diemen, Nadine Olk, Alexey
Stukalov, Caleb Marceau, Hans Janssen, Jan E Carette, Keiryn L Bennett, Jacques
Colinge, Giulio Superti-Furga, and Thijn R Brummelkamp. Gene essentiality and syn-
thetic lethality in haploid human cells. Science (New York, N.Y.), 350(6264):1092-6,
Nov 2015.



174

References

[353]

[354]

[355]

[356]

[357]

[358]

[359]

[360]

[361]

[362]

Traver Hart, Megha Chandrashekhar, Michael Aregger, Zachary Steinhart, Kevin R
Brown, Graham MaclLeod, Monika Mis, Michal Zimmermann, Amelie Fradet-
Turcotte, Song Sun, Patricia Mero, Peter Dirks, Sachdev Sidhu, Frederick P Roth,
Olivia S Rissland, Daniel Durocher, Stephane Angers, and Jason Moffat. High-
Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer
Liabilities. Cell, 163(6):1515-26, Dec 2015.

Melissa J Landrum, Jennifer M Lee, George R Riley, Wonhee Jang, Wendy S Ru-
binstein, Deanna M Church, and Donna R Maglott. ClinVar: public archive of
relationships among sequence variation and human phenotype. Nucleic acids research,
42(Database issue):D980-5, Jan 2014.

Rob Jelier, Jennifer I Semple, Rosa Garcia-Verdugo, and Ben Lehner. Predicting

phenotypic variation in yeast from individual genome sequences. Nature genetics,
43(12):1270-4, Nov 2011.

S D Cramer, P M Ferree, K Lin, D S Milliner, and R P Holmes. The gene encoding hy-
droxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria
type II. Human molecular genetics, 8(11):2063-9, Oct 1999.

David P Cregeen, Emma L Williams, Sally Hulton, and Gill Rumsby. Molecular
analysis of the glyoxylate reductase (GRHPR) gene and description of mutations
underlying primary hyperoxaluria type 2. Human mutation, 22(6):497, Dec 2003.

Michael P S Booth, R Conners, Gill Rumsby, and R Leo Brady. Structural basis
of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase.
Journal of molecular biology, 360(1):178-89, Jun 2006.

N A Alam, A J Rowan, N C Wortham, P J Pollard, M Mitchell, J P Tyrer, E Barclay,
E Calonje, S Manek, S J Adams, P W Bowers, N P Burrows, R Charles-Holmes, L J
Cook, B M Daly, G P Ford, L C Fuller, S E Hadfield-Jones, N Hardwick, A S Highet,
M Keefe, S P MacDonald-Hull, E D A Potts, M Crone, S Wilkinson, F Camacho-
Martinez, S Jablonska, R Ratnavel, A MacDonald, R J Mann, K Grice, G Guillet,
M S Lewis-Jones, H McGrath, D C Seukeran, P J Morrison, S Fleming, S Rahman,
D Kelsell, I Leigh, S Olpin, and I P M Tomlinson. Genetic and functional analyses of
FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomy-
omatosis and renal cancer, and fumarate hydratase deficiency. Human molecular
genetics, 12(11):1241-52, Jun 2003.

Rasko Leinonen, Ruth Akhtar, Ewan Birney, Lawrence Bower, Ana Cerdeno-Térraga,
Ying Cheng, lain Cleland, Nadeem Faruque, Neil Goodgame, Richard Gibson, Gemma
Hoad, Mikyung Jang, Nima Pakseresht, Sheila Plaister, Rajesh Radhakrishnan, Kethi
Reddy, Siamak Sobhany, Petra Ten Hoopen, Robert Vaughan, Vadim Zalunin, and Guy
Cochrane. The European Nucleotide Archive. Nucleic acids research, 39(Database
issue):D28-31, Jan 2011.

Marcel Martin. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet. journal, 17(1):pp—10, 2011.

Heng Li. Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem. arXiv preprint arXiv:1303.3997, 2013.



References 175

[363]

[364]

[365]

[366]

[367]

[368]

[369]

Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis,
Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly,
and Mark A DePristo. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome research, 20(9):1297-303,
Sep 2010.

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, and Richard Durbin. The Sequence Alignment/Map format
and SAMtools. Bioinformatics (Oxford, England), 25(16):2078-9, Aug 2009.

Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907, 2012.

Valerie Obenchain, Michael Lawrence, Vincent Carey, Stephanie Gogarten, Paul Shan-
non, and Martin Morgan. VariantAnnotation: a Bioconductor package for exploration
and annotation of genetic variants. Bioinformatics (Oxford, England), 30(14):2076-8,
Jul 2014.

