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SUMMARY

The explanation of phenotypes in cancer, such as cell line drug response
or patient survival, has largely been focussed on genomic alterations.
While this approach has generated many profound insights into cancer
biology, it does not directly make statements about the signaling im-
pact those cellular aberrations create. With direct measurements much
less widely available than gene expression, pathway methods (mostly
mapping gene expression onto signalling proteins) have so far fallen
short on delivering actionable evidence. This may in part be due to
lack of robustness, but these approaches are fundamentally at odds
with the notion of tight post-translational control of signal transduc-
tion. A way to solve this may be to derive consensus signatures of
pathway activity to make inferences about signalling, or signatures of
specific drugs to investigate their interactions.

As a baseline (chapter 2), I investigated how well pathway meth-
ods compare to driver mutations in terms of explaining cell line drug
response. [ went on to analyse the value of gene expression as a down-
stream signature of signaling activity instead of mapping it to the path-
way components by means of a previously published platform. This
improved over mapping pathway members using Gene Ontology or Re-
actome, but it considered only sets of up-regulated genes defined by
multiple arbitrary cutoffs. Hence, I extended the data set and created
a linear model (chapter 3) that compares favourably to gene set as
well as state of the art pathway methods in terms of recovering driver
mutations and providing biomarkers for cell line drug response and
patient survival (chapter 4). To complement this, I investigate how
gene expression signatures of drugs can be used in conjunction with vi-
ability data to suggest effective drug combinations where no pathway
information is available (chapter 5).

To the best of my knowledge, this thesis represents the first compre-
hensive analysis of different pathway methods across primary cohorts
and cancer cell lines, as well as the first large-scale systematic analysis
of drug sensitisation that could lead to new drug combinations.
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INTRODUCTION

Parts of section 1.6 were previously published. The text incorporated
represents a draft stage of the article below that was entirely written
by myself:

Schubert, M & lorio, F “FExploiting combinatorial patterns in can-
cer genomic data for personalized therapy and new target discovery.”
Pharmacogenomics 15, 1943-1946 (2014).

1.1 CANCER BIOLOGY
1.1.1  Significance and epidemiology

Cancer is a disease of the genes, given rise by changes in the genome
that mediate malignant transformation and hence uncontrolled growth
of a cell (Hanahan and Weinberg, 2000). The International Agency
for Research on Cancer estimates of global incidence of cancer to be
12.7 million new cases on 7.6 million cancer deaths based on estimates
for 182 countries in 2008 (Ferlay et al., 2010). In the United States,
it has even surpassed heart disease as the leading cause of death in
people younger than 85 (Twombly, 2005). Breast cancer is the most
abundant form in females, accounting for a total of 23% of cases and
14% of deaths. For males, the most abundant is lung cancer, comprised
of 17% of cases and 23% of cancer-related deaths (Jemal et al., 2011).

Needless to say, the disease is a global health concern and better ways
of diagnosis and treatment are needed, as well as a better understanding
of the molecular mechanisms.

1.1.2  Causes of genetic variation

Germline variation

In the human population, there is natural variation in the genome from
one individual to another, which gets passed down through generations
in the process of reproduction. Each human being has two copies of
their DNA, one passed down from their mother and the other passed

1

down from their father.” Disregarding of where the copies that an

1 this is excluding mitochondrial DNA that is only passed down the maternal lineage
(Hutchison et al., 1974)
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individual actually inherits came from, they may harbour the same se-
quence (that is, the individual is homozygous in a given base or gene)
or may be different between those so-called alleles (that is, the indi-
vidual is heterozygous). This together with our environment is what
makes us look different, but also what may cause us to be more or less
susceptible to a certain disease or treatment thereof. Since the genes
were assembled in the fertilized egg already that afterwards underwent
cell divisions (in a process called mitosis), all the cells in our body in
theory harbour the same DNA sequence, with the exception that sex
cells only contain one copy that was assembled in a cut-and-paste pro-
cess (called meiosis) of the two somatic ones (Hotta, Ito, and Stern,
1966).

Somatic variation

Should we sequence each cell in an individual, we would not find that
all of their consecutive bases made up of As, Ts, Cs, and Gs are indeed
identical, but there is also variation within each individual. There may
be a change that is common to cells that derive from the same parental
cell, or a change may have been introduced in a single cell by an internal
or external process. In the former case, we need to realize that the DNA
copy mechanism (also called DNA replication) that ensures that when a
cell splits both its daughter cells inherit two full copies of its DNA is not
infinitely accurate. Rather, this process may introduce reading- (from
the ancestral or template strand) and writing (the newly synthesised
strand) errors. In fact, in each cell division there is an average of 100
errors that are introduced while copying the each of the three billion
bases (times the two alleles) that is our genome (T A Kunkel and
Bebenek, 2000; McCulloch and Thomas A Kunkel, 2008).

Such an error may manifest itself in multiple ways. The replication
apparatus (DNA polymerase) may miss the insertion of a base or a
couple of bases that was in the ancestral in the newly synthesised strand,
which produces a small deletion, or insert a base that was not in the
original strand, thereby producing an insertion. It may also insert
the wrong base, which leads to a substitution (Loeb, Springgate, and
Battula, 1974). While discussing these mutational processes one should
keep in mind that those errors introduced do manifest itself only on
one of the two strands in an allele, which will lead to a base no longer
matching its opposite pair as well as if there had been no error.

