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Summary

The genetic code describes how a sequence of codons on an mrna is trans-
lated into a sequence of amino acids, forming a protein. The genetic code
manifests itself in the cell as trna molecules, which fall into several classes
of anticodon isoacceptors, each decoding a single codon into its correspond-
ing amino acid. In this thesis I discuss the central importance of the codon–
anticodon interface to mrna-to-protein translation, and how its stability is
maintained during the life of the cell.

This thesis summarises my research into the control of the abundance
of trnas by individual trna gene expression changes in mammalian organ-
isms. I will show that trna gene expression is subject to tight regulation, and
that the abundance of trna molecules is thus kept highly stable even across
vastly different cellular conditions, in marked contrast with the abundance
of protein-coding genes, which changes dynamically to drive cell function.

The abundance of trna genes defines, to a large extent, the efficiency with
which mrna can be translated into proteins. On the one hand, this serves
to explain the need for the observed, stable trna abundance. On the other
hand, this also raises questions: the change of expression of protein-coding
genes means that different, specifically highly expressed protein-coding
genes in different cell types will lead to a different codon demand. It could
thus be beneficial for the cell to express different sets of trnas, trading lower
overall efficiency for high efficiency in translating the most important sub-
set of genes. To investigate this, I examine the link between mrna expres-
sion and trna abundance in a variety of biological conditions across several
mammalian species, establishing that changes in the pool of trnas are not
correlated with changes in mrna expression.

Overall, my thesis provides important insight into the interface between
transcription and translation, suggesting strongly that the regulation of trans-
lation is weaker than that of transcription in mammals.
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Introduction 1
“Nothing in biology makes sense […]”

— Теодо́сій Григо́рович Добжа́нський (Theodosius Dobzhansky)*

1.1. The central dogma

At the core of every living being is its genetic inheritance. The genetic in-
heritance describes information that is passed down from parents to their
offspring. It contains a blueprint detailing, in essence, how to construct
a new individual from a single cell. This genetic inheritance is physically
present in the form of deoxyribonucleic acid (dna) in almost every living
cell.†

As a medium of information storage, dna is complemented by two other
types of molecules in the cell that, respectively, carry out the instructions
encoded in the dna by performing specific biochemical functions, and serve
as an intermediary between information storage and execution. The inter-
mediaries, which are called ribonucleic acid (rna), copy out specific parts
of the complete instructions from the dna and carry them to factories that
translate the instructions into highly specialised machines. These machines
are called proteins. The central dogma of molecular biology states that inform-
ation is thus transmitted from dna to rna, and from rna to proteins, but
never from proteins back to rna or dna (figure 1.1) [Crick, 1958; Crick, 1970].

*Dobzhansky [1973]
†And to some extent in non-living particles called viruses.
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When first published, the central dogma concisely summarised the avail-
able evidence at the time. Now, more than half a century later, this still
largely holds true.

DNA RNA protein

Figure 1.1: The central dogma of molecular biology. The solid arrows represent observed
transfers of information; the dashed arrows represent what Crick [1970] referred to as “po-
tential” transfers; today we know that the transfer RNA → DNA does in fact occur under
certain circumstances; the transfer DNA → protein has still not been observed. Notably, the
absent transfers in the original publication are still considered largely non-existent.

Over the years, the very high-level view of the central dogma was com-
plemented by a detailed mechanistic description and the efforts to fill in
all the details are still ongoing. In this thesis I will present the results of
my exploration of one small aspect concerning the translation of rna into
proteins. To better explain how it fits into the general picture of the central
dogma, we first need to understand its leading actors and their interplay.
The three main roles in the central dogma are fulfilled by dna, rna and pro-
teins, respectively, and we are now going to take a look at all of them in
turn.

1.1.1. DNA

dna consists of a long chain of nucleotides. The chemical structure of nucle-nucleotide molecule con-
sisting of a ribose, one or
more phosphate groups and
a nucleobase (example: cytid-
ine monophosphate, a nucle-
otide of cytosine)‡

ribose

OH
3′

5′

phosphate

nucleobase

−

otides enables them to polymerise into long, relatively stable chains. dna
is made up of nucleotide monomers, consisting of one or more phosphate
groups coupled to a nucleoside, each of which contains any of four different

nucleoside nucleobase
coupled to a ribose

types of nucleobases: adenine (A), cytosine (C), guanine (G) and thymine (T).
Thus, dna can be thought of as a long string of four different letters, and

‡Figure adapted from https://commons.wikimedia.org/w/index.php?title=File:Nucleotides_1.
svg&oldid=128814238
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introduction

Figure 1.2: DNA double helix with a single, transcribed gene. The intertwined lines form the
phosphoribose backbone of the DNA. Each vertical line connecting the backbones corres-
ponds to a base pair. The zoomed in cartoon shows the complementary base pairing, with dif-
ferent colours corresponding to different nucleobases. The length of the gene is understated,
the overwhelming majority of transcribed pieces of DNA are much longer (protein-coding
genes being many hundred to thousands of base pairs long).

that is indeed how it is often represented. Text is written from left to right
in Western cultures. By convention, dna is written from 5′ to 3′. These num-
bers refer to the numbering of the carbon atoms in each nucleotide’s ribose,
with the 3′ carbon atom forming a covalent bond with the phosphate of the
next nucleotide, which is itself attached to the 5′ carbon of its ribose. In this
way, a 5′ C atom is exposed at one end of the chain, and a 3′ C is exposed
at the other.

dna is present in the cell in the form of double-stranded helices: each dna
molecule consists of two paired chains, wound tightly around each other,
with the bases on each chain pairing up such that every A on one chain is
paired with a T on the other, and each C is paired with a G. This striking sym-
metry is known as Watson–Crick base pairing, after its discoverers [Watson
and Crick, 1953]. Thus, dna is made up of two complementary strands, re-
dundantly holding the genetic information (figure 1.2). This redundancy is
used in dna copying (which occurs at every cell division, and is the mech-
anism by which genetic information is passed from one cell to its offspring)
to synthesise two newly formed dna molecules, each of which contains one
strand of the parent dna molecule (semiconservative replication) [Meselson
and Stahl, 1958].

dna is not made up of a single polymer chain, but rather is partitioned
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into several long pieces, called chromosomes. Each chromosome forms a
single molecule. However, even on a chromosome the genetic information
is not stored in one consecutive piece: Rather, dna consists of relatively
short stretches encoding a specific function, separated by long stretches that
do not directly encode any function. The “function” is what is transmitted,
as per the central dogma, to rna and, in many cases, on to proteins. Such
self-contained, functional stretches are called genes. To perform its function,gene self-contained stretch

of dna that is transcribed to
perform a function

a gene has to be transcribed into a catalytically active form, the rna.

1.1.2. RNA

rna is the product of transcription of a gene from dna. rna is chemically
similar to dna but unlike the latter, rna is created as a single strand. This
has two consequences: First, rna is much less stable than dna, and slowly
degrades. rna thus has a finite life-time, and the pool of rna must be re-
plenished by continuous transcription. Second, single-stranded ribonucleic
acid spontaneously changes its spatial conformation by forming Watson–
Crick base pairs between nucleotides in its own sequence, where this is ster-
ically possible (i.e. where forming such a bond does not require bending thesteric effect atoms occupy

discrete space and cannot
overlap

chain too much to “snap” it). The resulting structure can confer biochem-
ical functions to the rna. Because the structure is determined by, and exists
on a higher level than the sequence identity of the rna, it is called secondary
structure.

Another difference between dna and rna is the use of slightly different
nucleobases: instead of T, rna uses U (uracil), which, like T, base-pairs with
A. Despite the fact that the genetic information is encoded in virtually the
same way in dna and rna, transcription of dna into rna requires a com-
plex machinery. The core of this machinery is a complex enzyme called
an rna polymerase. In eukaryotes, three different, evolutionarily related rna
polymerases (pol i, pol ii and pol iii) are responsible for transcribing different
types of rna.

rna performs numerous different functions, but one very important sub-
category of rna does not perform any function on its own; rather, it is an
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intermediary between the genetic information on the dna and the final pro-
tein product, which in turn performs cellular functions. This class of rna
is called messenger rna (mrna). mrnas are the product of the transcription
of protein-coding genes by pol ii. By contrast, rnas which are not protein-
coding are denoted as non-coding rna (ncrna). Transcription of mrna re-
quires an exquisite control, and many different transcription factors (tf) are
known to regulate the activity of transcription of different genes in different
cellular conditions.

This results in different mrna genes being transcribed at highly different
levels, leading to several orders of magnitude of difference in mrna abun-
dance. Even more strikingly, the same mrna can be transcribed at different
levels under different conditions. mrna is further processed in several steps
before the mature mrna is exported from the cell’s nucleus into the cytoplasm, nucleus centre of euka-

ryotic cells, hosting the dna
cytoplasm space filling
the cell, excluding all en-
closed compartments, such as
the nucleus

where it is translated into proteins, and, over time, decays. Taken together,
this leads to very differentiated mrna profiles under different conditions,
which imbue cells with a unique phenotype. This forms the basis of cellu-
lar differentiation into different cell types and tissues in multicellular euk-
aryotes.

1.1.3. Proteins

Proteins, finally, are the main effectors of cell function. Like dna and rna,
they consist of chains of smaller molecules, so-called amino acids, that are amino acid molecule con-

sisting of an amino–carboxyl
backbone and a specific side-
chain (example: valine)

OH

O
NH2

carboxyl
amine

side-chain

strung together to form polypeptides. Each amino acid is a small molecule
with unique properties which, jointly, shape the function of the final pro-
tein. Individual amino acids are strung together in a chemical reaction that
links a carboxyl group covalently with an amino group on the next amino
acid to form a peptide bond [Alberts & al., 2002]. Polypeptides, like many

peptide bond a cova-
lent bond formed between
a carboxyl and an amino
group: COOH + NH2 −−→
CO−NH + H2O

rnas, form secondary structures via non-covalent bonds between amino
acids, which are a function of the amino acid sequence. Beyond this, pro-
teins form even higher order three-dimensional conformations called ter-
tiary structures. When multiple proteins aggregate into a complex consist-
ing of several subunits, we speak of quarternary structure.
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All these different levels of spatial organisation of proteins lead to the cre-
ation of highly complex structures from originally one-dimensional chains.
It is their intricate structure that allows them to perform precise tasks in
the cell. Because they are the work horses of the cells, proteins are highly
abundant, with some proteins being present million-fold at any given mo-
ment [Milo, 2013]. This is only possible because a single gene is transcribed
multiple times, and each resulting mrna can be translated several times, and
simultaneously, before being degraded. The path dna → rna → protein
thus facilitates an amplification from a single gene copy to many orders
of magnitudes more copies of the resulting protein. Despite the fact that
multiple protein copies can be created from a single mrna molecule, and
that the number varies from transcript to transcript, protein abundance is
predominantly determined by the abundance of mrnas [J. J. Li & al., 2014;
Jovanovic & al., 2015; Csárdi & al., 2014].

1.2. Transcription & translation

1.2.1. Transcription

As mentioned previously, three different polymerases are responsible for
transcribing genes encoded in the dna into different types of rna. The pre-
cise ways in which the different polymerases transcribe genes into their rna
products differ but the fundamental aspects of transcription are similar. In
all cases, a motif in the dna sequence initiates binding of a number of tfmotif pattern describing

a family of short sequences
which, though variable, have
some degree of similarity

proteins to the dna. Such motifs, called promoters, are found in the immedi-
ate vicinity of the transcription start site (tss) of their target genes — either
upstream of the tss or following closely after it, inside the gene body. Once
the tfs have bound to the dna on top of the tss, a polymerase attaches to the
dna and is held in place by the tfs. Subsequently, the polymerase pries the
double strand apart and starts synthesising a new strand of rna which pairs
complementarily with one of the strands on the dna (the template strand).
The new rna’s sequence is thus identical to the other dna strand (the cod-
ing strand). The rna is produced in the direction 5′–3′, implying that the
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template strand is read in the direction 3′–5′ during transcription. Once
the first few nucleotides of the rna have been synthesised, the polymerase
disassociates from the tf proteins, and the polymerase starts moving along
the gene body, transcribing it as it goes (this may require the presence of
other tfs called activators, which are recruited by enhancer motifs elsewhere
on the dna; figure 1.3).

Eukaryotic chromosomes are very long — human chromosome 1 is around
8.5 cm stretched from end to end — and, to fit into the cell, is tightly packed
into a space-efficient conformation. To achieve this, dna is coiled around
histones, small protein complexes, to form nucleosomes. Too tight packing, nucleosome complex of

dna wrapped around an en-
semble of eight core histones

however, has the side-effect of making the dna inaccessible to the transcrip-
tion machinery. It is thus a common feature of gene regulation to control
the chromatin structure, and thus to control the accessibility of the dna for
tfs and the polymerases. Furthermore, histones can be marked in several
ways — via addition or removal of acetyl or methyl groups — which are
recognised by tfs and thus once again either facilitate or inhibit transcrip-
tion [Alberts & al., 2002]. In addition to enhancers and promoters, chro-
matin structure and the modification of histones thus regulate the activity
of genes.

5′
3′

5′

template strand

coding strand

nucleosome

polymerase

RNA

TFs
activator

Figure 1.3: Transcription. After recruitment by TFs binding to the promoter region of the
gene, a polymerase, aided by a (distally bound) activator protein, starts transcribing the RNA
product from 5′ to 3′. Diagram is not to scale.
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1.2.2. The genetic code

The process by which proteins are created from mrna transcripts is more
complex than the 1:1 transcription of dna into rna, which after all use a
common alphabet to encode the information they carry. By contrast, the
translation of mrna transcripts into proteins requires a code to interpret thecode set of rules for inter-

preting a piece of information genetic information.
There are 20 different amino acids that are encoded by just 4 different

nucleotides. To allow this, several nucleotides must be combined to form a
larger unit coding for an amino acid. In the universal genetic code, shared by
all known species, this is accomplished by grouping three consecutive nuc-
leotides together to form non-overlapping, ungapped triplet codons along
the mrna. This results in 43 = 64 possible codons, more than three times
the number of amino acids. As a consequence, the genetic code is degenerate:
most amino acids can be encoded by more than a single codon.

Codons furthermore serve as control points by defining where the trans-
lated sequence on the mrna starts and ends. The codon AUG, in addition to
encoding the amino acid methionine, also marks the start of the coding se-
quence. Three codons do not encode any amino acid, and instead signal the
end of translation (UAA, UAG, UGA). As a consequence, every coding sequence
starts with AUG, ends with one of the stop codons, and has a length divisible
by 3. Table 1.1 contains a tabular representation of the genetic code, which
is valid, with only minor variations, for all three domains of life.

During translation, individual codons on the mrna transcript are success-
ively paired up with their matching amino acid. However, unlike in trans-
lation, this pairing does not happen automatically. It requires an interme-
diate adapter molecule acting as an interface between the codon and the
amino acid.

1.2.3. Transfer RNA

Individual codons are translated into their corresponding amino acid with
the aid of adapter molecules carrying a specific amino acid, and which re-
cognise the matching codon. This codon recognition is possible because the
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c a aa c a aa c a aa c a aa
UUU aaa Phe UCU aga Ser UAU aua Tyr UGU aca Cys
UUC gaa Phe UCC gga Ser UAC gua Tyr UGC gca Cys
UUA uaa Leu UCA uga Ser UAA uua stop UGA uca stop
UUG caa Leu UCG cga Ser UAG cua stop UGG cca Trp
CUU aag Leu CCU agg Pro CAU aug His CGU acg Arg
CUC gag Leu CCC ggg Pro CAC gug His CGC gcg Arg
CUA uag Leu CCA ugg Pro CAA uug Gln CGA ucg Arg
CUG cag Leu CCG cgg Pro CAG cug Gln CGG ccg Arg
AUU aau Ile ACU agu Thr AAU auu Asn AGU acu Ser
AUC gau Ile ACC ggu Thr AAC guu Asn AGC gcu Ser
AUA uau Ile ACA ugu Thr AAA uuu Lys AGA ucu Arg
AUG cau Met ACG cgu Thr AAG cuu Lys AGG ccu Arg
GUU aac Val GCU agc Ala GAU auc Asp GGU acc Gly
GUC gac Val GCC ggc Ala GAC guc Asp GGC gcc Gly
GUA uac Val GCA ugc Ala GAA uuc Glu GGA ucc Gly
GUG cac Val GCG cgc Ala GAG cuc Glu GGG ccc Gly

Table 1.1: The genetic code. Shown is each codon (“C”), its potential corresponding anti-
codon (“A”) and the three-letter abbreviation of the corresponding amino acid (“AA”). AUG,
in addition to encoding methionine, also signals the start of translation. Not all anticodons
exist in all species. Each anticodon is the reverse complement of its corresponding codon
(adapted from dos Reis, Savva, & al. [2004]).

adapter molecules are themselves rnas, and the codon is matched via com-
plementary base pairing of a part of the rna sequence termed the anticodon.
These adapter molecules are called transfer rna (trna).

trnas form secondary structures with a shape that vaguely resembles a
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Figure 1.4: tRNAAsn sec-
ondary structure. The
tRNA carries the anticodon
guu in the middle of the an-
ticodon loop, highlighted in
green. The D loop and
T loop are shown in blue
and orange. Structure pre-
dicted by COVE [Eddy and
Durbin, 1994], rendered by
PseudoViewer 3 [Byun and
Han, 2009] and manually
edited.

cloverleaf, consisting of a stem and three loops: the D loop (also known
as DHU loop because it contains the modified nucleobase dihydrouridine),
the T loop (or TΨC loop, because it contains the nucleobase pseudouridine)
and the anticodon loop. The latter carries three nucleotides in its centre that
pair with a specific codon — the anticodon [S.-H. Kim & al., 1973; Suddath
& al., 1974; Robertus & al., 1974; Rich and S.-H. Kim, 1978; Schimmel and
Söll, 1979].

To avoid confusion between codons and anticodons, codons in this thesis
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will always be typeset as 5′-CAU-3′, and anticodons (which are the reverse
complements of codons) will always be typeset as 5′-aug-3′. The direction-
ality is indicated here to clarify the direction in which a codon pairs with
its anticodon; it will generally be omitted in the remainder of the text. Fig-
ure 1.5 illustrates how the mrna–trna interaction leads to the reverse com-
plementarity of the codon and anticodon.

5′3′

5′
3′

A C

GU

A

U

tRNA
anticodon
loop

mRNA

Figure 1.5: mRNA–tRNA interaction, illustrating how the 5′ end of the codon pairs with
the 3′ end of the anticodon.

trnas are encoded by small genes, around 70 bp to 90 bp in length. Their
transcription is driven by pol iii. Transcription initiation for pol iii can take
various forms for different types of genes. In the case of trna genes, a so-
called class ii pol iii transcription initiation is performed. Unlike protein-
coding genes, whose promoters lie upstream of the actual gene body, the
class ii promoter is found inside a trna gene in two disjoint, strongly con-
served regions called the A box and B box, respectively. The A box starts
about 10 bp downstream from the tss, whereas the B box can be found at a
variable distance of about 30 bp to 60 bp downstream from the A box. trna
transcription is initiated when the transcription factor tfiiic binds to both
motifs. This leads to the binding of the pol iii recruitment factor tfiiib im-
mediately upstream of the trna gene. Subunits of tfiiib, in particular the
TATA binding protein (tbp), bind to upstream motifs of the trna, which vary
strongly across evolution, but whose presence is nevertheless crucial for the
initiation of transcription [Palida & al., 1993; R J White and Jackson, 1992].
Binding of tfiiib in turn leads to the association of pol iii with the gene
body, and the initiation of transcription. tfiiic is now no longer required
and disassociates from the gene locus. tfiiib remains bound and can lead
to repeated transcription re-initialisation. Transcription stops when pol iii
encounters a short T repeat downstream of the trna gene (see figure 1.6)
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[Robert J White, 1998; Dieci & al., 2007].

TATA TTTT

TFIIICTFIIIB

Figure 1.6: tRNA gene transcription immediately before pol III is recruited. The A and B
box are highlighted in blue and orange, respectively. The colours show the correspondence
of these regions with the loops shown in figure 1.4. The TATA motif is a non-representative
example of upstream motifs which are recognised by TFIIIB. Diagram is not to scale.

trna genes have multiple copies across the genome. In the latest reference
genome of Mus musculus (grcm38 [Church & al., 2009]), 432 different trna
genes are annotated, encoding 50 different anticodons. trna genes carrying
the same anticodon form an anticodon isoacceptor family. trna genes for the
same amino acid form an amino acid isotype.

The numbers of trna genes and anticodon isoacceptor families mentioned
above exclude trnas for the amino acid selenocysteine, which is not part of
the standard genetic code, and which was consequently excluded from the
subsequent analysis. Selenocysteine is generally not included in analyses
with a focus on codons in the published literature, as it requires translational
recoding, an altogether different translation mechanism, not covered by the
genetic code. Furthermore, the prevalence of proteins incorporating selen-
ocysteine is very small [Reeves and Hoffmann, 2009]. Although this does
not mean that selenocysteine is biologically irrelevant, it means that we can
safely ignore its effect for whole-genome studies of codon and anticodon
abundance.

After transcription, the newly formed precursor trna transcript under-
goes processing to form a mature trna. As for all types of rna, this happens
while the precursor trna is still in the nucleus of the cell, before it is then
exported into the cytoplasm where it performs its function.
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The postprocessing of the trna is required to ensure that the trna folds
into its correct spatial structure, can be associated with an amino acid, and
recognises its target codons. It also serves as a quality control mechanism:
in the case where transcription introduces errors into the trna sequence,
no postprocessing can occur, which prevents the subsequent export of the
trna from the nucleus. This includes splicing out introns from the trna gene
(although this occurs rarely, as most trnas have no introns) and cleavage of
5′ upstream sequence elements [Alberts & al., 2002; Berg & al., 2002].