Damian Smedley, Syed Haider, Steffen Durinck, Luca Pandini, Paolo Provero, James
Allen, Olivier Arnaiz, Mohammad Hamza Awedh, Richard Baldock, Giulia Barbi-
era, Philippe Bardou, Tim Beck, Andrew Blake, Merideth Bonierbale, Anthony J
Brookes, Gabriele Bucci, Iwan Buetti, Sarah Burge, Cédric Cabau, Joseph W Carl-
son, Claude Chelala, Charalambos Chrysostomou, Davide Cittaro, Olivier Collin,
Raul Cordova, Rosalind J Cutts, Erik Dassi, Alex Di Genova, Anis Djari, Anthony
Esposito, Heather Estrella, Eduardo Eyras, Julio Fernandez-Banet, Simon Forbes,
Robert C Free, Takatomo Fujisawa, Emanuela Gadaleta, Jose M Garcia-Manteiga,
David Goodstein, Kristian Gray, José Afonso Guerra-Assunc¢ao, Bernard Haggarty,
Dong-Jin Han, Byung Woo Han, Todd Harris, Jayson Harshbarger, Robert K Hastings,
Richard D Hayes, Claire Hoede, Shen Hu, Zhi-Liang Hu, Lucie Hutchins, Zhengyan
Kan, Hideya Kawaji, Aminah Keliet, Arnaud Kerhornou, Sunghoon Kim, Rhoda
Kinsella, Christophe Klopp, Lei Kong, Daniel Lawson, Dejan Lazarevic, Ji-Hyun
Lee, Thomas Letellier, Chuan-Yun Li, Pietro Lio, Chu-Jun Liu, Jie Luo, Alejandro
Maass, Jerome Mariette, Thomas Maurel, Stefania Merella, Azza Mostafa Mohamed,
Francois Moreews, Ibounyamine Nabihoudine, Nelson Ndegwa, Céline Noirot, Cris-
tian Perez-Llamas, Michael Primig, Alessandro Quattrone, Hadi Quesneville, Davide
Rambaldi, James Reecy, Michela Riba, Steven Rosanoff, Amna Ali Saddiq, Elisa
Salas, Olivier Sallou, Rebecca Shepherd, Reinhard Simon, Linda Sperling, William
Spooner, Daniel M Staines, Delphine Steinbach, Kevin Stone, Elia Stupka, Jon W
Teague, Abu Z Dayem Ullah, Jun Wang, Doreen Ware, Marie Wong-Erasmus, Ken
Youens-Clark, Amonida Zadissa, Shi-Jian Zhang, and Arek Kasprzyk. The BioMart
community portal: an innovative alternative to large, centralized data repositories.
Nucleic acids research, 43(W1):W589-98, Jul 2015.

T Kawabata, M Ota, and K Nishikawa. The Protein Mutant Database. Nucleic acids
research, 27(1):355-7, Jan 1999.

J Michael Cherry, Eurie L Hong, Craig Amundsen, Rama Balakrishnan, Gail Binkley,
Esther T Chan, Karen R Christie, Maria C Costanzo, Selina S Dwight, Stacia R Engel,
Dianna G Fisk, Jodi E Hirschman, Benjamin C Hitz, Kalpana Karra, Cynthia J Krieger,
Stuart R Miyasato, Rob S Nash, Julie Park, Marek S Skrzypek, Matt Simison, Shuai



176

References

[370]

[371]

[372]

[373]

[374]

[375]
[376]

[377]

Weng, and Edith D Wong. Saccharomyces Genome Database: the genomics resource
of budding yeast. Nucleic acids research, 40(Database issue):D700-5, Jan 2012.

Gianni Liti, David M Carter, Alan M Moses, Jonas Warringer, Leopold Parts,
Stephen A James, Robert P Davey, Ian N Roberts, Austin Burt, Vassiliki Koufopanou,
Isheng J Tsai, Casey M Bergman, Douda Bensasson, Michael J T O’Kelly, Alexander
van Oudenaarden, David B H Barton, Elizabeth Bailes, Alex N Nguyen, Matthew
Jones, Michael A Quail, lan Goodhead, Sarah Sims, Frances Smith, Anders Blomberg,
Richard Durbin, and Edward J Louis. Population genomics of domestic and wild
yeasts. Nature, 458(7236):337—41, Mar 2009.

G Matassi, P M Sharp, and C Gautier. Chromosomal location effects on gene sequence
evolution in mammals. Current biology : CB, 9(15):786-91, 1999.

Martin J Lercher and Laurence D Hurst. Human SNP variability and mutation rate are
higher in regions of high recombination. Trends in genetics : TIG, 18(7):337-40, Jul
2002.