Another important processing step is the substitution of the 3′-most bases
by 5′-CCA-3′, which will subsequently serve as an anchor for the attachment
of an amino acid. Furthermore, several nucleotides of the trna are replaced
by “unusual” nucleosides. Some of these are shown in figure 1.4. In partic-
ular, dihydrouridine (D) replaces several uridine§ nucleosides in the D loop,
and pseudouridine (Ψ) replaces a uridine in the T loop. In total, about 10
per cent of all nucleosides are modified in this manner, and over 70 differ-
ent types of base modifications are known to occur in trna [Limbach & al.,
1994; Dalluge & al., 1997; Alberts & al., 2002]. Crucially, the 5′ base of the
anticodon also undergoes modification in this manner, and this plays an
important part in wobble base pairing.

Wobble base pairing

As table 1.1 shows, there are 61 different codons. However, not all of these
have corresponding anticodon trnas — as mentioned, there are only 50 dif-
ferent anticodon isoacceptors in M. musculus; for example, CUC codes for leu-
cine, yet there is no matching gag anticodon trna. Instead, a CUC codon can
pair with a trna carrying an aag anticodon. The mismatching 3′ base of the
codon is known as the wobble position due to its ability to “wobble” around
during codon recognition, and thus form hydrogen bonds that would not
be sterically possible under normal conditions. Unlike the first two bases of
the codon, the third base thus does not require a strict Watson–Crick match.

However, even under these relaxed steric constraints, A does not pair with

§the nucleoside of uracil
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C. In order for the aag isoacceptor trnas to recognise the CUC codon, it there-
fore has to undergo a base modification of its wobble base. Indeed this
is what happens, with the adenosine (the nucleoside of adenine) at the 5′

position being replaced by inosine (the nucleoside of hypoxanthine, short
I). I is able to pair with A, C and U when it is in the wobble position, and
the modified iag is thus able to decode CUC [Crick, 1966; Murphy and Ra-
makrishnan, 2004]. Despite the existence and importance of these base
modifications to the anticodon, I will continue using the genomically en-
coded anticodon notation rather than the anticodon after base modification
— in other words, I will generally write aag, not iag, following general con-
vention. Table 1.2 lists the possible wobble base pairings.

5′ anticodon base 3′ codon base
C G
G C, U
U A
I A, C, U

Table 1.2: Simplified wobble base pairing rules. These are the rules applying to eukaryotes;
prokaryotes have slightly different, more permissive pairing rules due to slight differences in
the structure of the translation apparatus. In practice, more pairings are possible (though most
are uncommon), and there exist several other modified bases with unique pairing properties
[Murphy and Ramakrishnan, 2004]. Table based on Alberts & al. [2002].

Amino acid activation

Once mature, the trna is exported from the nucleus into the cytosol to aid
in mrna translation. We have seen how a trna recognises a specific codon
via interaction with its anticodon. This still leaves the question of how the
trna interacts with its target amino acid. In fact, so far the trna is “empty” —
not bound to any amino acid. It needs to be “charged” with an amino acid
before it can act as an adapter. Conversely, we can say that amino acids
need to be activated by being coupled to a transfer molecule, which makes
them suitable to be used in protein synthesis. This activation is handled by
the protein aminoacyl-trna synthetase.
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Aminoacyl-trna synthetases are enzymes that take a target amino acid
and covalently attach it to the 3′ end of a matching trna. This implies that
aminoacyl synthetases need to be able to recognise the correct binding part-
ners. In most species, there are 20 different aminoacyl-trna synthetases —
one per amino acid. Each of them is responsible for charging all trnas for
a given amino acid isotype. The aminoacyl-trna synthetase recognises a
matching trna by probing for several sequence features, including the ac-
ceptor stem, the anticodon and a specific base immediately adjacent to the
3′ end of the trna. Once it has associated with an amino acid and its match-
ing trna, it catalyses the binding of the amino acid to the 3′ adenosine of
the trna, to form an aminoacyl-trna [Schimmel and Söll, 1979; Schimmel,
Giegé, & al., 1993; Ibba and Söll, 2000; Alberts & al., 2002].

Thus loaded with an amino acid, the aminoacyl-trna is now free to parti-
cipate in the translation reaction, wherein it will bind to a matching codon
and give up its attached amino acid. This will leave it once more empty
but otherwise intact, so that it can be recharged immediately by another
aminoacyl-trna synthetase. trna molecules are thus repeatedly reused un-
til the molecular structure degrades, and gets recycled by the cell.

1.2.4. Translation

So far we have established that trnas are responsible for decoding indi-
vidual codons on the mrna transcript into individual amino acids, which
are assembled into a protein. Unsurprisingly, this is not a spontaneous
process in the cell. Precise coordination is required to initiate, maintain
and terminate the process. All these parts are controlled by an intricate
machinery, the ribosome. Ribosomes are large complexes of proteins and
ribosomal rna (rrna), forming two subunits. In eukaryotes, these subunits
are the 40S and 60S subunit, respectively. At any given moment, millions
of ribosomes are present in a cell, which is necessary to to meet the demand
of protein production from a limited pool of mrna transcripts.

During translation initiation, the small ribosomal subunit binds an ini-
tiator trnaMet (trnaMet

i ) in its active site. trnaMet
i differs from conventional
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trnaMet in its nucleotide composition, which enables it to bind to the small
subunit of the ribosome unaided [Kolitz and Lorsch, 2010]. The complex
then associates with the 5′ end of an mrna transcript and scans along its
5′ untranslated region (utr) until it finds a signal sequence surrounding a
start codon, with which the bound trnaMet

i ’s anticodon base-pairs [Kozak,
2002].

The 40S subunit of the ribosome is now joined by the 60S subunit. Next,
the assembled ribosome starts pulling the mrna transcript through a chan-
nel in its structure. When the next codon aligns with a particular structure
within the ribosome’s active site, called the A site, progress stalls until an
aminoacyl-trna with a matching anticodon finds its way into the site and is
able to pair with the presented codon. Next, a new peptide bond is formed
between the amino end of the newly arrived amino acid and the carboxyl
end of the already synthesised polypeptide. This is accompanied by a con-
formational change in the ribosome, which pushes the trna from the A site
into the P site. Next, another conformational change moves the mrna tran-
script by three bases, so that the next codon is aligned with the once again
empty A site, and the process can repeat.

During the first conformational change, the trna that previously occupied
the P site is displaced into the E site, from where it exits the ribosomal com-
plex, to be either recharged by another aminoacyl-trna synthetase, or to be
disposed of. This process continues until a stop codon is encountered. Stop
codons are not recognised by trnas but rather by special proteins, whose
binding to the stop codon triggers the termination of the protein synthesis,
the release of the peptide chain, and the dissociation of the ribosomal com-
plex.
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    AUG CU

G GCG CUG CUG GCC CUC UGG GGA CCU GAC 
GAC

CGG

5′ UTR

GAC

Figure 1.7: Protein translation. The different parts are: 1. the ribosome (green), the start of
the mRNA (blue) with the 5′ untranslated region ahead of the start codon AUG, the tRNAs
(orange) and the amino acids (yellow), forming a nascent polypeptide chain. The three light
shaded areas are the A, P and E site, from right to left.

1.3. RNA sequencing quantifies protein-coding gene

expression

1.3.1. The transcriptome reflects the state of the cell

As we have seen, the central part of the cellular machinery is abstracted by
the central dogma of molecular biology, with the dna at one end encoding
the hereditary identity of the cell, and the proteins at the other end as the
effectors of this information.

It is therefore proteins that determine how a cell behaves, and changes in
proteins abundance ultimately determine changes in cellular function. The
entirety of protein abundance in the cell at a given instance is called the
proteome. Unfortunately, quantifying the proteome in an unbiased fashion is
hard and expensive [Graumann & al., 2008]. Instead, modern biology often
uses the abundance of mrna molecules, coding for individual proteins (the
transcriptome), as an accurate proxy of the proteome. The appropriatenesstranscriptome the en-

tirety of the rna molecules
present in the cell at a given
time

of this approach has been verified in numerous studies [Nagaraj & al., 2011;
Nookaew & al., 2012].

1.3.2. Microarrays

Until recently, the abundance of mrna has been mostly determined using
specific probes, which hybridise to complementary target mrna sequences.
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Probes are tagged — for instance with a fluorophore — such that the presence fluorophore small chem-
ical that emits light after
excitation by a specific
wavelength

of a probe can be detected visually. In order to determine the abundance of
many different mrnas simultaneously, large arrays of different probes can
be generated and queried in parallel. Due to their miniaturisation, these
arrays are known as expression microarrays [Schena & al., 1995].

While microarrays still play an important role in transcriptome analysis,
they have recently been superseded by another technology due, mainly,
to the following disadvantages [Casneuf & al., 2007; Marioni & al., 2008]:
1. Each probe is sequence specific, and only recognises its target mrna. As
a consequence, quantification is inherently biased and requires that each
target is known beforehand. Microarrays thus cannot discover new tar-
get transcripts, and desiging a new microarray is technically challenging
and expensive. 2. Cross-hybridisation causes low-level, non-specific bind-
ing of transcripts to non-targeted probes, skewing their reported expres-
sion strength. Since this effect is probe dependent, this means that while
identical transcripts’ relative abundances can be compared across arrays,
abundance of different transcripts on the same array cannot be compared.
3. Several interesting biological questions which cannot be answered by mi-
croarray analysis at all, or only with difficulties, become tractable using new
methods; these include the analysis of isoforms from alternative splicing
[Katz & al., 2010] and of allele-specific expression [Pickrell & al., 2010].

1.3.3. RNA-seq

In 2008, focus shifted from microarrays to whole-transcriptome shotgun se-
quencing for rna quantification [Nagalakshmi & al., 2008; Mortazavi & al.,
2008; Marioni & al., 2008]. In contrast to other rna quantification approaches,
whole-transcriptome shotgun sequencing (now typically known as rna-seq)
is entirely unbiased in that it does not rely on a pre-selected set of transcripts
to assay. The approach has been shown to yield high-quality results, is
highly replicable, has very low noise, and is sensitive to transcripts present
at low concentration.
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RNA-seq sample preparation

rna-seq analysis starts with the enrichment of relevant transcripts from a
sample’s total rna pool. This is important since the rna fraction that we
are usually interested in (mrna constitutes 3 to 5 per cent of the total rna
[Alberts & al., 2002]) is dwarfed in abundance by the fraction of rrna (more
than 70 per cent of the cell’s rna is rrna in eukaryotes; in prokaryotes, that
number is even higher [Sittman, 1999]), and would thus dilute the signal. In
practice, this enrichment can be done in one of two ways: 1. Polyadenylated
rna can be targeted due to its affinity to oligo(dT) primers, short strings
of thymine; this will efficiently capture mrna, which is post-transcription-
ally 3′ tagged with poly(A) tails [Mortazavi & al., 2008]. 2. The rna can be
rrna depleted using a RiboMinus protocol, which specifically targets rrna
molecules for removal [Cui & al., 2010]. Thus, if one wants to profile non-
mrna molecules, rrna depletion rather than poly(A) selection is the method
of choice. However, neither method is sufficient to reliably select only a par-
ticular type of rna. For one thing, neither method is 100 per cent specific; in
addition, mrnas are not the only type of rna that is polyadenylated: a large
fraction of ncrna is also polyadenylated and exported from the nucleus into
the cytoplasm [Cheng & al., 2005].

The enriched rna is subsequently fragmented to a uniform length of about
200 nt, and reverse transcribed into complementary dna (cdna). Ultimately,
the result is a cdna library of fragments which are then sequenced on a high-
throughput sequencing machine (figure 1.8).

Computational processing of the sequencing information

Sequencing the rna-seq samples yields short-read libraries, typically sev-
eral tens of millions of reads in size, with reads of uniform length from
25 bp up to (currently) about 125 bp. These are then mapped to a reference
— either the whole genome or the transcriptome — or assembled de novo
(usually in absence of a suitable reference). This assigns reads to genomic
locations, which can be queried and matched to features (usually genes or
exons) [Cox, 2007; D. Kim & al., 2013; Anders, Pyl, & al., 2014].
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Figure 1.8: Typical RNA-seq workflow. Starting from a total RNA sample (1), the RNA of
interest is enriched either via poly(A) selection or rRNA depletion (2). The enriched fraction
is fragmented and size-selected (3). The fragments are reverse transcribed into cDNA (4) and
sequenced. The resulting sequencing reads are aligned back to a reference (5) and counted
on features of interest (adapted from Mortazavi & al. [2008]).

It is important to distinguish whether the cdna fragments were sequenced
from both ends or from one end only. In the first case, instead of a single
read per fragment we end up with paired-end reads, which are separated by
an approximately known distance (the fragment length minus the lengths
of the sequence reads). Mapping and assembling paired-end reads creates
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further algorithmic challenges but increases the amount of information con-
tained in a read (pair), which increases the amount of unambiguously map-
pable data (figure 1.9) [Langmead and Salzberg, 2012].

Figure 1.9: Transcript fragment with paired-end reads. The transcript is sequenced from
both ends, resulting in a read pair whose distance to each other can be inferred from the
known approximate fragment length. As long as one of the reads is “anchored” by being
uniquely mapped, the paired read can be used to improve the mapping confidence in a
repeat region.

Another distinction is made for fragments which are tagged and selec-
ted in such a way as to be strand-specific. This allows identification of the
strand from which fragments originate, and aids in the unambiguous re-
assembly of the sequenced reads, as well as the identification of antisense
information within (intronic regions in) a gene body, which would other-
wise confound the expression estimate (figure 1.10) [Yassour & al., 2010].

1.3.4. Expression normalisation

Since the ultimate goal of rna-seq is to quantify transcript abundance, the
next step is to quantify the number of reads mapping to genomic features.
In the simplest case, one can count the number of reads overlapping with a
feature’s genomic range. This is what e.g. HTSeq [Anders, Pyl, & al., 2014]
does. However, read counts obtained in this manner vary with the length
of the mappable region — longer features originate more sequenced frag-
ments, and hence more reads, with equal coverage, compared to shorter
features — and with the total size of the sequenced library.

Mortazavi & al., 2008 therefore introduced a relative measure of tran-
script abundance, the read count per kilobase of transcript per million mapped
reads (rpkm), defined as

𝑥∗
𝑖 = 𝑥𝑖

̃𝑙𝑖 ⋅ 10−3 ⋅ 𝑛 ⋅ 10−6
, (1.1)

where 𝑥∗
𝑖 is the rpkm of transcript 𝑖, 𝑥𝑖 is the raw number of reads an-
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Figure 1.10: Effect of strand-specific mapping on feature identification. RNA-seq coverage
data from S. cerevisiae without strand specificity (top) and from two libraries prepared with
forward- and reverse-strand specific protocols, as well as the feature units thus found. This
example shows that strand-specific mapping can lead to the discovery of new reverse-strand
features, which may skew the expression quantification of forward-strand features (figure
modified from Yassour & al. [2010], licensed under CC-BY).

notated with transcript 𝑖, ̃𝑙𝑖 is the effective length of the transcript (i.e. its
length minus the fragment length plus 1) and 𝑛 is the library size (in num-
ber of reads). The constant multiplier 1 × 109 merely serves to make other-
wise very small values more manageable. With the advent of paired-end
sequencing the rpkm has been supplanted by the fpkm, simply replacing the
number of reads in the equation with the number of fragments (i.e. the read
pairs rather than single reads in the case of paired-end data).

A related measure is transcripts per million (tpm), which additionally nor-
malise by the total transcript abundance [B. Li & al., 2010]. In other words,

𝑥∗
𝑖 = 𝑥𝑖

̃𝑙𝑖
⋅

(∑
𝑗

𝑥𝑗
̃𝑙𝑗 )

−1

⋅ 106 . (1.2)

tpm succinctly answers the question, “given one million transcript in my
sample, how often will I see transcript 𝑖?”

It is important to note that both approaches give a sample dependent
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abundance, and thus neither of these units makes measured transcript abun-
dance comparable across different experiments: Consider two biological
conditions which are identical except for a transcript 𝑋, which is highly
abundant in condition 𝐴, and not present in condition 𝐵. If we sequence
the same amount of mrna from both samples, relatively fewer fragments
of the non-𝑋 transcript will exists for condition 𝐴 relative to condition 𝐵,
even though their absolute abundance in the original sample was the same
[Robinson and Oshlack, 2010].

To compare transcript abundance across biological samples, a different
approach has to be taken.

1.3.5. Differential expression

One of the main uses of rna-seq data is to compare and contrast gene ex-
pression between different conditions, such as between tissues, between
different species, between healthy and tumour tissues, &c. By doing so,
we hope to establish which genes characterise differences and may thus be
causal of the phenotypic change.

To find statistically significant differences in gene expressions between
two samples, we want to test the null hypothesis that the gene count in
both samples comes from the same distribution with the same mean (𝐻0 ∶
𝜇𝑖𝐴 = 𝜇𝑖𝐵 for a gene 𝑖 between two conditions 𝐴 and 𝐵).

Reads are assumed to be sampled independently from a population, thus
read counts on a given feature can be approximated by a Poisson distri-
bution [Mortazavi & al., 2008; Marioni & al., 2008]. However, actual ex-
pression data has been shown to be over-dispersed compared to this model
[Robinson and Smyth, 2007]. In order to accurately model this greater dis-
persion, a negative binomial distribution can be used instead.

𝑋𝑖𝑗 ∼ NB(𝜇𝑖𝑗 , 𝜎2
𝑖𝑗) , (1.3)

for each gene 𝑖 in library 𝑗, with mean 𝜇𝑖𝑗 and variance 𝜎2
𝑖𝑗 .

To account for different sampling depth across libraries, it is furthermore
assumed that most genes do not drastically change expression between bio-
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logical samples. But the few that are highly expressed in some but not all
samples have a large influence on the total count. Thus, rather than nor-
malising by the ratios between total library sizes, each library 𝑗 = 1 … 𝑚
can be normalised by a summary of the ratios between read counts for all 𝑛
genes or a subset of the genes across libraries [Robinson and Oshlack, 2010;
Anders and Huber, 2010]. Generalised to more than two libraries, gene ex-
pression ratios can be calculated as the ratio of each gene’s read count to
the geometric mean across samples:

𝑠𝑗 = median𝑛
𝑖=1

𝑥𝑖𝑗
𝑚
√∏𝑚

𝜈=1 𝑥𝑖𝜈

. (1.4)

The parameters of the negative binomial distribution can, in principle, be
estimated from the data. However, this is complicated by the typically very
small number of samples. Different solutions for this problem exist. edgeR
[Robinson, McCarthy, & al., 2010] fixes one parameter per sample and only
estimates the other for each gene, while DESeq by Anders and Huber [2010]
pools data across genes of similar expression strength, and performs local
regression to find the dispersion.

1.4. Pol III ChIP-sequencing quantifies tRNA gene expression

1.4.1. ChIP-seq is a DNA binding assay

Chip-seq is a family of assays based on high-throughput sequencing, sim- Chip-seq chromatin im-
munoprecipitation (Chip)
followed by high-throughput
sequencing

ilar to rna-seq, but pre-dating the latter [Johnson & al., 2007]. Unlike rna-
seq, which quantifies the abundance of rna transcripts in the cell, Chip-seq
pinpoints loci of protein–dna interaction for specific proteins that can be
targeted with an antibody. There are several distinct applications of Chip-
seq that all rely on the identification and quantification of binding sites
of specific proteins to dna. The most common uses of Chip-seq are: 1. the
identification of novel tf binding sites by targeting specific, known tfs, and
2. the profiling of histone modifications such as methylation or acetylation,
which reveal information about the transcriptional activity of the proximal
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sequence (see section 1.2.1) [Barski, Cuddapah, & al., 2007].
Briefly, a sample is prepared by cross-linking proteins to the dna in solu-

tion using formaldehyde to ensure that transient interactions are captured,
instead of being dissolved during the assay preparation. Next, sonication
or MNase treatment is used to shear dna into smaller fragments. Some ofMNase dna-cleaving

enzyme (nuclease) purified
from specific bacteria

these fragments will have the protein of interest bound. Using an antibody
that recognises the protein of interest as specifically and sensitively as pos-
sible, these fragments are purified. The protein is then unlinked and the
remaining dna fraction is again purified, size selected, ligated to sequen-
cing adapters, amplified and sequenced (figure 1.11) [Park, 2009].

1.4.2. Quantifying expression of tRNA genes

A central aspect of this thesis is the investigation of genome-wide trna gene
expression. trna gene expression can be quantified via pol iii Chip-seq, using
an antibody that specifically recognises the pol iii subunit rpc1/155, which
forms part of the active centre of trna gene transcription [Ablasser & al.,
2009]. The reason for using this, on the first glance, indirect measure is
because trna genes are not identifiable by their sequence alone: performing
a multiple sequence alignment of trna genes in M. musculus reveals that
several trna genes share the exact same sequence (figure 1.12).

Consequently, to identify individual trna genes and to quantify their ex-
pression, we cannot use conventional rna-seq, since the rna reads cover-
ing only the transcribed gene region are not uniquely mappable. Common
strategies for counting ambiguously mapping reads, as used in ERANGE
by Mortazavi & al. [2008], still require at least some unambiguous inform-
ation, to distinguish different genes that share reads (and the problem of
multi-mapping reads continues to pose challenges, as recent publications
highlight [Kahles & al., 2015]).

We solve this problem by extending the trna gene body into the flanking
regions, which are not under purifying selection, and therefore not conserved.purifying selection se-

lective force that prevents
mutations

As pol iii Chip-seq fragments cover the flanking regions as well as the actual
gene body (figure 1.13), we can use reads uniquely mapping to the flanking
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1

2

3

4

5

6

Figure 1.11: Typical ChIP-seq workflow. Starting from a sample with a target protein bound
to DNA (1), the protein is covalently cross-linked to the DNA (mainly with formaldehyde, 2).
Next, the DNA is fragmented (mainly via sonication, 3) and the protein-bound fragments are
immunoprecipitated with a specific antibody targeting the protein of interest (4). The protein
is unlinked and the DNA purified (5). This is followed by sequencing library preparation,
sequencing and mapping of the read data back to the reference (6). This workflow follows
the general outline presented in e.g. Landt & al. [2012].

regions to assign ambiguously mapped reads to the appropriate regions
(figure 1.14).

More precisely, when mapping the reads, we do not discard all ambigu-
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chr5.trna1044 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr3.trna750 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr3.trna298 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr3.trna294 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr3.trna289 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr2.trna1947 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr1.trna1014 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr11.trna1446 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr10.trna390 GTCTCTGTGGCGCAATCGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCAGGGACG
chr3.trna757 GTCTCCGTGGCGCAATCGGTcAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCGAGCCCACCCGGGGACG
chr3.trna283 GTCTCTGTGGCGCAATTGGTtAGCGCGTTCGGCTGTTAACCGAAAGGtTGGTGGTTCAAGCCCACCCAGGGACG

Figure 1.12: Alignment of tRNAAsn genes. Parts of a multiple sequence alignment of tRNA
genes in M. musculus generated with COVE. Shown are the tRNA genes coding for asparagine.
Bases which differ from the consensus sequence are highlighted in blue.

~ 70 bp

Figure 1.13: tRNA pol III ChIP binding profile. The shaded, bell-shaped area shows an
idealised binding profile of ChIP-seq data spanning the tRNA gene with the A and B box
highlighted, as well as its flanking regions upstream and downstream of the gene body. This
overlap plays a role in identifying the individual gene.

ously mapping reads. However, we still discard reads which are likely poly-
merase chain reaction (pcr) duplicates, i.e. we remove all but one copy of
non-unique reads in the raw input data. Despite this, we still have reads
that have not been uniquely assigned to a given trna gene (figure 1.14a). To
assign these reads, we use the number of uniquely mapping reads in trna
genes’ flanking regions to determine the most likely origin (figure 1.14b)
[Kutter & al., 2011].

Formally, let 𝑖 be the 𝑖th trna gene locus, and 𝑐𝑖 be the count of uniquely
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mapped reads in its flanking region (we used ±100 bp, which has been
shown to work well in practice [Kutter & al., 2011]). A multi-mapping read
𝑟, which maps to a set 𝑇 of candidate trnas, can be allocated to a target trna
gene 𝑖 randomly with probability

𝑝𝑖 =
⎧⎪
⎨
⎪⎩

𝑐𝑖/ ∑𝑥∈𝑇 𝑐𝑥 if ∑𝑥∈𝑇 𝑐𝑥 ≠ 0,

1/|𝑇 | otherwise.
(1.5)

? ?

(a) Two potential match candidate tRNA genes for a read.

(b) Using the count data from the flanking regions to extrapolate most likely mapping positions
for ambiguous reads.

Figure 1.14: Mapping ambiguous ChIP reads. ChIP reads originating from tRNA genes can
often not be mapped unambiguously to any given tRNA. Instead, information from the gene’s
flanking regions is used to determine the more likely provenance.

1.5. Mouse liver development

In chapter 2 I will present results from studies in the developing liver in
M. musculus. Mouse liver was chosen because it is a well-studied model
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organ that exhibits interesting shifts in function during development. An-
other feature that makes liver uniquely well-suited for the study of gene
expression is its homogeneity, with over 70 per cent (by volume) consist-
ing of just one cell type, hepatocytes [Si-Tayeb & al., 2010]. The signal from
whole-tissue transcriptome assays thus largely corresponds to a single cell
type rather than a mixture of different signals from different cell types.

foregut

midgut hindgut

hepatic
diverticulum

liver
bud

E7 E8 E9 E10 E15 postnatal

endoderm formation hepatic specification

endoderm patterning hepatic diverticulum

liver bud growth hepatic maturation

hepatocyte/biliary differentiation

Figure 1.15: Embryonic mouse liver development. Embryo at four different stages of devel-
opment, to show how the precursor of liver develops. The endoderm tissue is highlighted in
yellow, the liver precursor is red, bile is green. The bottom gives a timeline of liver develop-
ment (figure modified from Zorn [2008], licensed under CC-BY).

Mouse embryo development takes 19 days from fertilisation of the mouse
oocyte to birth. Liver formation starts with the formation of the hepatic diver-
ticulum at E9 (i.e. on day 9 after fertilisation) from a thickening of the ventral
foregut endoderm (figure 1.15). The liver bud is subsequently formed from
hepatoblasts in the anterior part of the hepatic diverticulum between E9.5
and E10, in response to growth factors from the surrounding tissue. The
liver bud is also colonised by haematopoietic cells. As a consequence, the
liver serves as the main haematopoietic organ in the embryo between E10
and E15 [Zorn, 2008].

Starting around E13, the liver begins to differentiate hepatoblasts into
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hepatocytes and biliary epithelial cells. Making up 3 per cent of the adult
liver’s cells, they are the second most abundant cell type in adult liver. This
process leads to the formation of the characteristic tissue structure of the
liver. With the maturation of the hepatocytes, this development also leads
to a slow shift in organ function towards various metabolic functions and
bile secretion, which are taken up immediately after birth [Si-Tayeb & al.,
2010].

After birth, the liver undergoes further functional changes during the
suckling–weaning transition, which happens around three weeks post birth,
and which is caused by the change of diet away from fatty milk and towards
solid food rich in carbohydrates [Girard & al., 1992]. Liver thus passes
through three major functions during development: haematopoiesis, meta-
bolism of fat rich diet and metabolism of carbohydrate rich diet.

1.6. Quantifying codon usage and anticodon abundance

We have seen how the genetic code defines the interface between mrna and
proteins, and how trnas are the physical link between the codons on the one
hand and the amino acids on the other hand. As the abundance of different
mrna transcripts varies with the cell state, so does the number of different
codons that are used by these transcripts. This immediately suggests that
the variable demand of codons to be decoded needs to be met, in some way,
by a supply of trna molecules carrying matching anticodons. In this thesis,
I am exploring this supply–demand relationship between codons and anti-
codons by investigating the abundance of trnas in cells and its relationship
to the demand of codons in the mrna transcriptome.

The existence of a relationship between codon usage and anticodon abun-
dance, with the codon usage adapting to the availability of matching anti-
codon trnas, was first demonstrated in Escherichia coli in the early 1980s
[Ikemura, 1981a; Ikemura, 1981b; Ikemura, 1985]. The influence of trna
abundance on codon choice is particularly important in organisms where
no or only limited gene expression regulation exists: to modulate protein
abundance, alternative, post-transcriptional regulatory mechanisms must
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be in charge of controlling protein abundance. Codon bias constraints im-
posed by trna anticodon isoacceptor abundance can fulfil this regulatory
role [Horn, 2008].

This thesis focuses on M. musculus development as a mammalian model
system. It has previously been established that trna gene transcription var-
ies between different tissues in Homo sapiens using microarray expression
data for a subset of trna genes [Dittmar & al., 2006]. Furthermore, it has
been observed that tumour cells may drive overexpression of some trna
genes [Winter & al., 2000; Pavon-Eternod, Suzanna Gomes, & al., 2009],
and that, conversely, overexpressing trnaMet

i leads to increased prolifera-
tion in human cells [Pavon-Eternod, Suzana Gomes, & al., 2013]. However,
it remains unknown to what extent trna gene expression in mammals var-
ies under biological conditions, and whether these changes are stochastic
or coordinated.

In particular, this implies that it is unknown whether mammalian cells
use the trna anticodon isoacceptor abundance to regulate the translation
rate of protein-coding genes, and thus the flow of information from genes
to proteins. As a first step in answering this question, we need to know to
what extent trna anticodon isoacceptor abundance correlates with codon
usage bias. Importantly, it is not possible to infer this from findings in non-
mammalian organisms, since protein abundance is regulated differently,
with a heavy focus on gene expression regulation via transcription factors
in mammals. In fact, the strongly tissue-specific regulation of gene expres-
sion in mammals makes it plausible that translation-related effects have at
best a limited regulatory effect on the abundance of proteins, and this is
supported by recent estimates of a strong correlation between mrna and
protein abundance [J. J. Li & al., 2014; Csárdi & al., 2014; Jovanovic & al.,
2015].

In the following chapters, we will take a closer look at changes in codon
usage and trna anticodon isoacceptor abundance, and at the quantitative
relationship between codon usage and anticodon abundance. Throughout
the text I am going to use several related measures:
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1. codon usage,
2. relative codon usage (rcu),
3. anticodon abundance and
4. relative anticodon abundance (raa).

To illustrate how they relate to each other, I am going to use the following
toy example of two transcripts consisting of 5 different types of codons (plus
start and stop codons):

Gene Sequence

𝐴 AUG GAU UAC AAA GAC AAA GAC GAC AAA UAC AUG AAG GAC UGA

𝐵 AUG AAA UAC GAU AUG AAG GAU UAC AUG AAG UAC UAC UAC AAG UAC GAU UAC UGA

Table 1.3: Example transcripts of two genes.

The codon usage of a codon is the frequency with which this codon occurs
in a given transcriptome. This is either the raw number of occurrences in the
transcripts under consideration, or the number of occurrences, weighted by
the expression of each transcript.

Using the above example, and assuming the gene expression counts 𝐴:10
and 𝐵:20, we can summarise the codon usage as follows:

Codon 𝐴 𝐵 ∑(𝐴, 𝐵) 𝐴, 𝐵

AAA 3 1 4 2.0
AAG 1 3 4 2.0
AUG 2 3 5 2.5
GAC 4 0 4 2.0
GAU 1 3 4 2.0
UAC 2 7 9 4.5

(a) Genomic codon usage

Codon 𝐴 𝐵 ∑(𝐴, 𝐵) 𝐴, 𝐵

AAA 30 20 50 25
AAG 10 60 70 35
AUG 20 60 80 40
GAC 40 0 40 20
GAU 10 60 70 35
UAC 20 140 160 80

(b) Codon usage weighted by gene expression

Table 1.4: Example codon usage. “Genomic” codon usage is based purely on the (genomic)
sequence of codons of the transcript. Codon usage weighted by expression multiplies each
codon in a transcript by the transcript’s measured abundance.
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Note that we have omitted the stop codon, but not the start codon, since
the latter corresponds to a trna isoacceptor, while the former does not. The
columns ∑(𝐴, 𝐵) and 𝐴, 𝐵 show how the aggregated codon usage of a tran-
scriptome consisting of these two genes would look, either as the sum of
the codon usage of all genes, or as the arithmetic mean. In the following
chapters, we will rarely look at the codon usage of single transcripts, and
rather at either the sum codon usage or the mean codon usage of gene sets.
When comparing the codon usage of gene sets of different size (to determ-
ine, for instance, which codons are used more in condition i compared to
condition ii), we need to use the mean codon usage rather than the sum; for
sets of the same size, either metric works. However, we are generally not
interested in the absolute number of codons used, but rather in the shift of
use between synonymous codons. Here, using the rcu is more appropriate.

The relative codon usage (rcu) of a codon is that codon’s contribution to the
amino acid it codes for, relative to all other synonymous codons. The rcu
of all synonymous codons sums to 1. Let 𝐶𝑎 be the set of all codons coding
for amino acid 𝑎, and 𝑐 ∈ 𝐶𝑎 a codon in that set. Furthermore, let 𝑥𝑐 be the
codon usage of codon 𝑐, and 𝑚𝑐 the rcu of 𝑐. Then, for all amino acids 𝑎 and
all 𝑐 ∈ 𝐶𝑎,

𝑚𝑐 = 𝑥𝑐
∑𝑖∈𝐶𝑎

𝑥𝑖
, (1.6)

and consequently

∑
𝑐∈𝐶𝑎

𝑚𝑐 = 1 . (1.7)

Table 1.4 illustrates two interesting things. First, when considering only
a single gene, it is immaterial whether we consider expression or not: since
the rcu is a ratio of the overall codon usage, multiplying all codon usage
values with a constant changes nothing (column 𝐴 is the same in figure 1.16a
and figure 1.16b, and so is column 𝐵). And secondly, both in the case of the
genomic rcu and in the rcu weighted by gene expression the sum rcu and
the mean rcu are identical.
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Codon aa 𝐴 𝐵 ∑(𝐴, 𝐵) 𝐴, 𝐵
AAA Lys 0.75 0.25 0.5 0.5
AAG Lys 0.25 0.75 0.5 0.5
AUG Met 1.0 1.0 1.0 1.0
GAC Asp 0.8 0.0 0.5 0.5
GAU Asp 0.2 1.0 0.5 0.5
UAC Tyr 1.0 1.0 1.0 1.0

(a) Genomic RCU

Codon aa 𝐴 𝐵 ∑(𝐴, 𝐵) 𝐴, 𝐵
AAA Lys 0.75 0.25 0.41(6) 0.41(6)
AAG Lys 0.25 0.75 0.58(3) 0.58(4)
AUG Met 1.0 1.0 1.0 1.0
GAC Asp 0.8 0.0 0.(36) 0.(36)
GAU Asp 0.2 1.0 0.(63) 0.(63)
UAC Tyr 1.0 1.0 1.0 1.0

(b) RCU weighted by gene expression

Table 1.4: Example RCU with the amino acid for each codon shown; in each column, the
values for the same amino acid sum to 1. Parentheses denote periodic decimals.

The anticodon abundance of an anticodon is the amount of trna decoding a
given anticodon, present in the cell at a given instance. Other publications
define the anticodon abundance purely in terms of trna gene copy number;
however, in the context of this thesis, the anticodon abundance is quanti-
fied by trna gene expression, and is thus an estimate of the number of trna
molecules of each anticodon isoacceptor present in the cell.

The relative anticodon abundance (raa) of an anticodon is defined equival-
ently to the rcu based on the anticodon abundance. That is, the contribution
of an anticodon to its amino acid isotype, relative to the other anticodons
in the same isotype.

Several publications use the term codon usage bias (cub) to describe diver- codon usage bias a diver-
gence of the codon usage from
a uniform distribution, where
all alternative codons are
used at the same proportions;
or the difference in codon
usage frequency or relative
codon usage between sets of
genes

gence in codon usage between different sets of genes within a genome, or
differences between genomes. The cub is then equivalent to the variation
in either the codon usage as defined above, or the rcu.

To study whether trna anticodon isoacceptor availability influences trans-
lation efficiency, we want to compare the demand in codons in transcribed
genes to the supply in matching anticodon aminoacyl-trnas. In this thesis,
we do this by calculating the correlation between the rcu and the raa. This
gives us a measure of how well the set of codons in a gene, gene set or
transcriptome are adapted to the trna abundance. This correlation ignores
wobble base pairing; in fact, some codons are not matched by any anticodon
and would thus negatively impact the correlation. In the following we dis-
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regarded these codons when calculating the codon–anticodon correlation,
rather than estimating the extent of matching of a given anticodon to dif-
ferent codons via wobbling. Despite this shortcoming, we find that this
simple correlation works well in estimating codon–anticodon correlation
(chapter 2, figure 2.9), and performs comparably to other measures, such
as distributing a codon’s usage between all its matching trna anticodons
according to their abundance [Ikemura, 1981a].

1.7. Structure of this thesis

In the next chapters I am going to present the research I performed — in col-
laboration with colleagues — to study the abundance of trna and mrna in
mammals, and how these are linked. In chapter 2 I will present my analysis
of the dynamic changes of trna gene expression in mouse development and
how it relates to changes in protein-coding gene expression. In this chapter
I will establish our model of trna gene expression, which postulates that
changes in trna gene expression are nonrandom, and concerted to stabilise
the abundance of trnas.

In chapter 3 I will focus more closely on the potential adaptation of the co-
don pool to the abundance of trnas. My interest in this topic was triggered
by the publication of results closely related to those I presented in chapter 2,
and which I will therefore describe and build on. I will explore the hypo-
thesis that mammalian codon usage, like that of other organisms, is shaped
by the abundance of trnas, and that codon bias is used to regulate the trans-
lation of cell type specific genes.

In chapter 4, finally, I will take a short glimpse at the world of the pol iii
transcriptome beyond trnas. I will quantify the association of pol iii with
different genomic features. Based on this, I will also introduce a future pro-
ject whose aim is to specifically look at a particular set of genomic features
that form part of a class of genes called transposable elements.
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Developmental stability of
the mrna–trna interface 2
To study how changes in mrna gene expression relate to changes in trna
gene expression, we collected tissue samples from six time points in mouse
(M. musculus) development: two before birth (E15.5 and E18.5, which stands
for 15.5 and 18.5 days after fertilisation of the oocyte, respectively); two
shortly after birth, happening around E20 (P0.5 and P4 — 0.5 and 4 days
after birth, respectively) and two after weaning the juvenile mice (P22 and
P29).

For each of these time points, tissue was collected from whole liver and
whole brain (homogenised) and prepared for rna-seq and pol iii Chip-seq in homogenise breaking

apart and mixing the tissue
in such a way that all the cell
types will be evenly distrib-
uted throughout the sample

order to assay mrna and trna gene expression as explained in sections 1.3
and 1.4. The tissues were chosen for their interesting shifts in physiology
during development: the liver is a homogeneous organ predominantly made
up of a single cell type — around 70 per cent hepatocytes — and liver
function changes fundamentally at birth; prenatal liver serves mainly as a
haematopoietic organ, whereas liver of post-natal mice is primarily a meta-
bolic organ [Si-Tayeb & al., 2010]. Brain, by contrast, is a highly heterogen-
eous organ made up of many different cell types, with dynamic changes all
through development [Liscovitch and Chechik, 2013].

Figure 2.1 summarises the experimental procedure.* Each experiment
was performed in two biological replicates, which were highly correlated
(figure 2.2). Table 2.1 summarises the variable names used to refer to data

*The wet-lab work of this project was performed by Bianca Schmitt, who was also a joint
first author on the manuscript. Claudia Kutter provided guidance with the interpreta-
tion of the results and helped with the creation of the figures.
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throughout this chapter.

Pol III 
location analysiscross-linked cells

total RNA
sequencingflash-frozen cells

protein-coding gene
(~18,000)

triplet codon
(64)

amino acid
(20)

(20)
amino acid

isotype

anticodon 
isoacceptor (47)

tRNA gene
(433)

E18.5

E15.5

P0.5

P4

P22

P29

E12.5

E9.5

AAA

AAA

Figure 2.1: Sample analysis outline. Samples were collected in eight distinct time points. Of
these, E9.5 and E12.5 were excluded from most of the subsequent analysis, except where
noted. For each time point, tissue was collected from liver and brain, and on the one hand pre-
pared for RNA-seq, and on the other hand cross-linked to the pol III antibody and prepared
for ChIP-seq. The resulting data was used to quantify mRNA and tRNA gene expression,
codon usage and tRNA anticodon abundance. Figure created by Claudia Kutter.
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Figure 2.2: Replicate variability. Shown are the Spearman correlation coefficients between
pairwise biological replicates for the tRNA count data (left) and the mRNA count data (right).
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mrna trna
Raw counts per replicate 𝑚𝑖𝑗 𝑡𝑖𝑗
Normalised counts per replicate 𝑚∗

𝑖𝑗 𝑡∗
𝑖𝑗

Counts of merged replicates 𝑚′
𝑖𝑦 𝑡′

𝑖𝑦
(Anti-)codon level counts 𝑐𝑥𝑦 𝑎𝑥𝑦

Table 2.1: Summary of the matrix and subscript names. 𝑖 is the index of a gene; 𝑗 is the
index of a library replicate; 𝑥 is an (anti-)codon; 𝑦 is the index of a developmental stage.

In addition to the six time points described above, tissue was also col-
lected at two earlier stages, E9.5 and E12.5. However, the embryo at such
early stages of development is too small, and the tissue development has
not progressed far enough, to permit collecting enough tissue-specific ma-
terial. For that reason we used the whole embryo at E9.5 and separated the
E12.5 embryo into torso and upper body. The subsequent analysis was per-
formed on the six later stages in liver and brain. However, the earlier stages
confirmed the general patterns found by analysing the remaining data (fig-
ure A.5).

The analysis and the results presented in this chapter are published as
“High-resolution mapping of transcriptional dynamics across tissue development
reveals a stable mrna– trna interface” [Schmitt, Rudolph, & al., 2014].

2.1. Protein-coding gene expression changes dynamically

during mouse development

To investigate protein-coding gene expression changes during development,
we quantified the mrna abundance from rrna-depleted rna-seq data (strand-
specific 75 bp paired-end reads from Illumina HiSeq 2000). Reads were mapped
to the M. musculus reference genome (ncbim37) using iRAP [Fonseca & al.,
2014] and TopHat2 [D. Kim & al., 2013]. Read counts were quantified using
HTSeq [Anders, Pyl, & al., 2014], and assigned to protein-coding genes from
the Ensembl release 67 [Flicek & al., 2014].

We excluded mitochondrial chromosomes from the analysis, because mi-
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tochondrial genes use a slightly distinct genetic code [Osawa & al., 1989].
Furthermore, we excluded sex chromosomes.

Changes in the expression of protein-coding genes, leading to changes
in abundance of proteins, are known to drive cellular behaviour [Brawand
& al., 2011]. Our data confirms that tissue development in mice is accom-
panied by large-scale changes in the mrna transcriptome. This is nicely il-
lustrated by looking at individual gene expression counts, plotted against
their genomic location (figure 2.3). For example, in the liver we can confirm
the functional relevance of apolipoprotein B (apob) as the primary carrier
of lipoproteins, which becomes increasingly relevant as the organ shifts to
metabolism [Knott & al., 1986]. Similarly, mrna gene expression changes
highlight the role of α-fetoproteine (afp) as the fetal version of serum al-
bumin (figure 2.3a) [H. Chen & al., 1997]. In the brain, shifts can be seen
in the activity of the neural tf foxp2, the expression of which continuously
decreases, and in calmodulin (calm1), where transcription increases after
birth [Tsui & al., 2013; Huang & al., 2011].

For a more systematic analysis, I took the matrix of normalised count data
of all library replicates and all mrnas, 𝑚∗

𝑖𝑗 , for each mrna gene 𝑖 and each
library replicate 𝑗, and calculated the pairwise Spearman rank correlation
between all replicates,

𝑐𝑜𝑟𝑖𝑗 = cor(𝑚∗
⋅𝑖, 𝑚∗

⋅𝑗) for all libraries 𝑖, 𝑗, (2.1)

where 𝑚∗
⋅𝑖 denotes the 𝑖th column of the matrix 𝑀∗.

I then performed principal components analysis (pca) on the correlation
matrix, which allows variation in the data to be projected onto uncorrelated
axes, so that the first axis represents the component that explains the most
variance of the data, and the second axis represents the second component.