Leonid Teytelman, Michael B Eisen, and Jasper Rine. Silent but not static: acceler-
ated base-pair substitution in silenced chromatin of budding yeasts. PLoS genetics,
4(11):e1000247, Nov 2008.

Guri Giaever, Angela M Chu, Li Ni, Carla Connelly, Linda Riles, Steeve Véron-
neau, Sally Dow, Ankuta Lucau-Danila, Keith Anderson, Bruno André, Adam P
Arkin, Anna Astromoff, Mohamed El-Bakkoury, Rhonda Bangham, Rocio Benito,
Sophie Brachat, Stefano Campanaro, Matt Curtiss, Karen Davis, Adam Deutschbauer,
Karl-Dieter Entian, Patrick Flaherty, Francoise Foury, David J Garfinkel, Mark Ger-
stein, Deanna Gotte, Ulrich Giildener, Johannes H Hegemann, Svenja Hempel, Zelek
Herman, Daniel F Jaramillo, Diane E Kelly, Steven L Kelly, Peter Kotter, Darlene
LaBonte, David C Lamb, Ning Lan, Hong Liang, Hong Liao, Lucy Liu, Chuanyun
Luo, Marc Lussier, Rong Mao, Patrice Menard, Siew Loon Ooi, Jose L. Revuelta,
Christopher J Roberts, Matthias Rose, Petra Ross-Macdonald, Bart Scherens, Greg
Schimmack, Brenda Shafer, Daniel D Shoemaker, Sharon Sookhai-Mahadeo, Regi-
nald K Storms, Jeffrey N Strathern, Giorgio Valle, Marleen Voet, Guido Volckaert,
Ching-yun Wang, Teresa R Ward, Julie Wilhelmy, Elizabeth A Winzeler, Yonghong
Yang, Grace Yen, Elaine Youngman, Kexin Yu, Howard Bussey, Jef D Boeke, Michael
Snyder, Peter Philippsen, Ronald W Davis, and Mark Johnston. Functional profiling
of the Saccharomyces cerevisiae genome. Nature, 418(6896):387-91, Jul 2002.

Warren L DeLano. The pymol molecular graphics system. http://pymol. org, 2002.

Sameer Velankar, José M Dana, Julius Jacobsen, Glen van Ginkel, Paul J Gane,
Jie Luo, Thomas J Oldfield, Claire O’Donovan, Maria-Jesus Martin, and Gerard J
Kleywegt. SIFTS: Structure Integration with Function, Taxonomy and Sequences
resource. Nucleic acids research, 41(Database issue):D483-9, Jan 2013.

Ursula Pieper, Narayanan Eswar, Ben M Webb, David Eramian, Libusha Kelly,
David T Barkan, Hannah Carter, Parminder Mankoo, Rachel Karchin, Marc A Marti-
Renom, Fred P Davis, and Andrej Sali. MODBASE, a database of annotated com-
parative protein structure models and associated resources. Nucleic acids research,
37(Database issue):D347-54, Jan 2009.



References 177

[378]

[379]

[380]

[381]

[382]

[383]

[384]

[385]

[386]

[387]

Simon J Hubbard and Janet M Thornton. Naccess. Computer Program, Department
of Biochemistry and Molecular Biology, University College London, 2(1), 1993.

Simon Mitternacht. FreeSASA: An open source C library for solvent accessible
surface area calculations. F1000Research, 5:189, 2016.

Ivan Sadowski, Bobby-Joe Breitkreutz, Chris Stark, Ting-Cheng Su, Matthew Da-
habieh, Sheetal Raithatha, Wendy Bernhard, Rose Oughtred, Kara Dolinski, Kris
Barreto, and Mike Tyers. The PhosphoGRID Saccharomyces cerevisiae protein phos-
phorylation site database: version 2.0 update. Database : the journal of biological
databases and curation, 2013:bat026, 2013.

Holger Dinkel, Kim Van Roey, Sushama Michael, Manjeet Kumar, Bora Uyar,
Brigitte Altenberg, Vladislava Milchevskaya, Melanie Schneider, Helen Kiihn, Annika
Behrendt, Sophie Luise Dahl, Victoria Damerell, Sandra Diebel, Sara Kalman, Steffen
Klein, Arne C Knudsen, Christina Mider, Sabina Merrill, Angelina Staudt, Vera Thiel,
Lukas Welti, Norman E Davey, Francesca Diella, and Toby J Gibson. ELM 2016—data
update and new functionality of the eukaryotic linear motif resource. Nucleic acids
research, 44(D1):1D294-300, Jan 2016.

Baris E Suzek, Yuqi Wang, Hongzhan Huang, Peter B McGarvey, and Cathy H Wu.
UniRef clusters: a comprehensive and scalable alternative for improving sequence
similarity searches. Bioinformatics (Oxford, England), 31(6):926-32, Mar 2015.