The resulting pca in figure 2.4 shows that the biggest source of variance in
the correlation structure of the expression data is tissue identity, which ex-
plains 97 per cent of the total variance. However, of the remaining variance,
60 per cent is explained by progression of tissue development in a way that
nicely mirrors the known biology: the plot’s 𝑦 axis shows the linear pro-
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Figure 2.3: Example of gene expression changes in development. The four genes are rep-
resentative for tissue- and stage-specific genes whose expression changes drive cell function.
These changes can go up or down over the course of development, corresponding to either
an up- or downregulation. Figure created by Bianca Schmitt.

gression of development from early stages at the bottom to late stages at
the top. We observe a much stronger variation on the 𝑦 axis for liver data:
this could be explained by noting that the liver is more homogeneous than
the brain, and changes in gene expression are therefore more coordinated;
it might also reflect the change in liver function from a haematopoietic to a
metabolic organ around birth.
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Next, I used DESeq2 [Love & al., 2014] to identify differentially expressed
genes between stages and tissues. Genes are counted as differentially ex-
pressed if their Benjamini–Hochberg fdr-corrected 𝑝-value is below 0.001.
The number of differentially expressed genes between all pairwise devel-
opmental stages unsurprisingly shows that more distinct developmental
stages have higher numbers of differentially expressed genes (figure 2.5).
Furthermore, there is a clear gap between pre- and post-weaning stages,
with a large jump in the number of differentially expressed genes across
the weaning boundary, in both liver and brain.
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Figure 2.4: PCA of mRNA gene expression per develop-
mental stage. Rotations 1 and 2 of the correlation matrix
of protein-coding gene expression in each developmental
stage. The percentage on the axes shows the amount of
variance explained by each rotation. Points corresponding
to liver samples are coloured in red, points correspoding to
brain samples are coloured in yellow; stages of development
go from light colours to dark colours.

Figure 2.5: Number of differentially expressed mRNA
genes between stages. Each off-diagonal square shows the
number of differentially expressed genes (at a significance
threshold of 𝑝 < 0.01) between the two indicated develop-
mental stages.

These patterns are noteworthy because they recapitulate tissue identity
and linear progression through the stages of tissue development. But they
are not particularly surprising: cell function is dictated by the abundance of
specific proteins and thus protein-coding gene transcription. The patterns
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of gene expression similarity shown in the pca and in the number of dif-
ferentially expressed genes hence recapitulate the expected changes in cell
function between tissues and through development.

2.2. Dynamic changes of tRNA gene expression during

mouse development

Quantification of trna genes was performed by first mapping the pol iii
Chip-seq data (non-strand-specific 36 bp single-end reads sequenced by Il-
lumina Genome Analyzer IIx or HiSeq 2000) using BWA version 0.5.9-r16 [H.
Li and Durbin, 2009] using default parameters. Next, non-uniquely map-
ping reads were reallocated probabilistically according to the description
given in the previous chapter, using the trna gene annotation from the Ge-
nomic tRNA Database, described in Chan and Lowe [2009]. For each trna
gene (again excluding mitochondrial trna genes because the genetic code of
the mitochondrial mrna genes differs from the nuclear genetic code), reads
were summed within each trna gene locus and in the ±100 bp flanking re-
gions.

trna genes that were unexpressed in all experimental conditions were ex-
cluded from further analysis, to reduce the effect of multiple testing [Bour-
gon & al., 2010] and to exclude potential pseudogenes in the annotation. To
be called expressed, a trna gene had to be present in all replicates of at least
one condition with a count of at least 10, after size-factor normalisation. The
threshold 10 was chosen so that small variations in either direction would
have a minimal impact on the thresholding. The following analysis is thus
performed using 311 expressed out of 433 total trna genes (72 per cent).

Unlike proteins, trnas do not perform a cell type specific function; instead,
their continued presence is required for the maintenance of transcription
in all cellular conditions. We therefore did not expect many changes in the
levels of trna gene expression over the course of development, and we do in
fact observe that many trna gene expression levels remain stable (figure 2.6).
Nevertheless, we also observe that around 50 per cent of all trna genes are
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differentially expressed. Figure 2.7 shows a genomic locus containing trna
genes that displays these different dynamics.
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Figure 2.6: Overview over tRNA gene expression change.
Bar plots show different types of tRNA gene expression
dynamics: tRNA genes without change in their expression
levels, tRNA genes with changes to their expression levels,
which are nevertheless expressed in all stages of develop-
ment across both tissues; and tRNA genes which are only
expressed in a subset of all conditions. Figure created by
Claudia Kutter.

Figure 2.7: Example of dynamically changing tRNA genes.
Genomic region showing different types of tRNA gene ex-
pression behaviour ; the label colours on the x axis corres-
ponds to the colours in figure 2.6. Figure created by Bianca
Schmitt.

Surprisingly, the trna gene expression differences follow similar patterns
to those observed in mrna genes, with the first two principal components
resulting from the application of pca to the rank correlation matrix again
corresponding to the tissue and developmental stage (figure 2.8). The ob-
served patterns are incompatible with mere random expression changes (which
would result in an unordered cloud of points). Something must account for
these concerted changes in trna gene expression.

In the case of the protein-coding genes, we can explain the nonrandom
changes in gene expression by known gene regulatory mechanisms, which
control the transcriptome of each cell and developmental stage. The fact
that trna gene expression changes across development exhibit the same pat-
terns as mrna gene expression changes suggests that trna gene expression
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Figure 2.8: PCA of tRNA gene expression per developmental stage. Rotations 1 and 2 of
the correlation matrix of tRNA gene expression in each developmental stage. The percentage
on the axes shows the amount of variance explained by each rotation. Points corresponding
to liver samples are coloured in red, points correspoding to brain samples are coloured in
yellow; stages of development go from light colours to dark colours.

is subject to similar regulatory constraints. We therefore attempted to ex-
plain why trna gene expression requires changing in a regulated manner,
and how this trna gene regulation is carried out by the cell.

Our first suspicion was that changes in mrna gene expression might lead
to changes in codon demand, since different protein-coding genes are made
up from different codons. The change in codon demand in turn could lead
to a change in anticodon supply in the form of differential trna gene ex-
pression. This would meet the need for efficient translation: mismatching
codon and anticodon pools would either lead to a wasteful over-production
of trnas of a given anticodon, or to a bottleneck in such an anticodon supply,
causing efficiency loss in translation. Both scenarios present a suboptimal
scenario for the fitness of the cell and should reasonably be selected against.
In fact, there is some evidence that such a selection takes place [Ikemura,
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1981a; Ikemura, 1985; Yang and Nielsen, 2008].
We therefore went on to quantify the codon pool corresponding to each

given transcriptome, as well as the pool of available trna genes, grouped by
their anticodon isoacceptor identity.

2.3. Every mouse mRNA transcriptome encodes the same

distribution of triplet codons and amino acids

The codon pool of a given mrna transcript is given by the distribution of
triplet codons in its sequence. There are 64 possible triplet codons, of which
61 encode 20 different amino acids, and three encode the stop codon, mark-
ing the end of translation.† Using this information and the transcript abun-
dance quantified by our rna-seq data, I calculated the abundance of each
triplet codon as well as each amino acid in the transcriptome of each devel-
opmental stage. I then compared these across stages to find out how they
varied.

First, for every gene, the number of occurrences of each codon in the
longest annotated transcript (which is often called the “canonical” tran-
script‡) was determined and this value was multiplied by the gene’s expres-
sion (normalised for transcript length):

𝑐𝑥𝑖𝑦 = codon𝑥𝑖 ⋅
𝑚′

𝑖𝑦
𝑙𝑖

, (2.2)

where codon𝑥𝑖 is the number of occurrences of codon 𝑥 in the canonical
transcript of gene 𝑖, 𝑚′

𝑖𝑦 is the gene expression count of gene 𝑖 in condition
𝑦 (averaged across the replicates of condition 𝑦 after library size normalisa-
tion), and 𝑙𝑖 is the length of the canonical transcript of gene 𝑖.

Next, the overall usage of each codon was obtained by summing these

†The analysis ignores selenocysteine, which is a 21st possible amino acid, and which can
be encoded by the stop codons UGA under rare circumstances (see section 1.2.3).

‡http://www.ensembl.org/Help/Glossary?id=346, retrieved 2014-05-12.
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values across all genes:

𝑐𝑥𝑦 = ∑
𝑖

𝑐𝑥𝑖𝑦 . (2.3)

Relative codon usage (rcu) values 𝑐∗
𝑥𝑦 were then calculated by dividing

each codon usage value by the sum of the codon usage values of a given
condition:

𝑐∗
𝑥𝑦 =

𝑐𝑥𝑦
∑𝑘∈syn(𝑥) 𝑐𝑘𝑦

, (2.4)

where syn(𝑐) is the set of synonymous codons to which 𝑐 belongs.

We find that at the transcriptome level, codon abundance is highly stable
across development in both tissues (Spearman’s 𝜌 > 0.97) — figure 2.9 top
left shows this by way of example using the codons for arginine in the dif-
ferent stages in liver.

Given this stability, I next explored how much variation should be expec-
ted for varying transcriptomes, by simulating random transcriptomes and
computing their codon usage.

I used our library-size normalised rna-seq data to simulate background
distributions in liver and brain for each specific developmental stage. I
randomly rearranged the expression values across genes for the expressed
(“expr”) and all genomically annotated (“all”) protein-coding genes. For
each developmental stage, I created 100 such random background distribu-
tions. I then calculated the triplet codon usage for the rearranged protein-
coding rna expression distributions.

Figure 2.9 top middle and right shows that, even for simulated transcrip-
tomes, the codon usage remains unchanged. In fact, both observed and sim-
ulated transcriptomes seem to simply reflect the codon abundance found
in the coding part of the genome, regardless of the sometimes strong vari-
ations in gene expression between different transcriptomes.
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Figure 2.9: Codon and anticodon abundance across stages of development. The figure
consists of three panels (left, middle, right) with three subfigures (top, centre, bottom) each.
The left panel shows observed data for each of the developmental stages in liver (brain
data is comparable). The middle and right panels show simulated data from randomised
transcriptomes. The middle panel used only expressed genes of each respective stage in the
simulated data, whereas the right panel uses all genes, also unexpressed ones). The top figures
of each panel show relative mRNA transcript triplet codon usage, using the representative
example of arginine. The centre figures show the relative tRNA anticodon abundance of
the arginine isotype family. The bottom right figure shows the linear regression of relative
codon usage against relative anticodon abundance in liver E15.5, along with its Spearman
rank correlation. Triplet codons without directly corresponding anticodon (grey dots) were
ignored in the calculation. The bottom middle and right figure shows the Spearman rank
correlation coefficient of each stage’s relative codon and anticodon abundance (diamond),
and the range of correlation coefficients for the simulated codon and anticodon pools (box
plots) for each stage. Figure created jointly with Bianca Schmitt and Claudia Kutter.
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2.4. Stable isoacceptor anticodon abundance through

development indicates tight regulation of tRNA gene

expression

Next, I looked at the abundance of the matching trna isoacceptors by sum-
ming the expression of all trna genes belonging to the same isoacceptor fam-
ily. Relative anticodon abundance (raa) was calculated by averaging the
expression values for all trna genes in a given anticodon isoacceptor family.
Figure 2.9 centre left shows the relative anticodon isoacceptor abundance of
the arginine isotype family. Again we find that the abundance stays stable
across development in both tissues (Spearman’s 𝜌 > 0.96).

In the same way as for the mrna transcriptome, I then simulated 100 ran-
dom trna transcriptomes per developmental stage and calculated the rel-
ative abundance of all isoacceptor families. Unlike the observed trna data,
we find that simulated trna transcriptomes create more variable pools of
anticodon isoacceptors (figure 2.9 centre middle and right). The variability
observed here is explained by the fact that there are only 433 trna genes in
M. musculus (of which only 311 were expressed in our samples), compared
to the approximately 20 000 protein-coding genes, which leads to a bigger
relative influence of random sampling on the distribution. In contrast to
mrna gene expression, the stable anticodon isoacceptor abundance distri-
bution we observe across development is therefore not compatible with
random variation in the trna gene expression: instead, it demonstrates the
necessity of a mechanism actively stabilising trna gene expression variation
at the anticodon isoacceptor level.

2.5. mRNA triplet codon usage is highly correlated with

tRNA anticodon isoacceptor abundance during

development

Codons and anticodon-carrying trnas form the biochemical interface be-
tween the genetic code and the amino acid sequence of proteins during
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mrna translation. I investigated this correspondence between mrna-driven
codon demand and trna anticodon supply by looking at the correlation be-
tween a codon’s frequency in the mrna transcriptome as a fraction of the
overall codon count 𝑐′

𝑥𝑦, and its matching trna anticodon isoacceptor abun-
dance 𝑎′

𝑥𝑦 at the same developmental stage 𝑦 (figure 2.9 bottom left):

𝑐′
𝑥𝑦 =

𝑐𝑥𝑦
∑𝑘 𝑐𝑘𝑦

(2.5)

𝑎′
𝑥𝑦 =

𝑎𝑥𝑦
∑𝑘 𝑎𝑘𝑦

(2.6)

To compare how well the anticodon supply of a given transcriptome was
adapted to its codon demand, I initially calculated the Spearman rank cor-
relation between the codon usage and the anticodon isoacceptor abundance.
However, since not all codons have a corresponding anticodon-carrying
trna, unmatched “orphan” triplet codons were discarded from the calcu-
lation. Consequently, the correlation coefficients I calculated ignore the
possibility of wobble base pairing.

It is possible to account for wobble base pairing in several different ways
(reviewed in Gingold and Pilpel [2011]). In particular, dos Reis, Wernisch,
& al. [2003] describe the trna adaptation index (tai), which takes into ac-
count the possible wobble base pairings when calculating the fit between
codon usage and trna gene copy number. For my analysis, rather than
accounting for all possible base pairings, I opted for a simplified version
where only unmatched codons were treated differently, and all other co-
dons were matched directly to their corresponding anticodons, as described
above.

Orphan codons were matched to all anticodons that they recognise via
wobble base pairing, by distributing the trna abundance of these trna genes
between all matched codons; abundant codons received proportionally more
of the anticodon abundance. More precisely, let 𝑥 be an orphan codon and
wobble(𝑥) the anticodons that match 𝑥 via wobble base pairing. We then
adjust the abundance for each 𝑥′ ∈ wobble(𝑥) according to the following
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rule:

𝑎″
𝑥′𝑦 =

( ∑
𝑘∈wobble(𝑥)

𝑎′
𝑘𝑦)

⋅
𝑐′

𝑥′𝑦
∑𝑘∈wobble(𝑥) 𝑐𝑘𝑦

. (2.7)

In other words, we pool the frequency of anticodons that wobble base
pair with orphan codons, and let each contribute a fraction proportional to
its (directly matching) codon frequency. For those anticodons 𝑥 which do
not wobble base pair to orphan codons, we set 𝑎″

𝑥𝑦 = 𝑎′
𝑥𝑦.

Finally, I calculated codon–anticodon correlations between the codon us-
age and the adjusted anticodon abundance, cor(𝑐′

⋅𝑦, 𝑎″
⋅𝑦). This yielded broadly

comparable results to the simple correlations ignoring wobble base pair-
ing and unmatched codons (figure A.12). I will briefly discuss how to im-
prove this using a tai adapted to trna gene expression in the conclusion
(chapter 5).

Across both tissues and all stages of development, we find that mrna
triplet codon demand and trna anticodon isoacceptor abundance are highly
correlated (0.64 < 𝜌 ≤ 0.76 Spearman’s rank correlation, all 𝑝 < 0.001), ig-
noring wobble base pairing. Accounting for wobble base pairing in the cal-
culation of the adaptation of codon demand and anticodon supply does not
substantially change these numbers.

We can compare these correlations between mrna codon demand and
trna anticodon supply with the correlations we find between our simulated
mrna and trna transcriptomes. To calculate correlations for the simulated
transcriptomes, I first determined the means for each of the 100 shuffled
triplet codon distributions and calculated their Spearman rank correlation
with each of the 100 shuffled isoacceptor distributions.

In fact, correlating all 100 randomly simulated trna transcriptomes per
tissue with the simulated mrna transcriptomes yields a distribution of sig-
nificantly lower rank correlation coefficients (figure 2.9 bottom middle and
right).

This result provides further evidence that random variation of trna gene
expression cannot account for the observed patterns of trna gene expres-
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sion, and that trna gene expression must be actively regulated to stabilise
the steady abundance of the of trna anticodon isoacceptors, matching the
triplet codon demand of the corresponding mrna transcriptome.

2.6. Variable chromatin accessibility may influence tRNA

gene transcription

Having established that trna gene expression varies in a controlled fashion
through development, we were next interested in uncovering the mechan-
ism driving this variation. From what we know about the regulation of
protein-coding genes, it seemed likely that local genomic features around
each trna gene would be implicated in its transcriptional regulation.

Previously published results indicate that there is no clear relationship
between sequence variation of the internal promoters of a trna gene and
their expression levels [Oler & al., 2010; Canella & al., 2012]. We therefore
focussed on the sequence upstream of the tss of trna genes to search for
cis-regulatory regions.

To this end, I collected the sequence on the forward and reverse strand
of the 500 bp upstream regions of trna genes that were differentially ex-
pressed between each pair of developmental stages. These sequences were
cleaned of low-complexity regions using the dust application [Bailey & al.,
2009]. Motif enrichment analysis in the sequences was conducted with
MEME [Bailey & al., 2009], configured to search for zero or one occurrences
of one motif per sequence, up to a maximum of three distinct motifs, with a
minimum motif size of 6 bp. A first-order Markov model built from the up-
stream regions of all nondifferentially expressed trnas in the appropriate
stage–stage contrast was used as background.

Subsequently, TOMTOM [Gupta & al., 2007] was used to search for motifs
enriched in the MEME output by exploiting databases of known tf binding
sites. I used the databases JASPAR_CORE_2009_vertebrates and uniprobe_mouse. A
minimum overlap of 5 bp with an 𝐸-value threshold of 10 was required.
Although we found 4 significantly enriched motifs in total (at the 5 per
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cent significance threshold after correcting for multiple testing), these mo-
tifs were not present consistently across stages (they are enriched for differ-
ential expression between non-adjacent stages), which would be necessary
to explain the differential expression we observe (table A.3). This suggests
that the upstream region of trna genes does not contain known regulatory
sequences explaining our observations.

In the absence of clear evidence for nearby tf binding sites driving dif-
ferential expression, we hypothesised that the transcriptional regulation of
nearby protein-coding genes might influence trna gene expression. I there-
fore went on to look for enrichment of differentially expressed (de) trna
genes in close vicinity to differentially expressed protein-coding genes: an
enrichment of de over non-de trna genes near de protein-coding genes may
indicate that regulation of trna and protein-coding differential gene expres-
sion is driven by common factors.

A test for colocalisation of differentially expressed trna genes and dif-
ferentially expressed mrna genes was performed between developmental
stages (E15.5–P22 in liver and P4–P29 in brain, because those were the con-
trasts with the largest number of differentially expressed trna genes). For
each up-regulated trna gene 𝑖 we counted the number of up-regulated protein-
coding genes, 𝑛𝑖, and the total number of protein-coding genes, 𝑏𝑖, in a ge-
nomic region centred on the trna gene of interest. The analysis was per-
formed for different window sizes (10 kb, 50 kb and 100 kb). This allowed
us to compute the ratio 𝑟𝑖 = 𝑛𝑖/𝑏𝑖. We repeated this analysis for each non-
differentially expressed trna gene 𝑗 to obtain the ratio 𝑟∗

𝑗 . A Kolmogorov–
Smirnov test was performed to assess whether the distribution of 𝑟, corres-
ponding to the ratios of up-regulated protein-coding genes in the vicinity of
up-regulated trna genes, was significantly different from the distribution
𝑟∗ in the vicinity of nondifferentially expressed trna genes with varying sig-
nificance thresholds (0.1, 0.05 and 0.01).

As for the case of tf binding sites, I was unable to demonstrate such an
association unambiguously: for the contrasts mentioned above (liver E15.5–
P22, brain P4–P29), I performed 9 tests each: one per combination of sig-
nificance threshold and window size. The unadjusted 𝑝-values for liver
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are given in table 2.2. Although some of the values fall below common
thresholds for significance, to properly reject the hypothesis we would re-
quire a more consistent picture; instead, modifying the parameters chan-
ges the outcome drastically. The best we can conclude is that for a window
size of 50 kb there seems to be some evidence of an effect, if we choose our
significance threshold for differential expression of protein-coding genes
stringently. However, in brain no such effect exists (figure A.14). When
controlling for multiple testing by applying Bonferroni correction, only 1
out of the 18 tests across both tissues is significant (corrected 𝑝 < 0.013).

Window size [kb] Threshold 𝑝-value
10 0.1 0.285
10 0.05 0.358
10 0.01 0.409
50 0.1 0.013
50 0.05 0.005
50 0.01 0.001

100 0.1 0.118
100 0.05 0.107
100 0.01 0.10

Table 2.2: Unadjusted 𝑝-values of colocalisation tests in liver. The first column gives the
window size (in kb) in which colocalised protein-coding genes were counted. The second
column give the 𝑝-value significance threshold below which protein-coding genes were called
differentially expressed.

Besides cis-regulatory sequence features, another possibility is that chro-
matin modifications are associated with the changes in trna gene expres-
sion that we observed. Previous studies by Barski, Chepelev, & al. [2010]
and Oler & al. [2010] indicate that several chromatin modifications have
an influence on pol iii-driven transcription. Using publicly available, previ-
ously published data [Shen & al., 2012] (Gene Expression Omnibus (geo) ac-
cession GSE29184), I investigated three histone modifications associated with
genomic regions containing promoters and enhancers (H3K4me3, H3K4me1,
H3K27ac) as well as pol ii and an insulator, CCCTC-binding factor (ctcf). For
each of these factors, I assayed their association with
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1. active versus inactive trna genes in embryonic (E15.5) and adult (P29)
tissues; and

2. differentially expressed trna genes between E15.5 and P29

in both liver and brain.
To test for association of the Chip factors with trna gene expression, I noted

whether a signal for a given Chip target was present in the vicinity of a trna
locus. I then compared the number of expressed versus unexpressed trna
genes with at least one such Chip signal in its vicinity, using Fisher’s exact
test, with the contingency table shown in table 2.3.

Chip signal
trna Present Absent
Expressed 𝑎 𝑏
Unexpressed 𝑐 𝑑

Table 2.3: Contingency table of ChIP signal enrichment.

Occurrence of these chromatin marks was measured 0.1 kb, 0.5 kb and
1 kb upstream of and downstream from trna genes. Our embryonic (E15.5)
and adult (P29) pol iii data was complemented with embryonic (E14.5) and
adult (P56) Chip-seq data from the Shen & al. [2012] study. Although these
stages do not match precisely, similar patterns of expression are present and
should thus be complemented by similar patterns of histone marks. In addi-
tion, the Shen & al. [2012] data split adult brain tissue up into “cerebellum”
and “cortex”. I merged these two data sets for the subsequent comparison
against our whole brain P29 samples by using the union of Chip-seq binding
locations.

In my test of active against inactive trna genes I unsurprisingly found
strongly significant enrichment of histone marks for active transcription in
both embryonic and adult tissues. I also found association of active trna
genes with pol ii binding and with ctcf. Enrichment of enhancer marks,
by contrast, was not present — but this may simply be due to the fact that
enhancers are typically more distal (table 2.4). This confirms previous find-
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ings [Barski, Chepelev, & al., 2010; Oler & al., 2010].

Developmental stage
Factor Embryo Adult
Liver

H3K4me3 1.85 × 10−32 1.27 × 10−29

Enhancer 1.00 1.46 × 10−2

H3K27ac 9.00 × 10−33 1.99 × 10−21

Pol ii 9.38 × 10−5 1.85 × 10−4

ctcf 2.24 × 10−3 2.09 × 10−4

Brain
H3K4me3 3.11 × 10−28 3.18 × 10−32

Enhancer 3.11 × 10−1 1.00
H3K27ac 8.49 × 10−21 1.16 × 10−14

Pol ii 3.93 × 10−13 1.35 × 10−12

ctcf 2.33 × 10−5 2.76 × 10−5

Table 2.4: Enrichment of different ChIP targets near active tRNA genes. Shown are the
unajusted 𝑝-values for the hypothesis of no enrichment of a ChIP signal near expressed tRNA
genes, compared to unexpressed tRNA genes, using a window size of ±0.5 kb; other window
sizes show less evidence for enrichment.

Next, I performed the same test specifically for upregulated de genes be-
tween E15.5 and P29. Rather than considering all expressed trna genes as
before, I thus only consider genes that are specific to either embryonic or
adult tissue. I found consistent significant enrichment of H3K27ac and, to a
lesser extent, H3K4me3 and pol ii in embryonic and adult liver. In contrast,
brain shows no enrichment.

Though limited, this association of differentially expressed trna genes
histone marks indicates that the accessibility of the chromatin may have an
influence on trna gene expression, and that the observed differences may
be partially influenced by changing histone modification status through the
course of tissue development.
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Developmental stage
Factor Embryo Adult
Liver

H3K4me3 1.77 × 10−2 1.44 × 10−9

Enhancer 1.00 6.83 × 10−3

H3K27ac 5.17 × 10−8 1.86 × 10−9

Pol ii 8.86 × 10−3 8.96 × 10−2

ctcf 1.08 × 10−2 2.42 × 10−2

Brain
H3K4me3 7.65 × 10−1 5.53 × 10−1

Enhancer 5.36 × 10−1 1.00
H3K27ac 7.98 × 10−2 7.37 × 10−1

Pol ii 7.16 × 10−1 2.32 × 10−1

ctcf 1.00 1.00

Table 2.5: Enrichment of different ChIP targets near differentially expressed tRNA genes.
Shown are the unajusted 𝑝-values for the hypothesis of no enrichment of a ChIP signal near
differentially expressed, upregulated tRNA genes, compared to non-DE tRNA genes, using a
window size of ±0.5 kb; other window sizes show less evidence for enrichment.

2.7. tRNA anticodon isoacceptor families are

transcriptionally compensated across development

The results thus far demonstrate that trna gene expression varies across
development, and this variation follows clear patterns, which require active
regulation. We furthermore find that variability within the transcribed trna
pool vanishes at the isoacceptor level: the trna genes within each anticodon
isoacceptor family vary across developmental stages, but the sum of their
expression is stable (figure 2.9 centre left).

This might imply (anti-)correlation of expression across stages between
the genes of an isoacceptor family. Alternatively, trna gene expression
might vary randomly without regard to other trna genes in the same isoac-
ceptor family. An example of each of these two scenarios is shown in fig-
ures 2.10a and 2.10c). To test this systematically, we compared the distri-
bution of correlations between genes within each isoacceptor family with
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a background distribution. The background was generated by permuting
the order of the stages before calculating the trna gene expression correla-
tions. Importantly, these background distributions have a unimodal shape
centred on 0 (figures 2.10b and 2.10d). This allows us to test whether the
observed correlations significantly diverge from the background model:

For each isoacceptor that is encoded by more than two trna genes, I calcu-
lated Spearman’s rank correlation (across developmental stages) between
the expression values of each pair of its corresponding trna genes, i.e. I cal-
culate

𝑟𝑖𝑗 = cor(𝑥𝑖⋅, 𝑥𝑗⋅) for 𝑖, 𝑗 ∈ 𝑇 , 𝑖 < 𝑗, (2.8)

where 𝑇 is the set of trna genes in the isoacceptor family, and 𝑥𝑖⋅ is the
vector of expression values of the 𝑖th trna gene across all stages of devel-
opment. For the same set of genes, I calculated a null set of correlations as
follows:

𝑏𝑖𝑗𝑘 = cor(perm𝑘(𝑥𝑖⋅), 𝑥𝑗⋅) for 𝑖, 𝑗 ∈ 𝑇 , 𝑖 < 𝑗; 𝑘 ∈ 1 … |𝑥𝑖⋅|! . (2.9)

Here, perm𝑘(𝑥𝑖⋅) is the 𝑘th permutation of the vector 𝑥𝑖⋅.
Next, we used a 𝜒2-test to investigate whether there was a significant dif-

ference between the background 𝑏 and the observed correlation distribu-
tions 𝑐. We only performed the test for the 27 isoacceptor families with six
or more genes, since isoacceptor families with less than six genes did not
contain enough points for meaningful interpretation.

The distribution of observed correlations in some cases has a bimodal
shape, which can be clearly distinguished from the unimodal background
(figure 2.10b). In total, 16 out of 27 isoacceptor families (59 per cent) with
more than five genes show significantly different foreground and background
distributions (all fdr-corrected 𝑝 < 0.0199, see table 2.6).

The bimodal shape of the correlation distribution can be interpreted as
the existence of two distinct clusters of trna genes within the isoacceptor
families, which compensate for each others’ expression changes. However,
these clusters of genes do not form genomic clusters, i.e. the trna genes

76



developmental stability of the mrna–trna interface

within each cluster are not closer to one another than to other clusters.
To establish this, I defined 69 clusters of all genomically annotated trna

genes that lie within 7.5 kb of each other. I counted how many active trna
genes of an isoacceptor family colocalised in a genomic cluster with trna
genes of the same isoacceptor family, before calculating the fraction of trna
genes for each isoacceptor family belonging to a genomic cluster. To test
whether genes in isoacceptor families tend to genomically colocalise more
than expected by chance, we randomly assigned trna genes to isoacceptor
families (preserving the actual isoacceptor family gene numbers) 1000 times.
I then tested whether the mean percentage of clustering trna genes per
isoacceptor family differed from the mean percentage expected by chance,
by using a binomial test. Finally, I tested whether there was a difference
in these percentages between isoacceptor families that show evidence for
compensation, and isoacceptor families that show no such evidence by ap-
plying a 𝜒2-test.

v

In summary, we have shown that trna gene expression varies pervasively
across mouse development in different tissues. This variation follows con-
certed patterns that provide evidence of specific regulation of trna gene
transcription. Although we have been unable to pinpoint a mechanism for
the specific gene expression patterns we observed, there is a broad correla-
tion between trna gene activity and the existence of histone marks for active
gene expression. The precise purpose of the trna gene regulation remains
similarly unclear, since we found that both the codon usage and the anti-
codon isoacceptor abundance are stable across development, and thus do
not need to be adjusted using specific trna gene expression changes.

Indeed, when looking at individual anticodons, we found that trna genes
within many isoacceptor families are acting in concert to compensate for
changes in each others’ expression, with the net result of producing a stable
abundance of trna molecules of the anticodon isoacceptor. The regulatory
mechanism enacting this compensation has thus far not been described,
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and its identification poses a new challenge.

Isoacceptor 𝑝-value
gug 1.01 × 10−25

agc 2.26 × 10−12

gca 9.17 × 10−11

cca 1.15 × 10−10

cug 3.60 × 10−9

ugg 3.68 × 10−7

aac 3.68 × 10−7

gua 5.69 × 10−6

cau 8.53 × 10−6

uuc 2.42 × 10−5

ugc 2.56 × 10−5

aga 6.57 × 10−5

cuc 6.81 × 10−5

cac 2.06 × 10−4

guc 8.76 × 10−4

cag 1.99 × 10−2

guu 6.01 × 10−2

agu 1.26 × 10−1

gcc 1.33 × 10−1

uuu 3.35 × 10−1

gcu 3.45 × 10−1

aau 3.45 × 10−1

gaa 6.50 × 10−1

acg 8.01 × 10−1

ucc 8.01 × 10−1

cuu 8.12 × 10−1

agg 8.44 × 10−1

Table 2.6: Evidence against absence of compensation. The first column contains the tRNA
anticodon isoacceptor families. The second column contains the FDR-adjusted 𝑝-values of
𝐻0: there is no effect of the order of the stages on coordinated gene expression of tRNA
genes within an isoacceptor family.
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Figure 2.10: tRNA gene expression is compensated at the anticodon isoacceptor level
during mouse development. Panels (a) and (c) show two examples of tRNA gene isoac-
ceptor families and their gene expression across development (row-normalised). In panel (a)
we can see two clusters of coordinated expression: the top 5 genes are lowly expressed at
first, and start being highly expressed at P22. The bottom 3 genes show a roughly opposite
trend. In panel (c), no such clusters are obviously present. Panels (b) and (d) show the cor-
responding pairwise gene–gene correlation coefficients, plotted as a density curve (blue), as
well as the density curve of the background distribution.
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Implications of
codon–anticodon interaction
on the regulation of
translation

3
In the previous chapter I have shown that codon usage and its interaction
with trna anticodons remains remarkably stable despite substantial variab-
ility of the transcriptome during mammalian development.

Shortly after the publication of our research on trna gene regulation dur-
ing mouse development, Gingold, Tehler, & al. [2014] published “A Dual
Program for Translation Regulation in Cellular Proliferation and Differentiation”.
They report that cells with different functional characteristics preferentially
use distinct sets of codons, and that the pool of active trnas adapts dynam-
ically to decode this set of codons with high efficiency.

Because its conclusions are highly relevant to our own research we eval-
uated the paper carefully. In the following, I will first describe the paper’s
main findings to the extent that they are relevant to our own research. I
will then discuss new experimental data and computational analyses we
performed to explore how our previous results relate to this paper.

3.1. “A dual program for translation regulation in cellular

proliferation and differentiation”

Gingold, Tehler, & al. [2014] investigated the abundance of trna anticodons
and the codon usage of different groups of protein-coding genes in patient
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tissue samples and human-derived cell lines in different cellular conditions
— five primary cancers, induced differentiation, release from serum starva-
tion, senescence, and myc and ras overexpression — with the aim of char-
acterising the differences in trna gene expression and trna anticodon abun-
dance. They hypothesise that the balance between trna anticodon supply
and codon demand might influence the rate of production of proteins from
mrna [Gingold and Pilpel, 2011].

3.1.1. tRNA anticodons change in abundance in tumour tissues

Gingold, Tehler, & al. [2014] designed custom microarrays to probe the ex-
pression levels of the trnas of most anticodons present in the human gen-
ome, excluding those prone to cross-hybridisation, or where a low in silico
screening score predicts that they may be pseudogenes. Using these mi-
croarrays, they assayed the abundance of anticodon isoacceptors in healthy
B cells and in B-cell derived lymphomas. They showed that there are spe-
cific anticodon isoacceptors whose abundance changes reproducibly in tu-
mours compared to healthy tissue, while other anticodon isoacceptors do
not change their abundance. This mirrors results reported previously [Pavon-
Eternod, Suzanna Gomes, & al., 2009].

In addition, they used their array-based assays to determine trna anti-
codon abundance levels for all samples and applied hierarchical cluster-
ing to the resulting matrix of trna expression profiles. They observed that
samples clustered into two groups, corresponding to tumour cell types and
differentiating cell types. When performing an equivalent clustering on
mrna gene expression values for the same samples, they observe that samples
cluster not by whether they are tumours, but rather by their tissue of origin,
i.e. by the tissue from which the tumour or cell line was derived.

3.1.2. Codon usage differs between genes involved in cell proliferation
and genes involved in differentiation

Next, Gingold, Tehler, & al. [2014] looked at protein-coding genes within
Gene Ontology (go) terms that they functionally associated with healthy,
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adult tissue (“pattern specification process”) on the one hand, and tumour
tissue (“M phase of mitotic cell cycle”) on the other hand. They show that
the codon usage bias in these two go terms (averaged over all containing
genes) clearly differs (figure 3.1): the genes in both go terms preferentially
use different synonymous codons.
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Figure 3.1: Codon usage bias in two GO terms. Each point represents one codon, whose
corresponding amino acid is given by the label. The position of the point is given by the codon
usage bias in each GO term, respectively. Codons for the same amino acid share the same
colour (reproduction of figure 2A in Gingold, Tehler, & al. [2014]).

They expand their analysis by calculating the mean codon usage across
many go categories and perform pca on the resulting matrix (figure 3.2).
This reveals that the largest contributor to the variation stems from the split
of the go terms into two distinct sets, one encompassing multi-cellular go
terms and the other cell autonomous go terms. They argue that these two
sets of go terms correspond to go terms functionally responsible for main-
taining cell homoeostasis on the one hand, and rapid cellular division, such
as that found in tumours, on the other hand. In other words, gene families
specific to rapidly dividing as opposed to healthy, mature cells have distinct
codon composition.
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It is however worth noting that the choice of go terms highlighted in
the pca is somewhat arbitrary: It is for instance not clear why “translation”
should be more active during cellular division than in stable cells. The au-
thors rather describe the relevant set as “cell autonomous” go terms, but
the paper’s argument implicitly assumes that this is associated with cell
division. Furthermore, the allocation of genes to go terms was performed
via simple textual matching, such that go sub-categories whose description
contains the text “differentiation and proliferation” would be counted as
belonging to the go super-category “differentiation”.

A better strategy for the selection of go terms would ensure that allocated
uniquely to a single go term without overlap between the sets, to ensure
pairwise independence between the data points: because the go hierarchy
allows individual go terms to have multiple parents, a naive go term selec-
tion can lead to child terms (and hence genes) present in several categories.
This can be corrected by applying a go trimming algorithm (e.g. Jantzen
& al. [2011]).

Furthermore, go terms generally do not distinguish between positive and
negative influence of a gene on a phenotype. As a consequence, the go term
“M phase of mitotic cell cycle” contains both activators and inhibitors of M
phase, and the containing genes’ expression may be anticorrelated.

3.1.3. Differential codon usage in cell-condition specific gene sets
matches tRNA anticodon abundance in corresponding cells

Finally, Gingold, Tehler, & al. [2014] compared the pca of the per-go codon
usage to the actual gene expression of mrnas and trnas in different cellular
conditions. The analysis was done in two parts. Firstly, the fold change
of gene expression between normal tissue and a given condition was cal-
culated for each protein-coding gene. The mean expression fold change of
each go term, mapped to a colour map, was plotted on top of the go terms
in the pca (figure 3.3 bottom). This was done separately for various con-
ditions, including several tumour samples and cell lines with induced dif-
ferentiation. In all examined conditions, there seems to be a marked gradi-
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Figure 3.2: PCA of mean GO term codon usage. Each dot corresponds to one GO term.
The position of the dots is derived by rotating the matrix of the mean codon usage of the
genes belonging to each GO term. Created using methods of Gingold, Tehler, & al. [2014]
(the precise numbers differ slightly due to the use of different implementations to perform
the analysis but this does not impact the interpretation).

ent of mrna expression enrichment from left to right. The authors used
this to suggest that the first principal component of the pca separates go
terms by their specificity to either proliferating or differentiating cellular
programmes.

Secondly, to estimate translation efficiency they calculated the fold change
of trna gene expression for isoacceptor trnas that decode the codons of the
genes in each go term, and averaged across them, weighted by codon us-
age. Adopting the notation for anticodon abundance from chapter 2, we can
define the fold change in translation efficiency 𝑒𝐴𝐵 between two conditions
𝐴, 𝐵 for a multiset of codons 𝐶 as:
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𝐹 = 𝑎⋅𝐴
𝑎⋅𝐵

(3.1)

𝑒𝐴𝐵 = ∑
𝑐∈𝐶

1
|𝑑(𝑐)| ∑

𝑓∈𝐹𝑑(𝑐)

𝑓 , (3.2)

where 𝑑(𝐶) is the set of anticodons that can decode the codon 𝑐.

The fold change in translation efficiency between normal tissue and the
sample under consideration was again mapped to a colour gradient, which
was overlaid on the pca (figure 3.3 top). Again there appears to be a gradient
of how well different go terms are adapted to the trna anticodon pool of a
given condition, following the first principal component of the pca.

Although interesting, the authors did not calculate correlations between
the first principal component and either the codon usage bias or the trans-
lation efficiency fold change. Instead, they visualised the presumed cor-
respondence using a potentially misleading rainbow colour map [Borland
and Taylor, 2007]. Furthermore, the absolute range of changes is extremely
small compared to the overall fold change (range of fold change 0.86 to
0.905 in one case, corresponding to less than 5 per cent of the maximum
fold change), and the lack of statistical analysis makes it impossible to tell
whether these changes are in fact significant. It is also important to note that
the entire fold change range in predicted translation efficiency is < 1: Con-
sequently, go categories that are specific for a given condition according to
figure 3.2, and should thus be better adapted to the trna anticodon abun-
dance, are in fact less well adapted according to this analysis (figure 3.3).
This is a recurring feature for all conditions tested in this way, and is poten-
tially inconsistent with the claim that the trna anticodon pool is specially
adapted to cell condition specific gene sets.
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Figure 3.3: Projection of the tRNA and mRNA expression changes onto the codon usage
map for cells after induced differentiation via retinoic acid. Both panels show the same
PCA reproduced in figure 3.2. In the top panel, the colours correspond to the fold change
in predicted translation efficiency of the genes constituting each GO term, given the change
in cellular abundance of tRNA anticodons compared to normal cells. The bottom panel
shows the mean fold change in mRNA levels per GO term compared to normal cells. Figure
modified from Gingold, Tehler, & al. [2014].

3.2. Are tRNA anticodon abundance and codon usage highly

adapted to different cellular conditions?

To explore how these two findings — the stability of the anticodon pool
through development on the one hand [Schmitt, Rudolph, & al., 2014], and
the malleability of the anticodon pool to match the codon demand of highly
expressed protein-coding genes on the other hand [Gingold, Tehler, & al.,
2014] — we examined differences between healthy tissue and tumour cell
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lines in M. musculus and H. sapiens.

3.2.1. The effect of gene set size on codon usage bias

Since we were already in possession of some relevant trna data we decided
to use our own data to recapitulate these findings. A first observation was
that we had looked at the whole transcriptome, while Gingold, Tehler, & al.
[2014] had looked at specific subsets. Although both approaches are valid,
some caution is necessary when comparing the results: the smaller the set
of genes, the larger the effects of random sampling of the genes become.
Subsequently, when analysing a particular feature, such as codon usage
bias, random sampling will contribute proportionally more to the variation
between two small sets than to differences between two larger sets. Con-
sequently, if one wants to assert that deviations are nonrandom, one thus
has to account for this effect.

To assess how much of the variation in go term codon usage is explain-
able by such effects, I generated random sets of different numbers of genes,
corresponding to the whole range of go term gene set sizes. For each simu-
lated gene set, I calculated the total codon usage of the genes in the resulting
set. To ensure that the codon usage of different gene sets was comparable,
all codon frequencies within a sample were normalised by the total codon
frequency in the sample, to obtain codon proportions:

𝑥∗
𝑖 =

(∑
𝑔∈𝐺

𝑥𝑖𝑔) / (∑
𝑗

∑
𝑔∈𝐺

𝑥𝑗𝑔)
(3.3)

Where 𝑖, 𝑗 ∈ AAA, … , TTT are the codons (excluding stop codons), 𝑔 ∈ 𝐺
are the genes in the sample, 𝑥𝑖𝑔 is the codon frequency of codon 𝑖 in gene
𝑔, and 𝑥∗

𝑖 is the relative codon frequency of codon 𝑖 in the sample. We have
∑𝑖 𝑥∗

𝑖 = 1.
This was done 10 000 times for each go term gene set size. Next, I calcu-

lated the Pearson correlation between the codon proportions of each sample
with the genome-wide codon proportions (across all annotated coding se-
quences). Figure 3.4 plots the distribution of the correlations against the
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Figure 3.4: Dependence of codon usage variability on sample size. Genes were randomly
sample from the human genome to create sets of sizes given by 𝑥 (in grey). The mean codon
usage of the sets was calculated, and their Pearson correlation to the genomic background is
shown on the 𝑦 axis. For each size, the distribution of 10 000 repeated samples is summarised
in the figure by a vertical segment connecting the first with the third quartile; the mean is
indicated as a black dot. The second and ninety eighth percentile are hinted at with smaller
dots.

gene set sizes.

I used these distributions to calculate empirical 𝑝-values for each go term
in order to test the null hypothesis 𝐻0: the divergence in codon usage from
a background distribution is indistinguishable from random variation for
this go term. Figure 3.5 plots the codon usage variation of each go term,
along with an indication of whether the observed variation is explained by
random variation alone.