Emanuel Gongalves, Zrinka Raguz Nakic, Mattia Zampieri, Omar Wagih, David
Ochoa, Uwe Sauer, Pedro Beltrao, and Julio Saez-Rodriguez. Systematic Analysis
of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. PLoS
computational biology, 13(1):€1005297, Jan 2017.

Gordon Chua, Quaid D Morris, Richelle Sopko, Mark D Robinson, Owen Ryan,
Esther T Chan, Brendan J Frey, Brenda J Andrews, Charles Boone, and Timothy R
Hughes. Identifying transcription factor functions and targets by phenotypic activation.

Proceedings of the National Academy of Sciences of the United States of America,
103(32):12045-50, Aug 2006.

Zhanzhi Hu, Patrick J Killion, and Vishwanath R Iyer. Genetic reconstruction of a
functional transcriptional regulatory network. Nature genetics, 39(5):683—7, May
2007.

Patrick Kemmeren, Katrin Sameith, Loes A L van de Pasch, Joris J Benschop,
Tineke L Lenstra, Thanasis Margaritis, Eoghan O’Duibhir, Eva Apweiler, Sake van
Wageningen, Cheuk W Ko, Sebastiaan van Heesch, Mehdi M Kashani, Giannis
Ampatziadis-Michailidis, Mariel O Brok, Nathalie A C H Brabers, Anthony J Miles,
Diane Bouwmeester, Sander R van Hooff, Harm van Bakel, Erik Sluiters, Linda V
Bakker, Berend Snel, Philip Lijnzaad, Dik van Leenen, Marian J A Groot Koerkamp,
and Frank C P Holstege. Large-scale genetic perturbations reveal regulatory networks
and an abundance of gene-specific repressors. Cell, 157(3):740-52, Apr 2014.

Christopher T Harbison, D Benjamin Gordon, Tong Thn Lee, Nicola J Rinaldi, Ken-
zie D Macisaac, Timothy W Danford, Nancy M Hannett, Jean-Bosco Tagne, David B
Reynolds, Jane Yoo, Ezra G Jennings, Julia Zeitlinger, Dmitry K Pokholok, Manolis



178

References

[388]

[389]

[390]

[391]

[392]

[393]

[394]

[395]

[396]

Kellis, P Alex Rolfe, Ken T Takusagawa, Eric S Lander, David K Gifford, Ernest
Fraenkel, and Richard A Young. Transcriptional regulatory code of a eukaryotic
genome. Nature, 431(7004):99-104, Sep 2004.

Ho Sung Rhee and B Franklin Pugh. Comprehensive genome-wide protein-DNA
interactions detected at single-nucleotide resolution. Cell, 147(6):1408-19, Dec 2011.

Christine Tachibana, Jane Y Yoo, Jean-Basco Tagne, Nataly Kacherovsky, Tong I Lee,
and Elton T Young. Combined global localization analysis and transcriptome data
identify genes that are directly coregulated by Adrl and Cat8. Molecular and cellular
biology, 25(6):2138—46, Mar 2005.

Bryan J Venters, Shinichiro Wachi, Travis N Mavrich, Barbara E Andersen, Peony
Jena, Andrew J Sinnamon, Priyanka Jain, Noah S Rolleri, Cizhong Jiang, Christine
Hemeryck-Walsh, and B Franklin Pugh. A comprehensive genomic binding map of
gene and chromatin regulatory proteins in Saccharomyces. Molecular cell, 41(4):480—
92, Feb 2011.

Socorro Gama-Castro, Heladia Salgado, Alberto Santos-Zavaleta, Daniela Ledezma-
Tejeida, Luis Muiiiz Rascado, Jair Santiago Garcia-Sotelo, Kevin Alquicira-Hernandez,
Irma Martinez-Flores, Lucia Pannier, Jaime Abraham Castro-Mondragén, Alejandra
Medina-Rivera, Hilda Solano-Lira, César Bonavides-Martinez, Ernesto Pérez-Rueda,
Shirley Alquicira-Herndndez, Liliana Porron-Sotelo, Alejandra Lopez-Fuentes, Anas-
tasia Hernandez-Koutoucheva, Victor Del Moral-Chavez, Fabio Rinaldi, and Julio
Collado-Vides. RegulonDB version 9.0: high-level integration of gene regulation,
coexpression, motif clustering and beyond. Nucleic acids research, 44(D1):D133-43,
Jan 2016.

Naomi R Wray, Jian Yang, Ben J Hayes, Alkes L Price, Michael E Goddard, and
Peter M Visscher. Pitfalls of predicting complex traits from SNPs. Nature reviews.
Genetics, 14(7):507-15, 07 2013.