The plot illustrates that the variation of many go terms is expected by

89



codon–anticodon interaction

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ●

●

●●
●

●

●
●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

● ●●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

50 100 500 1000 5000
GO term gene set size

C
od

on
 u

sa
ge

 c
or

re
la

tio
n

Figure 3.5: GO term codon usage variation. Each point corresponds to a GO term whose
Pearson correlation of codon usage with the genomic background is plotted against its gene
set size. GO terms with an FDR-adjusted empirical 𝑝 < 0.05 are coloured in red. The
continuous lines denote the second and ninety eighth percentile of the simulated data from
figure 3.4.

chance; however, more than half (421 out of 791, 53 per cent) show signi-
ficantly higher variation. Thus, despite an influence of random sampling
especially for small gene set sizes, this observation is unlikely to explain
the variation seen in figure 3.2.

3.2.2. The extent of anticodon adaptation to distinct cellular conditions

Next, in order to test whether the anticodon pool adapts to specific cellu-
lar conditions as suggested by figure 3.3, I examined whether the codon–
anticodon adaptation is better between matching than between mismatch-
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ing mrna and trna transcriptomes. For this purpose, I calculated codon–
anticodon adaptation as the correlation between matching codons and an-
ticodons, each as a proportion of the contribution to their corresponding
amino acid — in other words, the correlation between rcu and raa. I sim-
ilarly tested whether the codon–anticodon adaptation was better for genes
that are specific to a cellular condition, compared to the overall transcrip-
tome. In other words, I looked at the mrna pool of each cellular condition,
and calculated the codon–anticodon correlations for

1. the whole transcriptome and its matching trna pool (“matching”),

2. the whole transcriptome and all mismatching trna pools (“mismatch-
ing”),

3. the set of differentially, highly expressed mrna genes and the trna
pool of the same cellular condition (“de”), and

4. a condition specific gene set (for the go terms “M phase of mitotic
cell cycle” & “pattern specification process”) and the trna pool of the
same cellular condition (“go”).

I performed the analysis using data generated from M. musculus and H. sapi-
ens. For both species, I compared healthy tissue (adult whole-liver tissue,
homogenised) to two different hepatocyte derived cancer cell lines: HepG2
and Huh7 in H. sapiens, and Hepa1-6 and Hepa1c1c7 in M. musculus. At
least two biological replicates were present for each sample.* Distinct tu-
mours were used because we wanted to test the hypothesis that there exists
a trna abundance adaptation specific to the cellular programme in prolif-
erating cells, which would be present across different tumour types (fig-
ure 3.6).

The analysis compares different scenarios that should, according to the
hypothesis proposed by Gingold, Tehler, & al. [2014], show markedly differ-
ent codon–anticodon adaptation distributions: codon and anticodon pools

*The tissue collection and sequence library preparation was performed by Bianca Schmitt
and Diego Villar.
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Figure 3.6: Experimental setup. mRNA and tRNA expression was quantified for three
different cellular conditions in both human (healthy adult liver, HepG2 & Huh7) and mouse
(healthy adult liver, Hepa1-6 & Hepa1c1c7). Each experiment was performed in multiple
replicates. Each category (“matching”, “mismatching” and “cell specific”) corresponds to
a comparison between the codons of a gene set and the anticodons of a sample. The
cartoon shows how these were combined to obtain the distributions. Each sample condition
has a different colour. mRNA transcripts in bolder colours correspond to cell type specific
transcripts.

of the same cellular conditions should be highly coordinated (correlation
type “matching”). Codons and anticodons of mismatching conditions (i.e.
the codon pool of a healthy cell and the anticodon pool of a tumour cell,
or vice versa) should be less well coordinated (correlation type “mismatch-
ing”). Furthermore, the codon usage of just a subset of the overall transcrip-
tome corresponding to genes specific to the cellular condition should be co-
ordinated with their anticodon pool to an even greater extent. Conversely,
if we did not expect a trna anticodon pool adapted to specific subsets of the
transcriptome, we might expect that the correlation between the codon us-
age of such subsets and the anticodon abundance was less than that of the
overall transcriptome, due to higher stochastic variability in smaller gene
sets (figure 3.6).
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Cell specific subsets of the transcriptome can be defined in several ways.
My analysis used two possible definitions: Firstly, I looked at differentially
expressed genes between healthy and tumour cells, and called genes condi-
tion-specific if they were significantly differentially expressed (adjusted 𝑝 <
0.001), their expression was high (mean expression across conditions in the
upper quartile of all mean expression levels), and their fold change between
the conditions was also high (taking the 200 genes with the highest fold
change; correlation type “de”). Secondly, I took the gene sets of the two
most extreme go terms found by Gingold, Tehler, & al. [2014] according
to the variance in codon usage, which they describe as highly specific for
proliferating cells (go term “M phase of mitotic cell cycle”) and differenti-
ating/differentiated cells (go term “pattern specification process”; correla-
tion type “go”).

Unfortunately, go term annotations differ vastly between H. sapiens and
M. musculus and, in particular, one of the two condition specific go terms
(according to the pca analysis, figure 3.2) is badly annotated in M. muscu-
lus (with only 3 genes annotated for “M phase of mitotic cell cycle”). As a
consequence, I did not use the existing go term annotations for mouse but
rather used the orthologous gene sets from the human go term annotation
(determined from the gene name, which is identical in M. musculus and
H. sapiens [Wain & al., 2002]).

We want to test whether the “mismatching” correlations are lower than
the “matching” ones and whether the “de” and “go” correlations are higher,
respectively, than the “matching” ones. I therefore used one-tailed tests for
significant deviations from the null. In all but one cases, I failed to reject
the null hypothesis of no difference. The only case where we find some
support for rejecting 𝐻0 is the comparison of “matching”–“mismatching”
in H. sapiens (𝑝 = 0.048, one-tailed Mann–Whitney–Wilcoxon test). On the
other hand, the “go” correlations are significantly lower than the “matching”
correlations in both species (𝑝 < 4.4 × 10−5 in M. musculus; 𝑝 < 2.5 × 10−8 in
H. sapiens). This offers evidence against the hypothesis put forward by Gin-
gold, Tehler, & al. [2014] (figure 3.7). This is consistent with the alternative
hypothesis that the observed variation in codon usage is caused by random
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variation due to the small sample size of the go term gene sets, but it may
also be due to the issues related to go term selection that I have described
in section 3.1.2.
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Matching
M. musculus healthy liver – healthy liver

Hepa1-6 – Hepa1-6
Hepa1c1c7 – Hepa1c1c7

H. sapiens healthy liver – healthy liver
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Huh7 – Huh7
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M. musculus healthy liver – Hepa1-6

healthy liver – Hepa1c1c7
H. sapiens healthy liver – HepG2
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Figure 3.7: Codon–anticodon correlations. Each box shows a distribution of codon–
anticodon Spearman correlations. A codon–anticodon correlation is computed from relative
contributions to the respective amino acid (i.e. RCU versus RAA), ignoring wobble base pair-
ing. “Matching” shows correlations of the codon and anticodon pool of the same condition.
“Mismatching” shows correlations of the codon and anticodon pool of mismatching condi-
tions (e.g. Hepa1-6 codons versus healthy liver anticodons); the two cancer replicates are not
counted as mismatching conditions. “DE” shows correlations of the codon pool of highly,
differentially expressed mRNA genes, and the anticodon pool of the same condition. “GO”
shows correlations of the codon pool of condition-specific GO term gene sets, and the anti-
codon pool of the same condition. For all distributions, correlations were calculated between
all pairwise combinations of replicates.

It is worth nothing that the “de” codon–anticodon correlations vary non-
negligibly, depending on how exactly the top 200 condition-specific genes
are chosen; alternative strategies to the one outlined were not found to
change the overall result, however: none of the strategies yielded correl-
ations that were significantly higher than the transcriptome-wide “match-
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ing” correlations.

3.2.3. Other genomic features may drive the perceived codon usage bias

The trend seen in figure 3.2 exists, albeit to a lesser degree, when plotting
amino acid usage rather than codon usage (figure 3.8). The first principal
component separates the go term “keratinisation” from the rest. This is
due to the fact that the proteins in this go term are uniquely highly en-
riched in the amino acid proline, which forms more rigid peptide bonds
than all other amino acids, with implications for the robustness of, amongst
other things, the cellular skeleton. The proteins in this go term are thus im-
plicated in the structural formation of the epithelium [Hohl & al., 1995].
The second principal component, by contrast, shows the same separation
of go categories as the first principal component of figure 3.2. Moreover,
these two principal components are highly correlated (Pearson’s 𝜌 = 0.95).
Clearly, this correlation cannot be explained by codon identity, since amino
acids, not codons, conventionally determine protein function. However,
amino acid usage alone does not explain the pattern either: After removing
amino acid identity as a confounding factor (by computing rcu instead of
codon usage), the go term pca still displays the previously observed separ-
ation of go categories (figure 3.9).

We thus conclude that both changes in codon usage and changes in amino
acid usage independently correlate with the separation of go terms into two
functional categories. Furthermore, given the results presented in the pre-
vious chapter, we note that we have no evidence for a functional adaptation
of the trna pool to specific gene sets. I therefore looked for other factors that
could explain the observed patterns in codon usage. In some prokaryotic
species, gene codon usage can be predicted by the intergenic sequence gc
bias [S. L. Chen & al., 2004]. Mammalian genomic gc content varies drastic-
ally across large regions of the genome. However, within regions called
isochores gc content is stable, and variation in gc bias between isochores is
highly correlated with variation in codon usage of protein-coding genes be-
tween isochores [Sharp and Matassi, 1994].
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Figure 3.8: PCA of mean GO term amino acid usage. Each
dot corresponds to one GO term. The position of the dots
is derived by rotating the matrix of the mean amino acid
usage of the genes belonging to each GO term. Colours
and symbols as in figure 3.2.

Figure 3.9: PCA of mean GO term RCU. Each dot corres-
ponds to one GO term. The position of the dots is derived
by rotating the matrix of the mean RCU of the genes belong-
ing to each GO term. Colours and symbols as in figure 3.2.

In fact, we find that the first principal component of the codon usage
spread (figure 3.2) as well as the second principal component of amino acid
spread (figure 3.8) correlate highly with the gc bias in the go term gene sets
(Pearson’s 𝜌 = −0.96, 𝜌 = −0.58; figures 3.10a and 3.10b). This suggests that
genomic features other than gene function might influence gene codon us-
age. However, it is entirely conceivable that the differences in gc bias of
the go terms are caused by the changes in either amino acid or codon us-
age, rather than the other way round: any genetic point mutation from A or
T to C or G (or vice versa) by definition changes the gc content of that region.
We thus do not expect changing codon composition to be gc neutral.

To establish whether the driver of this correlation is large-scale gc bias ad-
aptation, changes in protein function and thus amino acid usage or subtle
changes in codon usage to regulate translation, we therefore need to exam-
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ine the gc bias of the intergenic regions surrounding each go term’s genes:
not being part of any mrna transcript, the gc bias of the intergenic regions
cannot be driven by codon-level selection. It can thus serve as a background
for the expected variation in gc to compare against the gc variation that we
see between go terms. An outline of the necessary investigation to answer
this question can be found in the conclusion in chapter 5.
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(a) GC bias against codon usage (Pearson’s 𝜌 = −0.96).
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(b) GC bias against amino acid usage (Pearson’s 𝜌 = −0.58).

Figure 3.10: GC bias plotted against a principal component of the GO term codon &
amino acid usage PCA. Each point represents one GO term. The 𝑥 coordinate corresponds
to that of the named principal component of the PCA in figures 3.2 and 3.8. The 𝑦 coordinate
corresponds to the mean GC bias of the GO gene set.

3.3. Discussion

In this chapter I extended the analysis from chapter 2, and contrasted it
with the findings by Gingold, Tehler, & al. [2014]. We have moved beyond
the variation of trna gene expression and have questioned the apparent sta-
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bility of the codon usage and anticodon isoacceptor abundance in the tran-
scriptome in the face of major changes in cell function. However, contrary
to previous reports I was unable to find evidence for a selective adaptation
of the trna pool to cell-specific subsets of genes. The work presented in this
chapter constitutes the beginning of our investigation into the codon us-
age variability of subsets of the transcriptome. Many questions still remain
open.

3.3.1. Codon–anticodon adaptation to distinct cellular conditions

One caveat of the analysis of the codon–anticodon correlation between sub-
sets of the transcriptome is the treatment of replicates. In figure 3.7, bio-
logical replicates of each sample were treated independently, rather than
pooled: correlations were calculated between all pairwise combinations of
rna-seq and pol iii Chip-seq data of the samples under consideration. Each
data point thus corresponds to a pairwise combination of two replicates;
this implies that data points within one distribution are not independent of
each other. The alternative would have been to average over biological rep-
licates, and correlate the averaged data. However, this has two important
drawbacks:

1. It does not account for variance in the expression data and thus un-
derestimates the variance in the distributions of the correlations.

2. If mrna and trna gene expression values are dispersed around the
same mean, averaging across replicates would yield a higher correla-
tion than actually present in vivo.

The current analysis measured trna anticodon adaptation using the codon–
anticodon correlation, ignoring wobble base pairing. A potentially better
measure of trna adaptation is the tai, which accounts for wobble base pair-
ing in a species-specific manner. Extending the analysis to use the tai is
ongoing work.

Furthermore, our selection of go terms for proliferation and differenti-
ation may be an inadequate description of cell-type specific gene expres-
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sion. In addition to concerns already outlined in section 3.1.2, we need to
question the assumption that the go term “pattern specification process”
is specific to cells from adult liver. In fact, although Gingold, Tehler, & al.
[2014] contrast tumour samples with healthy, differentiated cells, they test
codon–anticodon adaptation on cells after induced differentiation rather
than differentiated cells, which may be better matched by the “pattern spe-
cification process” go term. To improve our analysis, I could use go terms
resulting from a gene set enrichment analysis of the adult liver samples
[Subramanian & al., 2005].

3.3.2. Evolutionary conservation of codon–anticodon adaptation

If a mechanism leading to the adaptation of the cellular trna pool to differ-
ent cellular conditions existed, we would expect this to be well conserved
across mammalian evolution. Indeed, if the trna pool is differentially ad-
apted to the codon usage of subsets of genes, then the codon usage of these
genes would be under negative selection, and should thus show conserva-
tion. Furthermore, this conservation should therefore be stronger than gen-
omic features under neutral selection, such as gc content. Thus, if we can
show that codon usage bias of go term gene sets is no more conserved across
mammalian evolution than gc bias, this may provide additional evidence
against the hypothesis of a functional relevance for gene set specific codon
bias.

Using genome data from different mammalian species and homology in-
formation for the annotated go categories in humans, we are able to infer
how strongly conserved codon usage is compared to the conservation of
other genomic features such as gc bias for each orthologous gene. Under
the assumption that codon usage is selected for to drive differential transla-
tion rates in different cellular conditions, we would expect a comparatively
high correlation of codon usage compared to other genomic features.
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The pol iii transcriptome
consists of more than just
trna 4
4.1. A profile of pol III binding across different features

Less than 5 per cent of the human genome is protein-coding. Much less than
1 per cent of the genome codes for trnas [Lander & al., 2001]. Nevertheless,
pol iii can transcribe a variety of rna species, with trna genes forming only
a part of the overall pol iii transcriptome. Notable other targets of pol iii
transcription are the 5S rrna (a part of the ribosome) as well as the U6 snrna
which forms part of the spliceosome, a large riboprotein that is implicated
in the post-transcriptional processing of rnas [Robert J White, 1998]. In this
chapter I briefly interrogate other members of the pol iii transcriptome.

For this analysis, I re-examined the Chip-seq data in the developing liver of
M. musculus from chapter 2. I was interested in generating a profile of how
much binding of pol iii occurs at different functionally annotated regions
in the genome. Chapter 2 examined just one such region, the trna genes.
To compare this with the amount of binding in other genomic features, I
quantified the Chip-seq reads that mapped to annotated features from the
grcm38 mouse genome annotation curated by Ensembl (release 75) [Flicek
& al., 2014]. Furthermore, I used data from annotated repeats because it is
known that pol iii binds to, and potentially drives transcription of, several
types of retrotransposons [Carrière & al., 2012], which are screened and
annotated by RepeatMasker [Smit and Hubley, 2014]. Pol iii Chip-seq reads
were mapped to the M. musculus reference genome grcm38 using Bowtie
[Langmead, Trapnell, & al., 2009].
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As explained in section 1.4, many trna genes arise through gene duplic-
ation events and we thus expect many reads to map to multiple locations.
This problem also exists for the other annotation types we are interested
in. However, the strategy also explained in section 1.4 cannot be applied to
non-trna annotations since we cannot make the same assumptions about
the binding profiles in the flanking regions of the genomic features. In par-
ticular, while trna transcription uses a type ii transcription initiation, other
pol iii targets use different types of initiation, due to their different promoter
and enhancer structure. These differences could have strong effects on the
binding profile of active pol iii on the target loci.

I overcame this challenge by only reporting a single match per read, even
if multiple matches were possible. This assigns the read to an arbitrary
locus amongst its possible matches. As long as all potential match posi-
tions for a read fall into the same type of annotation, this should not pose a
problem for the analysis: all we are interested in is which annotation type
a read falls into, not where on the genome.

The annotations used in this analysis required some manual curation.
Excluded from the subsequent analysis are repeat types “simple repeats”,
which stands for small repeats of a few bases, and “tandem repeats”, where
the variability of the copy number between the reference and the sample
makes it impossible to quantify the Chip signal. Furthermore, I merged
other types of repeats, except those corresponding to retrotransposons and
those corresponding to other gene copies (such as trnas), which I counted
separately.

I then counted reads overlapping with each of the annotations mentioned
above and calculated tpms. Figure 4.1 compares the abundance of pol iii
binding on different features. As expected, trna accounts for a majority of
the total binding. Unfortunately, this makes it hard to assess the remain-
ing variability visually. The remainder of the data is therefore summarised
again in tabular format, for just one stage (table 4.1).

Interestingly, the proportions with the extreme skew towards trna genes
shown in figure 4.1 are similar to those reported in Raha & al. [2010] and
Canella & al. [2012] for pol ii association with pol iii genes and repeats. As
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Figure 4.1: Polymerase III coverage, compared across different feature types in six stages of
development in liver. Strikingly, the E18.5 stage shows strongly reduced overall tRNA activity.
This is due to a single, divergent replicate, which pulls down the average.

Feature Prop (%)
rrna 31.1
sine 11.7
ncrna 10.6
repeat 10.3
ltr 10.2
pseudogene 9.7
protein-coding 9.3
line 7.2

Table 4.1: Polymerase III coverage excluding tRNA genes for liver E15.5.

can be seen in table 4.1, with the exception of rrna and long interspersed
nuclear elements (line), all features have very similar coverage proportions.
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These numbers are probably skewed by the pol iii Chip-seq background sig-
nal, which has not been removed from the data, on the assumption that, as
long as all features are susceptible to the same amount of spurious signal,
the influence on the proportions would be negligible. Comparing the sig-
nal strength from the input libraries and the pol iii Chip reveals that this may
not be the case (see figure C.1). Consequently, in the future it will be im-
portant to verify that the results described below are robust after properly
modelling background noise levels.

4.1.1. SINEs are transcribed by pol III

Taken together with the observation reported by Carrière & al. [2012], the
results compelled me to take a closer look at the binding of short inter-
spersed nuclear elements (sine) by pol iii. sines are a type of retrotranspo-
son that are highly abundant in the genome: as much as 13 per cent of the
genome is a sine in mammals, and there are of the order of 1 500 000 gene
copies [Lander & al., 2001]. sines are are anywhere from 100 bp to 700 bp
in length and are typically composed of three elements: the head, the body
and the tail. The head of sines is derived from pol iii-transcribed rnas. The
body is an unrelated piece of sequence often containing fragments from
lines. The tail, finally, usually consists of a simple repeat.

In mammals, most sines, which form the class of Alu elements, are de-
rived from the (pol iii-transcribed) 7SL ncrna. Many others, forming differ-
ent classes of sines, are derived from different trna genes [Vassetzky and
Kramerov, 2013].

The fact that they possess a pol iii promoter means that they can, in some
cases, be transcribed in vitro [Robert J White, 1998]. It is generally assumed
that they do not perform a function in the cell and are usually not actively
transcribed. However, as the results by Carrière & al. [2012] indicate that
there is indeed limited transcription of sine in mammals, we should be able
to observe this in our pol iii Chip data. It is my hope that in examining sine
transcription, we may be able to learn more about the transcription regu-
lation of trna genes: the similar promoter structure of trna-derived sines
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suggests that the mechanism of gene regulation may be similar here. Fur-
thermore, since sines are not evolutionarily conserved and perform no vital
function in the cell, their active transcription will always happen incident-
ally. Comparing the upstream sequence composition of active and inactive
sines and of related trna genes may enable us to pinpoint common sequence
motifs necessary for active transcription.

Testing this is not trivial, since sines are repeat elements and we thus can-
not directly map reads to unique locations, similar to the case of trna genes.
In the following, rather than looking at the flanking sequences to disambig-
uate non-uniquely mapping reads as I did for trna, I pooled classes of sine
gene copies into 676 classes (downloaded from RepBase [Jurka & al., 2005]).
I then generated a reference transcriptome from the consensus sequences
of the sine classes. Reads from pol iii Chip-seq were then mapped to this
reference using Bowtie.

Across two tissues (liver and brain) and six stages of development I find
that on average 63 per cent of the sine classes (431 out of 676) show nonzero
coverage. In these, there is low but significant enrichment of pol iii binding
compared to the input libraries (Chip-seq experiment performed without
antibody to quantify the noise introduced by the experiment). The amount
of pol iii binding to the various sine classes varies across 4 orders of mag-
nitude. An overview over the magnitude of binding is shown in figure 4.2.

Despite the challenges of working with repeat regions, the quantification
of changes in sine binding by pol iii during mouse development seems thus
feasible. The next problem to solve is the handling of experimental noise,
shown in the input libraries. Conventional Chip-seq protocols for the identi-
fication of protein binding sites or histone modifications use these libraries
during peak-calling to quantify and filter out the background signal [Zhang
& al., 2008]. The naive way of handling this, simply subtracting the input
count from the pol iii count, will yield negative values in many cases where
the signal is low and noise is high (about 40 per cent in this dataset).

After accounting for noise, the remaining expressed sine classes can be
classified based on the rna they are derived from. Different classes of sine
have a highly variable number of gene copies, from 100 to 1 000 000. When
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Figure 4.2: SINE binding by pol III across development in liver and brain. Raw counts of
pol III binding to different SINE classes. Classes with count equal to 0 have been filtered out.

comparing pol iii binding between these classes, it is important to account
for these differences, since higher gene copies will have proportionally high-
er binding.

v

In summary, I have shown that trna genes account for the vast majority of
the overall pol iii binding. After this, rrna genes show the most binding,
and following this, sines. I have mapped the pol iii Chip data against con-
sensus sequences for 676 sine classes to show that many of these classes
have nonzero pol iii binding. In the future, I plan to investigate how pol iii
binding varies between different classes of sines, in particular with regards
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to their origin. Furthermore, I plan to investigate how this binding chan-
ges across development, and whether this variation in binding correlates
between any of the sine classes and related trna genes. Finally, if such a
correlation is found, I will look for common upstream sequence elements
that are absent in other sine classes. However, this last step may require
looking at the upstream sequence of individual sines rather than that of
sine classes unless it turns out that the upstream sequences of individual
sines within a class is conserved.

I have focused on sines due to their interesting similarity to trna genes.
A similar analysis as for sines can of course also be performed for other
repeat classes that showed similar levels of pol iii binding in the previous
analysis. In fact, there is potential for the sine analysis to yield a framework
to facilitate this kind of sequencing analysis for repeat features, which are
notoriously hard to work with in the context of high-throughput sequen-
cing due to their inherent non-mappability.
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Conclusion 5
… except in the light of genetics.

Evolution by natural selection is the implicit assumption underlying all of
modern biology. Dobzhansky [1973] famously argues against ill-informed
criticism of evolution, stating that

Nothing in biology makes sense except in the light of evolution.

This statement is as relevant today as it was then — both as an admon-
ishment about the still prevalent ignorance of basic biological facts, and
serving as a succinct summary of our understanding of biology. In fact,
modern evolutionary synthesis, which is the prevailing explanatory model
employed today, and which is itself an evolution of the Darwinian theory
of descent with modification by means of natural selection, is unchallenged
in this status, and is corroborated by every new piece of evidence.

In “The making of the fittest”, Sean Carroll argues that the best evidence for
evolution we have is the genetic record that we can now read directly in the
dna of all living species [Carroll, 2006]. Carroll was mainly talking about
the similarity between homologous genes in different species. But one of
the most striking examples of strong conservation is the near-universal ge-
netic code: Throughout billions of years of evolution, the instruction set
used to encode the building blocks of proteins has remained virtually un-
changed.
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In contrast with the conservation of the genetic code itself, the implement-
ation of this code shows some degree of variation, most notably in the vari-
ation of the selection of preferential synonymous codons, i.e. the codon bias
(reviewed in Ermolaeva [2001]) on the one hand, and in the divergence of
the trna genes [Kutter & al., 2011] on the other hand.

5.1. Discussion

5.1.1. Regulation of tRNA gene expression

In chapter 2, I have summarised our research into the variability of the trna
genes, not across evolution, but across development. Our findings mirror
a common theme: despite pervasive variation of trna gene expression, the
anticodon isoacceptor trna abundance remains very stable across different
stages of development, and matches the codon demand of the transcrip-
tome which, itself, also shows very little variation.

As there is no effect on the abundance of the trna anticodon isoacceptor
pools, it remains unclear why such variation of the trna gene expression
exists; however, I have shown that the variation is not stochastic but rather
the product of coordinated regulation, precisely to ensure the stability of
the anticodon pool. One might thus suspect that the observed variation in
trna gene expression is simply a consequence of a stabilising mechanism to
provide a buffer against extrinsically caused changes in the expression of
individual trna genes.

On the other hand, the variability in trna gene expression may be due
to a regulatory role, which is a common theme of ncrnas: Many different
types of ncrna are known to be implicated in the regulation of gene expres-
sion through a variety of mechanisms [Mattick and Makunin, 2006]. For
example, long non-coding rnas (lncrna) have been shown to bind to chro-
matin and help shape its conformation [Rinn and Chang, 2012], and small
rna fragments from different sources are involved in rna silencing via a
machinery known as rna-induced silencing complex (risc) [Hamilton and
Baulcombe, 1999; Hammond & al., 2000].
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Although trnas have a “canonical” role — to act as adapters in the pro-
cess of translation — this of course does not preclude other roles. In fact,
there is evidence that ties trna-derived fragments to different regulatory
roles. As mentioned in the introduction, about ten per cent of the bases
in a typical trna’s transcript are post-transcriptionally modified. Some of
these modifications impact the stability of the transcript. For example, it is
known that cytosine-5 methylation in the anticodon loop of trnas, which
is prevalent in actively transcribed trnas, inhibits endonucleolytic cleavage.
Absence of this methylation leads to cleavage and the accumulation of 3′

and 5′ fragments [Thompson & al., 2008]. Furthermore, there is evidence
that overabundance of 5′ trna fragments lead to cellular stress [Blanco & al.,
2014].

But not only the 5′ fragment of trnas is catalytically active: the 3′ ends
of specific trnas have been shown to act as primers for the transcription
of endogenous retroviruses such as type-1 human immunodeficiency virus
(hiv-1) in a highly sequence-specific manner [Litvak & al., 1994]. In general,
the expression of such retroviruses is detrimental for the cell and, by implic-
ation, excess abundance of specific trna-derived fragments affects the cell’s
fitness negatively. This exerts a selective pressure to evolve a mechanism for
suppressing the expression of such fragments. One way of depleting their
abundance is to downregulate the expression of the trna genes from which
they are derived in response to the detection of excess trna fragments.

In sum, the regulatory role of trna transcripts adds another dimension
to the need for the regulation of their abundance. In fact, the dependence
on specific enzymes (such as nsun2 in mouse) to methylate trnas, and thus
to ensure their stability hints at the fundamental importance of preventing
the formation of excess trna-derived fragments [Blanco & al., 2014].

The precise mechanisms that regulate the expression of trna genes re-
main unclear. Corroborating previous reports [Oler & al., 2010], I have
found some evidence that trna gene activity correlates with specific histone
marks. However, it is unclear whether this is a cause or a consequence of
differential regulation, and it is insufficient to account for differences in the
expression of trna genes in close vicinity. Furthermore, there is so far no
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mechanism for the dynamic feedback necessary for effecting the compens-
atory effect between genes in an isoacceptor family.

5.1.2. Absence of evidence for codon bias-dependent translation
efficiency in mammals

Despite the existence of large variations in codon usage between subsets of
genes, some of which are cell type specific, I was unable to find evidence for
a regulatory effect of this codon bias on translation rates via higher adapta-
tion to a cell type specific trna anticodon isoacceptor pool in mammals. On
the contrary, the variation in the trna anticodon abundance does not seem
to correlate with cell type specific codon demand. This finding, presen-
ted in chapter 3, lends support to a view that has recently been challenged
[Gingold, Tehler, & al., 2014; Wilusz, 2015]: that translational selection via
codon bias, if present at all, plays a negligible role in mammalian systems.
It will be interesting to see how this controversy will unfold.

If true, this implies that, in mammals, codon bias has not conserved the
regulatory role it plays in unicellular organisms, where it is well established
that codon bias influences translation efficiency to control gene-specific ex-
pression levels (reviewed in Plotkin and Kudla [2010]). Why would this
central role of codon bias be present in unicellular organisms but not in
complex multicellular animals? The following is an attempt at an explana-
tion.

In contrast to unicellular organisms, multicellular organisms need to en-
code the fundamentally different functionality of distinct cell types in a
single, static genome. This is achieved through a highly sophisticated reg-
ulatory machinery whose dynamic evolution has been revealed in recent
years, in particular with a focus on mammalian systems [Villar & al., 2015].
While organisms consisting of a single cell type also employ gene regulat-
ory networks, the complexity of the regulatory machinery in organisms
with many cell types is much higher in comparison, and in particular re-
lies heavily on distal regulatory elements and epigenetic modification.

However, despite only consisting of a single cell type, unicellular life
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still needs to dynamically adapt to different environments. Besides using
simple transcriptional control, they also rely heavily on translational con-
trol by means of gene specific codon bias variation. In multicellular organ-
isms, the existence of a more direct control of gene expression via transcrip-
tion regulation obviates the need for this less direct mechanism.

The effect this has is further heightened by the simpler genomic trna land-
scape in unicellular organisms: while mammals have several hundred trna
genes, with up to dozens of gene copies per anticodon, unicellular organ-
isms possess fewer anticodons, and usually just a single trna gene copy
per anticodon [Chan and Lowe, 2009]. As a consequence, the downregula-
tion of even just a single trna gene copy has profound consequences on the
cytosolic trna concentration, and thus the ability of the cell to translate indi-
vidual codons. This acts as a powerful pressure on the selection of suitable
codons.

I suggest that these two factors — the relatively higher complexity of tran-
scriptional regulation in mammals, and the higher impact of variation in
trna gene transcription on variation in trna availability and thus on transla-
tion efficiency in unicellular organisms — are sufficient to explain the res-
ults we observe here as well as established results reported in the literature.

At the end of the project outlined in chapter 3, I have started exploring
other potential sources of the cell type-specific codon bias observed in mam-
mals, unrelated to the regulation of translation rate. My first intuition was
that the codon bias might be a stochastic artefact caused by the small size
of the gene sets under consideration. However, whilst stochastic variation
does have an effect on codon bias, it is insufficient to explain all the ob-
served codon bias in most gene sets. I will continue exploring genomic gc
bias as another potential cause of this effect.

5.1.3. The extended pol III transcriptome

The pol iii Chip-seq data generated for the projects presented in this thesis
provides a wealth of information beyond just trna gene activity. Chapter 4
takes a brief glimpse at genome-wide pol iii binding and confirms that pol iii
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binding can be used to assess the activity of genes with known pol iii-driven
transcription.

In particular, I was able to assess binding of pol iii to the promoter region
of sine loci. The problem of multi-mapping reads and the high number of
sine gene copies makes it hard to assess the activity of individual sine genes.
However, by collapsing sine gene families, I could corroborate previous re-
ports of sine transcription in vivo [Carrière & al., 2012].

5.2. Future directions

5.2.1. Regulation of tRNA transcription

While providing unprecedented insight into the controlled variability of
trna gene transcription, chapter 2 has failed to establish a mechanism for
the differential regulation of trna gene transcription. Known features of
pol iii recruitment, such as transcription factor binding and specific histone
marks, could not conclusively be shown to cause the differences I observed
in the trna gene transcription between different stages of development. My
analysis deliberately excluded the internal promoters of trna genes from
the search for specific motifs since it has previously been reported that vari-
ation of the internal promoter of trna genes is unrelated to variation in gene
expression [Oler & al., 2010; Canella & al., 2012].

However, results in Gingold, Tehler, & al. [2014] indicate that this may
have been premature, as they find significant differences in the B box of
trna genes which they reported as differentially expressed between condi-
tions. This suggests that internal promoter variation may contribute to the
observed variability of the trna transcriptome after all. I intend to run the
methods they used on our data to test this hypothesis.

5.2.2. Codon usage adaptation

The question of what causes codon usage bias variability across functional
subsets of the transcriptome remains wide open. gc bias, in particular, is
worth exploring further. On the one hand, I observed a robust correlation
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between gc bias and codon usage, and we know that codon usage can some-
times be predicted from intergenic gc content [S. L. Chen & al., 2004]. On
the other hand, Duret [2002] show that, at least in Drosophila melanogaster
and Caenorhabditis elegans, gc bias is uncorrelated with codon usage bias.

To explore this further, two avenues present themselves:

1. It is known that intergenic isochore gc content in mammals predicts
codon usage. Since intergenic regions are non-coding, this suggests
that differential codon usage between genes has, at best, a minor func-
tional relevance. So far, I have only looked at gc bias in coding se-
quences. To make similar conclusions, I will have to instead compare
codon usage to the gc bias in the flanking regions of protein-coding
genes.

2. gc bias can vary between synonymous and non-synonymous codons.
If gc bias is indeed causal for codon usage, we would expect that gc
bias correlates highly between the first two nucleotide positions of the
codon and its wobble position. However, if the wobble position’s gc
bias is uncorrelated to the gc bias of the other codon positions in a
gene set, this would require a different explanation.

Another feature known to constrain codon deployment is the presence of
other sequence features in the coding region of genes. This includes bind-
ing sites for enhancers and splicing factors [Hyder & al., 1995; Blencowe,
2000]. The extent of this constraint has recently been shown to be much
more widespread than previously assumed [Stergachis & al., 2013]. It is
conceivable that condition specific gene sets carry enhancers for their own
transcription in their gene bodies, which would contribute to a codon usage
bias. It would be worthwhile to investigate the enrichment of such binding
sites in gene sets with strong codon bias, in particular those reported by
[Gingold, Tehler, & al., 2014].

The usage of a simple correlation between matching codons and anti-
codons, disregarding wobble base pairing, has proved adequate to demon-
strate an overall high correlation between the codon demand and match-
ing trna anticodon isoacceptor pool. However, arguing about the relative
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adaptiveness of different gene sets or transcriptomes may make it neces-
sary to consider wobble base pairing to model the codon–anticodon inter-
action more precisely. The tai [dos Reis, Wernisch, & al., 2003] offers a way
of quantifying codon–anticodon adaptation by considering (simplified, see
table 1.2) wobble base pairing rules. However, it is conventionally based
on the trna isoacceptor gene copy number as a measure of anticodon abun-
dance. I plan to improve this using our trna gene expression data, which
offer a more accurate anticodon isoacceptor abundance measure, instead.
In addition, it may be possible to extend the tai metric by considering ex-
tended wobble base pairing rules [Murphy and Ramakrishnan, 2004] — al-
though it is likely that this will have a very limited effect on the adaptation
value.

5.2.3. Pol III transcription of SINEs

The next step in the analysis of sine expression requires a framework for the
robust quantification of pol iii binding signal over background noise. I in-
tend to use alignment-free quantification methods [Patro & al., 2014; Bray
& al., 2015] to quantify pol iii binding on individual gene loci, extending
the approach used for trna genes. This approach also allows a robust es-
timate of background noise from Chip input libraries. To verify the validity
of this approach, lacking independent suitable sine expression data, I will
computationally generate high-throughput sequencing read libraries from
simulated sine gene expression profiles, and test for concordance between
the simulation and the expression estimated by the pipeline.

Using this framework for estimating sine gene expression, I can then in-
vestigate whether trna gene derived sines possess elements of transcription
regulation in comon with their trna gene of origin. To do this, individual
sine classes will to be grouped by their origin, and their expression across
mouse development will be correlated with the expression of their source
trna gene to look for common factors.
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Supplementary material for
chapter 2 A
The material in this section has been taken from the supplementary figures
& methods of Schmitt, Rudolph, & al. [2014] with minimal changes to the
figure legends. The figures and their captions have been created jointly by
Bianca Schmitt, Claudia Kutter and me.

A.1. Code

The code used in the analysis of the data for this chapter can be found at
https://github.com/klmr/trna and https://github.com/klmr/trna-chip-pipeline.

A.2. Supplementary figures and tables
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Figure A.1: Workflow of the genome-wide identification and analysis of protein-coding
and tRNA genes. (A) RNA-seq analysis of protein-coding gene expression, differential ex-
pression analysis and codon usage analysis. (B) ChIP-seq analysis of pol III occupancy at tRNA
gene loci, differential expression analysis of tRNA genes, and anticodon isoacceptor abun-
dance analysis.
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Table A.1: The 311 tRNA genes found expressed across mouse development.