Yali Xue, Yuan Chen, Qasim Ayub, Ni Huang, Edward V Ball, Matthew Mort,
Andrew D Phillips, Katy Shaw, Peter D Stenson, David N Cooper, and Chris Tyler-
Smith. Deleterious- and disease-allele prevalence in healthy individuals: insights from

current predictions, mutation databases, and population-scale resequencing. American
Journal of human genetics, 91(6):1022-32, Dec 2012.

Lizhi Ian Gong, Marc A Suchard, and Jesse D Bloom. Stability-mediated epistasis
constrains the evolution of an influenza protein. eLife, 2:e00631, May 2013.

D G MacArthur, T A Manolio, D P Dimmock, H L Rehm, J Shendure, G R Abecasis,
D R Adams, R B Altman, S E Antonarakis, E A Ashley, J C Barrett, L. G Biesecker,
D F Conrad, G M Cooper, N J Cox, M J Daly, M B Gerstein, D B Goldstein, J N
Hirschhorn, S M Leal, L A Pennacchio, J A Stamatoyannopoulos, S R Sunyaey,
D Valle, B F Voight, W Winckler, and C Gunter. Guidelines for investigating causality
of sequence variants in human disease. Nature, 508(7497):469-76, Apr 2014.

Nadia A Chuzhanova, Emmanuel J Anassis, Edward V Ball, Michael Krawczak, and
David N Cooper. Meta-analysis of indels causing human genetic disease: mechanisms



References 179

[397]

[398]

[399]

[400]

[401]

[402]
[403]

[404]

[405]

of mutagenesis and the role of local DNA sequence complexity. Human mutation,
21(1):28-44, Jan 2003.

Rameen Beroukhim, Craig H Mermel, Dale Porter, Guo Wei, Soumya Raychaud-
huri, Jerry Donovan, Jordi Barretina, Jesse S Boehm, Jennifer Dobson, Mitsuyoshi
Urashima, Kevin T Mc Henry, Reid M Pinchback, Azra H Ligon, Yoon-Jae Cho,
Leila Haery, Heidi Greulich, Michael Reich, Wendy Winckler, Michael S Lawrence,
Barbara A Weir, Kumiko E Tanaka, Derek Y Chiang, Adam J Bass, Alice Loo, Carter
Hoffman, John Prensner, Ted Liefeld, Qing Gao, Derek Yecies, Sabina Signoretti, Eliz-
abeth Maher, Frederic J Kaye, Hidefumi Sasaki, Joel E Tepper, Jonathan A Fletcher,
Josep Tabernero, José Baselga, Ming-Sound Tsao, Francesca Demichelis, Mark A
Rubin, Pasi A Janne, Mark J Daly, Carmelo Nucera, Ross L Levine, Benjamin L Ebert,
Stacey Gabriel, Anil K Rustgi, Cristina R Antonescu, Marc Ladanyi, Anthony Letai,
Levi A Garraway, Massimo Loda, David G Beer, Lawrence D True, Aikou Okamoto,
Scott L Pomeroy, Samuel Singer, Todd R Golub, Eric S Lander, Gad Getz, William R
Sellers, and Matthew Meyerson. The landscape of somatic copy-number alteration
across human cancers. Nature, 463(7283):899-905, Feb 2010.

Denghong Chen, Zhenhua Zhang, and Yuxiu Meng. Systematic Tracking of Dis-
rupted Modules Identifies Altered Pathways Associated with Congenital Heart Defects
in Down Syndrome. Medical science monitor : international medical journal of
experimental and clinical research, 21:3334—42, Nov 2015.

Fu-Jou Lai, Chia-Chun Chiu, Tzu-Hsien Yang, Yueh-Min Huang, and Wei-Sheng Wu.
Identifying functional transcription factor binding sites in yeast by considering their
positional preference in the promoters. PloS one, 8(12):e83791, 2013.

Francesco Vallania, Davide Schiavone, Sarah Dewilde, Emanuela Pupo, Serge Garbay,
Raffaele Calogero, Marco Pontoglio, Paolo Provero, and Valeria Poli. Genome-wide
discovery of functional transcription factor binding sites by comparative genomics:
the case of Stat3. Proceedings of the National Academy of Sciences of the United
States of America, 106(13):5117-22, Mar 2009.

Elizabeth T Cirulli and David B Goldstein. Uncovering the roles of rare variants
in common disease through whole-genome sequencing. Nature reviews. Genetics,
11(6):415-25, Jun 2010.

The International HapMap Project. Nature, 426(6968):789-96, Dec 2003.

Michael J Wagner. Rare-variant genome-wide association studies: a new frontier in
genetic analysis of complex traits. Pharmacogenomics, 14(4):413-24, Mar 2013.

Christopher DeBoever, Yosuke Tanigawa, Greg Mclnnes, Adam Lavertu, Chris Chang,
Carlos D Bustamante, Mark J Daly, and Manuel A Rivas. Medical relevance of protein-
truncating variants across 337,208 individuals in the uk biobank study. bioRxiv, page
179762, 2017.

Francesco Iorio, Theo A Knijnenburg, Daniel J Vis, Graham R Bignell, Michael P
Menden, Michael Schubert, Nanne Aben, Emanuel Gongalves, Syd Barthorpe, Howard
Lightfoot, Thomas Cokelaer, Patricia Greninger, Ewald van Dyk, Han Chang, Heshani



180

References

[406]

[407]

[408]

[409]

[410]

[411]

[412]

[413]

[414]

de Silva, Holger Heyn, Xianming Deng, Regina K Egan, Qingsong Liu, Tatiana Miro-
nenko, Xeni Mitropoulos, Laura Richardson, Jinhua Wang, Tinghu Zhang, Sebastian
Moran, Sergi Sayols, Maryam Soleimani, David Tamborero, Nuria Lopez-Bigas, Petra
Ross-Macdonald, Manel Esteller, Nathanael S Gray, Daniel A Haber, Michael R Strat-
ton, Cyril H Benes, Lodewyk F A Wessels, Julio Saez-Rodriguez, Ultan McDermott,
and Mathew J Garnett. A Landscape of Pharmacogenomic Interactions in Cancer.
Cell, 166(3):740-754, Jul 2016.

Loes M Olde Loohuis, Jacob A S Vorstman, Anil P Ori, Kim A Staats, Tina Wang,
Alexander L Richards, Ganna Leonenko, James T Walters, Joseph DeYoung, Rita M
Cantor, and Roel A Ophoff. Genome-wide burden of deleterious coding variants
increased in schizophrenia. Nature communications, 6:7501, Jul 2015.

George Kritikos, Manuel Banzhaf, Lucia Herrera-Dominguez, Alexandra Koumoutsi,
Morgane Wartel, Matylda Zietek, and Athanasios Typas. A tool named Iris for versatile
high-throughput phenotyping in microorganisms. Nature microbiology, 2:17014, Feb
2017.

Raphael Guerois, Jens Erik Nielsen, and Luis Serrano. Predicting changes in the
stability of proteins and protein complexes: a study of more than 1000 mutations.
Journal of molecular biology, 320(2):369-87, Jul 2002.

Maureen E Hillenmeyer, Eula Fung, Jan Wildenhain, Sarah E Pierce, Shawn Hoon,
William Lee, Michael Proctor, Robert P St Onge, Mike Tyers, Daphne Koller, Russ B
Altman, Ronald W Davis, Corey Nislow, and Guri Giaever. The chemical genomic
portrait of yeast: uncovering a phenotype for all genes. Science (New York, N.Y.),
320(5874):362-5, Apr 2008.

Leonor Miller-Fleming, Pedro Antas, Teresa Faria Pais, Joshua L. Smalley, Flaviano
Giorgini, and Tiago Fleming Outeiro. Yeast DJ-1 superfamily members are required
for diauxic-shift reprogramming and cell survival in stationary phase. Proceedings of
the National Academy of Sciences of the United States of America, 111(19):7012-7,
May 2014.

Stefanie Jarolim, Anita Ayer, Bethany Pillay, Allison C Gee, Alex Phrakaysone,
Gabriel G Perrone, Michael Breitenbach, and lan W Dawes. Saccharomyces cerevisiae
genes involved in survival of heat shock. G3 (Bethesda, Md.), 3(12):2321-33, Dec
2013.

Himanshu Sinha, Lior David, Renata C Pascon, Sandra Clauder-Miinster, Sujatha Kr-
ishnakumar, Michelle Nguyen, Getao Shi, Jed Dean, Ronald W Davis, Peter J Oefner,
John H McCusker, and Lars M Steinmetz. Sequential elimination of major-effect
contributors identifies additional quantitative trait loci conditioning high-temperature
growth in yeast. Genetics, 180(3):1661-70, Nov 2008.

F Osman and S McCready. Differential effects of caffeine on DNA damage and
replication cell cycle checkpoints in the fission yeast Schizosaccharomyces pombe.
Molecular & general genetics : MGG, 260(4):319-34, Nov 1998.

Michael Tsabar, Vinay V Eapen, Jennifer M Mason, Gonen Memisoglu, David P
Waterman, Marcus J Long, Douglas K Bishop, and James E Haber. Caffeine impairs



References 181

resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2.
Nucleic acids research, 43(14):6889-901, Aug 2015.