Gene Isoacceptor Isotype

chr1.trna1000 gtc Asp
chr1.trna1001 tcc Gly
chr1.trna1002 ctc Glu
chr1.trna1004 tcc Gly
chr1.trna1005 gtc Asp
chr1.trna1006 gtt Asn
chr1.trna1022 cgg Pro
chr1.trna1184 ttt Lys
chr1.trna1392 gcc Gly
chr1.trna1547 ttc Glu
chr1.trna485 ttt Lys
chr1.trna672 agg Pro
chr1.trna698 cag Leu
chr1.trna699 gcc Gly
chr1.trna701 cag Leu
chr1.trna702 gcc Gly
chr1.trna703 cag Leu
chr1.trna704 gcc Gly
chr1.trna705 cag Leu
chr1.trna706 gcc Gly
chr1.trna707 gtc Asp
chr1.trna708 tcc Gly
chr1.trna709 ctc Glu
chr1.trna710 cac Val
chr1.trna730 tct Arg
chr1.trna993 cag Leu
chr1.trna994 gtc Asp
chr1.trna995 tcc Gly
chr1.trna996 ctc Glu
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chr1.trna997 gtc Asp
chr1.trna998 tcc Gly
chr1.trna999 ctc Glu
chr10.trna1095 tga Ser
chr10.trna1316 taa Leu
chr10.trna381 gtt Asn
chr10.trna688 cga Ser
chr10.trna81 ctc Glu
chr10.trna851 gtc Asp
chr10.trna856 gtc Asp
chr10.trna857 cca Trp
chr10.trna961 gaa Phe
chr11.trna1022 cct Arg
chr11.trna1023 tcg Arg
chr11.trna1234 cct Arg
chr11.trna1432 gca Cys
chr11.trna1433 gca Cys
chr11.trna1442 gca Cys
chr11.trna1444 gca Cys
chr11.trna1446 gtt Asn
chr11.trna1493 ttg Gln
chr11.trna1816 ttt Lys
chr11.trna1817 ctg Gln
chr11.trna1818 tct Arg
chr11.trna1819 gcc Gly
chr11.trna1820 cca Trp
chr11.trna1821 gct Ser
chr11.trna1822 agt Thr
chr11.trna1823 aat Ile
chr11.trna1824 tcc Gly
chr11.trna1849 cca Trp
chr11.trna1880 cca Trp
chr11.trna1911 caa Leu
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chr11.trna1912 ctc Glu
chr11.trna2021 aag Leu
chr11.trna2022 tgc Ala
chr11.trna2023 ctt Lys
chr11.trna204 cac Val
chr11.trna205 acc Gly
chr11.trna206 tgt Thr
chr11.trna207 tgg Pro
chr11.trna208 aac Val
chr11.trna393 aat Ile
chr11.trna394 aga Ser
chr11.trna395 agt Thr
chr11.trna396 cgg Pro
chr11.trna397 gtc Asp
chr11.trna398 cca Trp
chr11.trna399 agt Thr
chr11.trna400 cga Ser
chr11.trna401 tag Leu
chr11.trna550 cgt Thr
chr11.trna791 gca Cys
chr11.trna945 ccg Arg
chr12.trna470 aat Ile
chr12.trna790 ctt Lys
chr13.trna100 aat Ile
chr13.trna1000 ttt Lys
chr13.trna1001 ctc Glu
chr13.trna101 gta Tyr
chr13.trna102 agc Ala
chr13.trna103 ctt Lys
chr13.trna104 agt Thr
chr13.trna105 ttc Glu
chr13.trna106 gta Tyr
chr13.trna107 cca Trp
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chr13.trna108 cat Met
chr13.trna109 cca Trp
chr13.trna110 gcc Gly
chr13.trna111 cat Met
chr13.trna112 tga Ser
chr13.trna113 ttg Gln
chr13.trna114 ttg Gln
chr13.trna115 gct Ser
chr13.trna60 gaa Phe
chr13.trna61 cat Met
chr13.trna62 aag Leu
chr13.trna63 aag Leu
chr13.trna64 ctg Gln
chr13.trna65 caa Leu
chr13.trna66 agc Ala
chr13.trna67 agc Ala
chr13.trna68 tgc Ala
chr13.trna69 agc Ala
chr13.trna70 cgc Ala
chr13.trna71 agc Ala
chr13.trna72 cgt Thr
chr13.trna73 tgt Thr
chr13.trna74 tcg Arg
chr13.trna75 cgt Thr
chr13.trna77 gcc Gly
chr13.trna78 cat Met
chr13.trna81 agt Thr
chr13.trna82 cat Met
chr13.trna83 ttt Lys
chr13.trna84 gtc Asp
chr13.trna85 caa Leu
chr13.trna86 aga Ser
chr13.trna87 ctg Gln
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chr13.trna88 aga Ser
chr13.trna89 ttt Lys
chr13.trna90 cat Met
chr13.trna91 cac Val
chr13.trna92 aat Ile
chr13.trna93 aac Val
chr13.trna94 agc Ala
chr13.trna947 cat Met
chr13.trna948 tcg Arg
chr13.trna949 tcg Arg
chr13.trna95 aac Val
chr13.trna950 aga Ser
chr13.trna951 acg Arg
chr13.trna952 cag Leu
chr13.trna953 acg Arg
chr13.trna954 cac Val
chr13.trna955 cgc Ala
chr13.trna956 aat Ile
chr13.trna957 agg Pro
chr13.trna958 gta Tyr
chr13.trna959 gta Tyr
chr13.trna96 agc Ala
chr13.trna960 gta Tyr
chr13.trna961 gta Tyr
chr13.trna962 aac Val
chr13.trna963 agc Ala
chr13.trna964 cac Val
chr13.trna965 aac Val
chr13.trna966 agc Ala
chr13.trna968 aat Ile
chr13.trna969 tat Ile
chr13.trna97 cac Val
chr13.trna970 gct Ser
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chr13.trna971 agt Thr
chr13.trna972 cga Ser
chr13.trna973 acg Arg
chr13.trna974 aac Val
chr13.trna975 ctg Gln
chr13.trna976 gct Ser
chr13.trna978 aga Ser
chr13.trna979 gtc Asp
chr13.trna98 cac Val
chr13.trna980 aga Ser
chr13.trna981 gtc Asp
chr13.trna982 ctg Gln
chr13.trna983 cat Met
chr13.trna984 tga Ser
chr13.trna985 tct Arg
chr13.trna987 tat Ile
chr13.trna988 gaa Phe
chr13.trna989 aat Ile
chr13.trna99 cat Met
chr13.trna990 aat Ile
chr13.trna991 taa Leu
chr13.trna994 cat Met
chr13.trna995 ttg Gln
chr13.trna996 agt Thr
chr13.trna997 ccg Arg
chr13.trna998 caa Leu
chr13.trna999 cat Met
chr14.trna188 aag Leu
chr14.trna190 tgt Thr
chr14.trna191 gta Tyr
chr14.trna192 tgg Pro
chr14.trna209 acg Arg
chr14.trna347 ttc Glu
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chr14.trna359 ttc Glu
chr14.trna457 gaa Phe
chr14.trna703 tag Leu
chr14.trna704 tgt Thr
chr14.trna705 agg Pro
chr15.trna913 cat Met
chr16.trna50 cgt Thr
chr17.trna1000 ctt Lys
chr17.trna113 ccc Gly
chr17.trna458 gca Cys
chr17.trna516 tat Ile
chr17.trna82 ctt Lys
chr17.trna83 cgg Pro
chr17.trna84 ctt Lys
chr17.trna994 ccg Arg
chr17.trna995 cct Arg
chr17.trna996 tgg Pro
chr17.trna998 tgg Pro
chr19.trna106 gaa Phe
chr19.trna107 ttt Lys
chr19.trna108 gaa Phe
chr19.trna109 tac Val
chr19.trna110 tac Val
chr19.trna637 tct Arg
chr19.trna638 taa Leu
chr19.trna639 ttt Lys
chr19.trna711 gct Ser
chr19.trna8 agc Ala
chr2.trna1431 gtg His
chr2.trna1432 gtg His
chr2.trna1509 gct Ser
chr2.trna1747 gcc Gly
chr2.trna1947 gtt Asn
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chr2.trna263 cgc Ala
chr2.trna586 gtg His
chr3.trna1 ctt Lys
chr3.trna1040 acg Arg
chr3.trna27 gta Tyr
chr3.trna28 gta Tyr
chr3.trna283 gtt Asn
chr3.trna284 cac Val
chr3.trna286 ttc Glu
chr3.trna287 ccc Gly
chr3.trna289 gtt Asn
chr3.trna29 agc Ala
chr3.trna291 gtg His
chr3.trna292 ctt Lys
chr3.trna293 gtg His
chr3.trna294 gtt Asn
chr3.trna295 gtg His
chr3.trna297 ctg Gln
chr3.trna298 gtt Asn
chr3.trna303 ctc Glu
chr3.trna309 ctg Gln
chr3.trna48 aac Val
chr3.trna628 tct Arg
chr3.trna745 ctc Glu
chr3.trna746 tcc Gly
chr3.trna747 gtg His
chr3.trna748 ctt Lys
chr3.trna749 gtg His
chr3.trna750 gtt Asn
chr3.trna751 gtg His
chr3.trna752 ccc Gly
chr3.trna753 ctg Gln
chr3.trna754 ttc Glu
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chr3.trna755 ccc Gly
chr3.trna756 ctg Gln
chr3.trna757 gtt Asn
chr3.trna792 cat Met
chr3.trna878 gcc Gly
chr3.trna92 tgg Pro
chr3.trna93 agg Pro
chr4.trna16 aga Ser
chr4.trna1697 gtg His
chr5.trna1043 gtt Asn
chr5.trna109 gta Tyr
chr5.trna110 agc Ala
chr5.trna1314 gtc Asp
chr5.trna1315 gaa Phe
chr5.trna1316 gtc Asp
chr5.trna1317 tgc Ala
chr5.trna702 tgc Ala
chr6.trna1021 gca Cys
chr6.trna1022 gca Cys
chr6.trna1025 gca Cys
chr6.trna1029 gca Cys
chr6.trna107 cct Arg
chr6.trna157 gca Cys
chr6.trna317 ccc Gly
chr6.trna46 agg Pro
chr7.trna1213 agt Thr
chr7.trna1276 ttt Lys
chr7.trna156 tat Ile
chr7.trna337 ttc Glu
chr7.trna387 tcg Arg
chr7.trna441 tgg Pro
chr7.trna559 aag Leu
chr7.trna86 tca SeC
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chr7.trna861 tag Leu
chr7.trna977 agg Pro
chr8.trna1008 cag Leu
chr8.trna414 cag Leu
chr8.trna560 gcc Gly
chr8.trna783 cat Met
chr8.trna886 gcc Gly
chr8.trna887 gcc Gly
chr9.trna1035 ctt Lys
chr9.trna342 ctg Gln
chr9.trna592 gca Cys
chr9.trna593 gca Cys
chr9.trna783 acg Arg
chr9.trna961 ttc Glu
chrX.trna371 tgc Ala
chrX.trna375 tgc Ala
chrX.trna459 tac Val
chrX.trna637 tgc Ala
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Figure A.2: Hierarchical clustering of mRNA gene expression correlations. The heatmap
shows the Spearman correlations of mRNA gene expression values, representing the same
data as figure 2.4. The samples cluster hierarchically by tissue, followed by developmental
stage.
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Figure A.3: Hierarchical clustering of tRNA gene expression correlations. The heatmap
shows the Spearman correlations of tRNA gene expression values, representing the same
data as figure 2.8. The samples cluster hierarchically by tissue, followed by developmental
stage, with few exceptions.
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Figure A.4: Correlation of RNA-seq and pol III ChIP-seq data during mouse liver and
brain development. Correlation of (A) protein-coding gene expression across developmental
stages, (B) tRNA gene expression as measured by pol III occupancy, (C) triplet codon usage
in protein-coding genes, (D) tRNA anticodon isoacceptor, (E) amino acid usage of protein-
coding genes and (F) tRNA amino acid isotype.
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Figure A.5: Early developmental stage-specific tRNA genes are lowly expressed. (A)
Factorial map of the PCA of pol III occupied tRNA gene expression levels in liver (red), brain
(yellow), embryonic body without head (light red) and head (light yellow) of stage E12.5, as
well as whole E9.5 embryo (grey). The proportion of variance explained by the PC is indic-
ated in parenthesis.
(B) Violin plots represent normalized enrichment of pol III at tRNA genes identified in E9.5
whole embryo (top), E12.5 head (middle) and E12.5 body without head (bottom) tissue. In
parentheses are the numbers of tRNA genes transcribed in the particular embryonic stage
(“total > 10”), which are subdivided into tRNA genes that can be found in the 12 devel-
opmental stages according to figure 2.6 (“all tissues”) and those that are specific for the
embryonic stage (“specific”).
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Figure A.6: Observed codon usage in mRNA transcriptomes of developing mouse liver.
Proportional frequencies (RCU) weighted by transcript expression are shown for triplet co-
dons ordered by amino acid as a bar plot, where grey shading is by triplet codon. Data is
obtained from liver RNA-seq data of all 6 developmental stages.
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Figure A.7: Observed anticodon abundance of tRNA isoacceptors of developing mouse
liver. Proportional frequencies weighted by tRNA gene expression (RAA) are shown for
anticodon isoacceptors ordered by amino acid isotype as a bar plot, where grey shading is by
anticodon. Data is obtained from liver pol III ChIP-seq data of all 6 developmental stages.
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Figure A.8: Observed and simulated amino acid and isotype usage in transcriptomes across
mouse liver development. Each panel (A–C) consists of three columns: experimentally ob-
served data (left), simulated patterns of transcription randomized among either the expressed
genes (middle) or all genomically encoded genes (right). Transcriptomes of each develop-
mental stage were simulated 100 times. Proportional frequencies weighted by transcript
expression are shown for (A) 20 amino acids as a radial plot, where data lines are coloured
by developmental stage and the background of all genomically annotated mRNA genes is in
grey. Labels within grid of radial plot describe ratios. Proportional frequencies weighted by
pol III binding are shown for (B) 20 isotypes as a radial plot, both coloured as above (grey:
background of all genomically annotated tRNA genes). (C) Plot right panel shows Spearman’s
rank correlation coefficients (𝜌) and 𝑝-values (𝑝) of pol III binding to tRNA isotypes (𝑥-axis)
and transcriptomic amino acid frequencies weighted by expression obtained from RNA-seq
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Figure A.9: mRNA codon usage and pol III occupancy of tRNA isotypes in developing
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triplet codons, (B) amino acids, (C) pol III binding of arginine isoacceptors and (D) pol III
binding of amino acid isotypes. Grey shading is by triplet codon (A) or tRNA anticodon (C).
Labels within grid of radial plot describe proportions.
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Figure A.10: Highly versus lowly expressed protein-coding genes show no differential
codon usage. Proportional frequencies weighted by transcript expression are shown for ar-
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(25th–50th percentile) protein-coding genes during liver development, where grey shading is
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Figure A.11: Transcriptomic mRNA codon usage and pol III binding to tRNA isoacceptors
correlate in developing mouse liver and brain. Plots show correlation of proportional pol III
binding to tRNA isoacceptors (𝑥-axis) and transcriptomic codon frequencies weighted by
expression obtained from RNA-seq data (𝑦-axis). Correlation plots for developing liver (A–F)
and brain (G–L) are shown. Indexed box in top left indicates developmental stage. Grey dots
represent degenerated codons. Spearman’s rank correlation coefficients (𝜌) are reported
along with their 𝑝-values (𝑝) in bottom right of each panel.
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Figure A.12: Transcriptomic mRNA codon usage and wobble corrected pol III binding to
tRNA isoacceptors correlate in developing mouse liver and brain. Plots show correlation
of proportional pol III binding to tRNA isoacceptors corrected according to wobble pairing (𝑥-
axis) and transcriptomic codon frequencies weighted by expression obtained from RNA-seq
data (𝑦-axis). Correlation plots for developing liver (A–F) and brain (G–L) are shown. Indexed
box in top left indicates developmental stage. Spearman’s rank correlation coefficients (𝜌) are
reported along with their 𝑝-values (𝑝) in bottom right of each panel.
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Figure A.13: Transcriptomic mRNA amino acid usage and pol III binding to tRNA isotypes
correlate in developing mouse liver and brain. Plots show correlation of pol III binding to
tRNA isotypes (𝑥-axis) and transcriptomic amino acid frequencies weighted by expression
obtained from RNA-seq data (𝑦-axis). Correlation plots for developing liver (A–F) and brain
(G–L) are shown. Indexed box in top left indicates developmental stage. Grey area represents
99 per cent confidence interval. Spearman’s rank correlation coefficients (𝜌) and the corres-
ponding 𝑝-values (𝑝) are reported in top left and bottom right, respectively of each panel.
Amino acid isotypes outside the 99 per cent confidence interval (grey area) are named.
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Tissue Contrast Query ID Target ID 𝑝-value Target consensus

Brain E18.5–P22 TTAGCTTTGTTTCTTTGTTTT MA0041.1 0.01 GAATGTTTGTTT

Brain E18.5–P22 TTAGCTTTGTTTCTTTGTTTT MA0042.1 0.03 GGATGTTTGTTT

Brain P4–P22 GTCAACTCCCTCCCCAGATCCCACCCGCC MA0068.1 0.04 GAAAAATTTCCCATACTCCACTCCCCCCCC

Brain P4–P22 GTCAACTCCCTCCCCAGATCCCACCCGCC MA0079.2 0.04 CCCCGCCCCC

Table A.3: Significantly enriched MEME hits. Shown are hits that are significantly enriched
at the 5 per cent threshold after correcting for multiple testing, given with their corrected
𝑝-values.

145



supplementary material for chapter 2

A B C
 10kb

Ratio0 1.0

0

1.0

Pr
op

or
tio

n

p �0.357

DE
non DE

 50kb

Ratio0 1.0

0

1.0

Pr
op

or
tio

n
p �0.005

 100kb

Ratio0 1.0

0

1.0

Pr
op

or
tio

n

p �0.106

D E F

0 1.0

0

1.0

Pr
op

or
tio

n

p �0.818

 10kb

Ratio 0 1.0

0

1.0

Pr
op

or
tio

n

p �0.336

 50kb

Ratio 0 1.0

0

1.0

Pr
op

or
tio

n
p �0.097

 100kb

Ratio

E15.5 vs P22

P4 vs P29

DE
non DE

Figure A.14: Differentially expressed tRNA genes show no colocalisation with differen-
tially expressed protein-coding genes. In each plot, the blue line is the cumulative distribution
of the ratio of the number of upregulated mRNA genes to the number of all mRNA genes
in the neighbourhood of each upregulated tRNA gene. The green line is the cumulative dis-
tribution of the ratios of the number of upregulated mRNA genes (FDR cutoff 0.01) to the
number of all mRNA genes, in the neighbourhood of each tRNA gene that is not differentially
expressed. Significant differences between these two distributions reveal situations where
upregulated tRNA genes are significantly (by Kolmogorov–Smirnov test) associated with up-
regulated protein-coding genes. Different window sizes were used, ranging from 10 kb, 50 kb
and 100 kb around tRNA genes. Pairwise comparison of (A–C) E15.5 and P22 in liver as well
as (D–F) P4 and P29 in brain are shown. This analysis was repeated using two additional
FDR cutoffs (0.05 and 0.0, data for liver in table 2.2, not shown for brain). Under the as-
sumption that there was an observable colocalisation effect, we would expect there to be a
robust signal, i.e. consistent significance across different tested parameters. However, of the
18 tests, only one was significant (corrected 𝑝 < 0.013), after correcting for multiple testing
(Bonferroni), indicating the absence of any strong localisation effect.
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B.1. Code

The code used in the analysis of the data for this chapter can be found at
https://github.com/klmr/codons.

B.2. Supplementary tables
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Table B.1: Gene identifiers for GO term “M phase of mitotic cell cycle”.

Gene Human ID Mouse ID

MAD1L1 ENSG00000002822 ENSMUSG00000029554
PAFAH1B1 ENSG00000007168 ENSMUSG00000020745
NUP160 ENSG00000030066 ENSMUSG00000051329
CENPQ ENSG00000031691 ENSMUSG00000023919
MPHOSPH9 ENSG00000051825 ENSMUSG00000038126
KIF2A ENSG00000068796 ENSMUSG00000021693
NUP133 ENSG00000069248 ENSMUSG00000039509
SMC1A ENSG00000072501 ENSMUSG00000041133
NDE1 ENSG00000072864 ENSMUSG00000022678
CLASP1 ENSG00000074054 ENSMUSG00000064302
NUP37 ENSG00000075188 ENSMUSG00000035351
NDC80 ENSG00000080986 ENSMUSG00000024056
XPO1 ENSG00000082898 ENSMUSG00000020290
SEH1L ENSG00000085415 ENSMUSG00000079614
ZW10 ENSG00000086827 ENSMUSG00000032264
BIRC5 ENSG00000089685 ENSMUSG00000017716
NUDC ENSG00000090273 ENSMUSG00000028851
CENPM ENSG00000100162 ENSMUSG00000068101
RANGAP1 ENSG00000100401 ENSMUSG00000022391
CDC25B ENSG00000101224 ENSMUSG00000027330
MAPRE1 ENSG00000101367 ENSMUSG00000027479
STAG2 ENSG00000101972 ENSMUSG00000025862
CENPI ENSG00000102384 ENSMUSG00000031262
CENPT ENSG00000102901 ENSMUSG00000036672
SMC3 ENSG00000108055 ENSMUSG00000024974
NUP98 ENSG00000110713 ENSMUSG00000063550
NUP107 ENSG00000111581 ENSMUSG00000052798
FBXO5 ENSG00000112029 ENSMUSG00000019773
KIF20A ENSG00000112984 ENSMUSG00000003779
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GORASP1 ENSG00000114745 ENSMUSG00000032513
CENPA ENSG00000115163 ENSMUSG00000029177
CDC20 ENSG00000117399 ENSMUSG00000006398
NSL1 ENSG00000117697 ENSMUSG00000062510
CENPF ENSG00000117724 ENSMUSG00000026605
STAG1 ENSG00000118007 ENSMUSG00000037286
NUP43 ENSG00000120253 ENSMUSG00000040034
CENPL ENSG00000120334 ENSMUSG00000026708
KIF18A ENSG00000121621 ENSMUSG00000027115
ZWINT ENSG00000122952 ENSMUSG00000019923
CENPK ENSG00000123219 ENSMUSG00000021714
B9D2 ENSG00000123810 ENSMUSG00000063439
NUP85 ENSG00000125450 ENSMUSG00000020739
DLGAP5 ENSG00000126787 ENSMUSG00000037544
SGOL1 ENSG00000129810 ENSMUSG00000023940
CLIP1 ENSG00000130779 ENSMUSG00000049550
CDCA8 ENSG00000134690 ENSMUSG00000028873
MPHOSPH6 ENSG00000135698 ENSMUSG00000031843
KIF23 ENSG00000137807 ENSMUSG00000032254
CASC5 ENSG00000137812 ENSMUSG00000027326
CENPO ENSG00000138092 ENSMUSG00000020652
KIF20B ENSG00000138182 ENSMUSG00000024795
CENPE ENSG00000138778 ENSMUSG00000045328
KIF2B ENSG00000141200 ENSMUSG00000046755
ITGB3BP ENSG00000142856 ENSMUSG00000028549
KIF2C ENSG00000142945 ENSMUSG00000028678
NUF2 ENSG00000143228 ENSMUSG00000026683
INCENP ENSG00000149503 ENSMUSG00000024660
DSN1 ENSG00000149636 ENSMUSG00000027635
SPC25 ENSG00000152253 ENSMUSG00000005233
CENPH ENSG00000153044 ENSMUSG00000045273
RANBP2 ENSG00000153201 ENSMUSG00000003226
AHCTF1 ENSG00000153207 ENSMUSG00000026491
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BUB3 ENSG00000154473 ENSMUSG00000066979
SKA1 ENSG00000154839 ENSMUSG00000036223
BUB1B ENSG00000156970 ENSMUSG00000040084
SEC13 ENSG00000157020 ENSMUSG00000030298
CDC25C ENSG00000158402 ENSMUSG00000044201
TAOK1 ENSG00000160551 ENSMUSG00000017291
PMF1 ENSG00000160783 ENSMUSG00000028066
SPC24 ENSG00000161888 ENSMUSG00000074476
SGOL2 ENSG00000163535 ENSMUSG00000026039
CLASP2 ENSG00000163539 ENSMUSG00000033392
CDC25A ENSG00000164045 ENSMUSG00000032477
MAD2L1 ENSG00000164109 ENSMUSG00000029910
RAD21 ENSG00000164754 ENSMUSG00000022314
CENPN ENSG00000166451 ENSMUSG00000031756
NDEL1 ENSG00000166579 ENSMUSG00000018736
PLK1 ENSG00000166851 ENSMUSG00000030867
MIS12 ENSG00000167842 ENSMUSG00000040599
BUB1 ENSG00000169679 ENSMUSG00000027379
ZWILCH ENSG00000174442 ENSMUSG00000032400
CKAP5 ENSG00000175216 ENSMUSG00000040549
APITD1 ENSG00000175279 ENSMUSG00000073705
RPS27 ENSG00000177954 ENSMUSG00000090733
AURKB ENSG00000178999 ENSMUSG00000020897
RCC2 ENSG00000179051 ENSMUSG00000040945
SKA2 ENSG00000182628 ENSMUSG00000020492
KNTC1 ENSG00000184445 ENSMUSG00000029414
PPP1CC ENSG00000186298 ENSMUSG00000004455
ERCC6L ENSG00000186871 ENSMUSG00000051220
CENPP ENSG00000188312 ENSMUSG00000021391
NDE1 ENSG00000275911
CENPC1 ENSMUSG00000029253

Table B.3: Gene identifiers for GO term “M phase of mitotic cell cycle”.
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Gene Human ID Mouse ID

FOXP3 ENSG00000049768 ENSMUSG00000039521
ALX4 ENSG00000052850 ENSMUSG00000040310
FOXN3 ENSG00000053254 ENSMUSG00000033713
FOXJ2 ENSG00000065970 ENSMUSG00000003154
TP63 ENSG00000073282
GLI2 ENSG00000074047 ENSMUSG00000048402
TBX5 ENSG00000089225 ENSMUSG00000018263
CHRD ENSG00000090539 ENSMUSG00000006958
CRKL ENSG00000099942 ENSMUSG00000006134
MFNG ENSG00000100060 ENSMUSG00000018169
MID1 ENSG00000101871 ENSMUSG00000035299
FOXF1 ENSG00000103241 ENSMUSG00000042812
LFNG ENSG00000106003 ENSMUSG00000029570
HOXA5 ENSG00000106004 ENSMUSG00000038253
GLI3 ENSG00000106571 ENSMUSG00000021318
FOXN1 ENSG00000109101 ENSMUSG00000002057
FOXM1 ENSG00000111206 ENSMUSG00000001517
BMP5 ENSG00000112175 ENSMUSG00000032179
CDX1 ENSG00000113722 ENSMUSG00000024619
HES1 ENSG00000114315 ENSMUSG00000022528
ACVR2B ENSG00000114739 ENSMUSG00000061393
FOXP1 ENSG00000114861 ENSMUSG00000030067
FOXO3 ENSG00000118689 ENSMUSG00000048756
HOXB1 ENSG00000120094 ENSMUSG00000018973
FOXA2 ENSG00000125798 ENSMUSG00000037025
PAX1 ENSG00000125813 ENSMUSG00000037034
SIX1 ENSG00000126778 ENSMUSG00000051367
FOXP2 ENSG00000128573 ENSMUSG00000029563
SMO ENSG00000128602 ENSMUSG00000001761
HOXD11 ENSG00000128713 ENSMUSG00000042499
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HOXD13 ENSG00000128714 ENSMUSG00000001819
FOXA1 ENSG00000129514 ENSMUSG00000035451
FOXJ1 ENSG00000129654 ENSMUSG00000034227
RAX ENSG00000134438 ENSMUSG00000024518
HEY2 ENSG00000135547 ENSMUSG00000019789
NKX2-1 ENSG00000136352 ENSMUSG00000001496
FOXP4 ENSG00000137166 ENSMUSG00000023991
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C.1. Code

The code used in the analysis of the data for this chapter can be found at
https://github.com/klmr/pol3-seq.

C.2. Supplementary figures
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Figure C.1: Input library coverage of different features in six stages of development in liver.
The analysis was performed under the assumption that different features have similar amount
of input binding (normalised for feature length). As we can see here, this is not quite the
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