[415] E Balzi, M Wang, S Leterme, L Van Dyck, and A Goffeau. PDRS5, a novel yeast
multidrug resistance conferring transporter controlled by the transcription regulator
PDRI1. The Journal of biological chemistry, 269(3):2206—14, Jan 1994.

[416] Jia Li, Michael Biss, Yu Fu, Xin Xu, Stanley A Moore, and Wei Xiao. Two duplicated
genes DDI2 and DDI3 in budding yeast encode a cyanamide hydratase and are induced
by cyanamide. The Journal of biological chemistry, 290(20):12664-75, May 2015.

[417] A Kaetsu, T Fukushima, S Inoue, H Lim, and M Moriyama. Role of heat shock
protein 60 (HSP60) on paraquat intoxication. Journal of applied toxicology : JAT,
21(5):425-30, 2001.

[418] Arvind Kumar Shukla, Prakash Pragya, Hitesh Singh Chaouhan, Anand Krishna
Tiwari, Devendra Kumar Patel, Malik Zainul Abdin, and Debapratim Kar Chowdhuri.
Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by

inhibiting JNK and caspase-3 activation in Drosophila model of Parkinson’s disease.
PloS one, 9(6):¢98886, 2014.

[419] Shuye Pu, Jessica Wong, Brian Turner, Emerson Cho, and Shoshana J Wodak. Up-
to-date catalogues of yeast protein complexes. Nucleic acids research, 37(3):825-31,
Feb 20009.

[420] Stephen J Royle. The role of clathrin in mitotic spindle organisation. Journal of cell
science, 125(Pt 1):19-28, Jan 2012.

[421] Sean R Collins, Maya Schuldiner, Nevan J Krogan, and Jonathan S Weissman. A
strategy for extracting and analyzing large-scale quantitative epistatic interaction data.
Genome biology, 7(7):R63, 2006.

[422] J M Cherry, C Adler, C Ball, S A Chervitz, S S Dwight, E T Hester, Y Jia, G Juvik,
T Roe, M Schroeder, S Weng, and D Botstein. SGD: Saccharomyces Genome
Database. Nucleic acids research, 26(1):73-9, Jan 1998.

[423] Andrey A Shabalin. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
Bioinformatics (Oxford, England), 28(10):1353-8, May 2012.

[424] Nobuhiko Tokuriki and Dan S Tawfik. Stability effects of mutations and protein
evolvability. Current opinion in structural biology, 19(5):596-604, Oct 2009.

[425] David L Masica and Rachel Karchin. Towards Increasing the Clinical Relevance of In
Silico Methods to Predict Pathogenic Missense Variants. PLoS computational biology,
12(5):1004725, 05 2016.

[426] H Duzkale, J Shen, H McLaughlin, A Alfares, M A Kelly, T J Pugh, B H Funke, HL
Rehm, and M S Lebo. A systematic approach to assessing the clinical significance of
genetic variants. Clinical genetics, 84(5):453—63, Nov 2013.



182

References

[427]

[428]

[429]

[430]

[431]

[432]

[433]

[434]

[435]

[436]

Simon G Coetzee, Gerhard A Coetzee, and Dennis J Hazelett. motifbreakR: an
R/Bioconductor package for predicting variant effects at transcription factor binding
sites. Bioinformatics (Oxford, England), 31(23):3847-9, Dec 2015.

Malin C Andersen, Pir G Engstrom, Stuart Lithwick, David Arenillas, Per Eriksson,
Boris Lenhard, Wyeth W Wasserman, and Jacob Odeberg. In silico detection of
sequence variations modifying transcriptional regulation. PLoS computational biology,
4(1):e5, Jan 2008.

Lucas D Ward and Manolis Kellis. Interpreting noncoding genetic variation in complex
traits and human disease. Nature biotechnology, 30(11):1095-106, Nov 2012.

Seunggeung Lee, Goncalo R Abecasis, Michael Boehnke, and Xihong Lin. Rare-
variant association analysis: study designs and statistical tests. American journal of
human genetics, 95(1):5-23, Jul 2014.

José Juan Almagro Armenteros, Casper Kaae Sgnderby, Sgren Kaae Sgnderby, Henrik
Nielsen, and Ole Winther. DeepLoc: prediction of protein subcellular localization
using deep learning. Bioinformatics (Oxford, England), 33(21):3387-3395, Nov 2017.

Michael K K Leung, Hui Yuan Xiong, Leo J Lee, and Brendan J Frey. Deep learning of
the tissue-regulated splicing code. Bioinformatics (Oxford, England), 30(12):1121-9,
Jun 2014.

Duolin Wang, Shuai Zeng, Chunhui Xu, Wangren Qiu, Yanchun Liang, Trupti Joshi,
and Dong Xu. MusiteDeep: a deep-learning framework for general and kinase-specific
phosphorylation site prediction. Bioinformatics (Oxford, England), Aug 2017.

Hana Lango, Colin N A Palmer, Andrew D Morris, Eleftheria Zeggini, Andrew T
Hattersley, Mark I McCarthy, Timothy M Frayling, and Michael N Weedon. Assessing
the combined impact of 18 common genetic variants of modest effect sizes on type 2
diabetes risk. Diabetes, 57(11):3129-35, Nov 2008.

Mingming Liu, Layne T Watson, and Liqing Zhang. Predicting the combined effect
of multiple genetic variants. Human genomics, 9:18, Jul 2015.

Amy Leung, Dustin E Schones, and Rama Natarajan. Using epigenetic mechanisms
to understand the impact of common disease causing alleles. Current opinion in
immunology, 24(5):558-63, Oct 2012.



	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Genetic variation
	1.2 Genotype-phenotype association
	1.2.1 Genome-wide association studies
	1.2.2 Quantitative trait loci mapping
	1.2.3 Limitations of association-based methods

	1.3 Molecular phenotypes impacted by single nucleotide variants
	1.3.1 Transcription factor binding
	1.3.2 Post-translational modifications
	1.3.3 Short linear motifs
	1.3.4 Protein Stability
	1.3.5 Protein-protein interaction interfaces
	1.3.6 Initiation and termination of translation
	1.3.7 Mechanisms for quality control of variants altering start and stop codons

	1.4 Sequence conservation of proteins
	1.5 Aims of the thesis

	2 Uncovering phosphorylation-based specificities through functional interaction networks
	2.1 Introduction
	2.2 Results
	2.2.1 Network-based prediction of kinase-substrate specificity
	2.2.2 Prediction of kinase-substrate specificity across all human kinases
	2.2.3 Mass spectrometry-based validation of kinase specificity
	2.2.4 Prediction of post-translational modification binding specificities
	2.2.5 Conservation of kinase-substrate specificity
	2.2.6 The kpred resource for predicted kinase-substrate specificities

	2.3 Methods
	2.3.1 Phosphorylation and functional interactions data collection
	2.3.2 Kinase domain prediction
	2.3.3 Phosphorylation-based motif enrichment
	2.3.4 Kinase specificity models and performance assessment
	2.3.5 Profiling in vitro kinase substrates

	2.4 Discussion

	3 Assessing performance of methods for predicting impact of variants on transcription factor binding
	3.1 Introduction
	3.2 Results
	3.2.1 A compendium of allele-specific binding data
	3.2.2 Scoring metrics for evaluation of transcription factor binding variant impact
	3.2.3 The use of allele-specific binding data for benchmarking variant impact prediction

	3.3 Methods
	3.3.1 Collection of allele-specific binding data
	3.3.2 Transcription factor binding model training and scoring
	3.3.3 Variant impact scoring metrics
	3.3.4 Allele frequencies and non-coding variant impact predictions
	3.3.5 Performance measures

	3.4 Discussion

	4 Functional consequences of single nucleotide variants across different molecular features 
	4.1 Introduction
	4.2 Results
	4.2.1 Functional genomic regions display evolutionary constraint across S. cerevisiae and H. sapiens
	4.2.2 mutfunc: a one-stop resource for mechanistic effects of single nucleotide variants
	4.2.3 Validation of predictions
	4.2.4 Predicting mechanistic insight into variants of uncertain significance

	4.3 Methods
	4.3.1 Genetic variant data collection
	4.3.2 Evolutionary constraint
	4.3.3 Essential genes
	4.3.4 Predicting impact on protein stability and protein interaction interfaces
	4.3.5 Predicting the impact of variants on PTMs and linear motifs
	4.3.6 Predicting the functional impact of variants using conservation
	4.3.7 Transcription factor binding sites
	4.3.8 Implementation of mutfunc

	4.4 Discussion

	5 Gene-level aggregation of mechanistic variant impact for gene-phenotype associations
	5.1 Introduction
	5.2 Results
	5.2.1 Phenotypic variation across S. cerevisiae strains
	5.2.2 Mechanistic gene burden scores identify novel gene-phenotype associations
	5.2.3 Complex burden scores further improve association power

	5.3 Methods
	5.3.1 Phenotyping of S. cerevisiae strains
	5.3.2 Genetic variants for S. cerevisiae strains
	5.3.3 Chemical genetic data
	5.3.4 Computing gene and complex-burden scores and associations

	5.4 Discussion

	6 Summary and future directions
	List of publications
	References