Mutations, copy number alterations, and structural variation

Even when the replication process produced a perfect copy of the an-
cestral strands, there may still be cell-internal or external processes
that affect the DNA’s integrity, e.g. exposure to ultraviolet radiation,
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or a host’s virus defence system (Alexandrov et al., 2013). This could
lead to single base exchanges (single nucleotide polymorphisms, SNPs),
small insertions and deletions (indels), changes in the number of copies
of DNA segments (copy number alterations or aberrations, CNAs-this
can happen either on the genome or on extragenomic small chromo-
somes (D. T. W. Jones et al., 2012)), or strand breaking and rejoining
at different positions (structural rearrangements—e.g. forming gene fu-
sions (Nowell and PC, 1960; Mitelman, Mertens, and Johansson, 1997;
Garnett et al., 2012)).

1.1.3  Functional impact of mutations: the central dogma

A gene that has an erroneous sequence somewhere on the DNA is, by
itself, not a cause for a cell to alter its function. Instead, genes only
store the information, like having a template, that is required to form
an active compound from it. Genes can be transcribed in regulatory
RNA, or messenger RNA (mRNA; both derived from DNA by a process
called transcription) that is later used by the Ribosome to chain amino
acids together to a functional protein in a process called translation.
The process of transcription and translation is referred to the central
dogma of molecular biology (Crick, 1958).

The path from mRNA to protein may involve additional steps, such
as cutting out unneeded parts or pasting together different building
blocks (splicing), or covalently attaching sugars or other chemical groups
(post-translational modifications) to yield the functional protein and/or
to regulate its activity (Crick, 1958). Proteins are involved in the trans-
duction of a signal from a molecular cue binding to a receptor on a cell’s
surface is how a cell responds to changes in its environment. In turn,
this signal is relayed through the network of kinases and phosphatases?
until it reaches the terminal nodes that are the transcription factors,
acting in conjunction with polymerase III and other co-factors to ini-
tiate changes in gene expression. Those genes are in turn transcribed
into RNA, and if they are protein-coding consequently translated into
those.

Take, for instance, a protein involved in relaying a signal from the
cell surface, such as a signal to grow and divide, to another protein
that in turn activates some other proteins which ultimately induces the
expression of genes that are needed for the cell’s replication machinery.
These signals are usually relayed by post-translational modifications
(PTMs) from one protein to another. One of the best-studied processes
is phosphorylation (the addition of a phosphate group - proteins that do
that are called kinases, the ones that remove phosphatases) of Serines
or Threonines. These are amino acids with an OH group in their side

2 there are other chemical modifications, but those are the best studied
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chain and are thus susceptible to it (Burnett and Kennedy, 1954). This
protein now may be affected by a mutation so that it no longer waits
for an upstream signal to transduce, but sends the downstream signal
to grow and divide irrespective of what the upstream input is. One
such example is the well-known BRAFV0E mutation, where a Valine
on position 600 (the 600th amino acid) is replaced by Glutamic Acid
(Zecchin et al., 2013).

Genes that are relevant for cancer development and progression have
long been classified in Oncogenes and Tumour Suppressor Genes (Croce,
2008). In broad terms, this classification represents the following: does
a mutation introduce a gene function that was not there before, or it
loses sensitivity to an inhibitory signal that kept it in check, this gene
is called an Oncogene in its active (mutated) form, or Proto-Oncogene
in its wild-type form; conversely, if a mutation causes a gene to lose
its function as e.g. a negative regulator of cell growth, it is called a
Tumour Suppressor Gene. The first Tumour Suppressor Gene that has
been found was TP53 in 1979, now termed “guardian of the genome,”
whose protein is involved in numerous functions like maintaining DNA
integrity, managing DNA repair, or causing apoptosis or senescence
if the former fail (Levine and Oren, 2009). More recently, mutations
that actively contribute to either development or progression of a cancer
have been called drivers, while the mutations introduced by e.g. a faulty
DNA replication machinery (that a cancer may have caused) that bear
no functional impact on the cell are called passenger mutations. Driver
genes are usually either activated Oncogenes or Tumour suppressor
genes, but may also have both functions (Vogelstein and Kinzler, 2004).

1.1.4 Malignant transformation

Mutagenic driving forces (Alexandrov et al., 2013) are not only all
around but also inside us (as exemplified by the APOBEC virus de-
fence). However, most cells do not start to divide uncontrollably, even
if they acquire a driver mutation. For instance, it has been shown that
in healthy skin there is a high number of potential driver mutation that
pre-exist without cancer ever developing from them (Martincorena et
al., 2015). For a cell to develop into a malignant tumour, it requires
multiple “hits” that transform it into a truly malignant state. The
mutations and mechanisms but which it acquires those properties are
different from cancer to cancer, yet the biological processes it needs to
modify are remarkable similar (Hanahan and Weinberg, 2000; Hanahan
and Coussens, 2012):

o Self-sufficiency in growth signals: being able to grow and divide
without external cues present
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o Insensitivity to anti-growth signals: being able to grow despite
usual inhibitory mechanisms

o Evading apoptosis: eliminating checks and bounds that make an
abnormal cell commit suicide

o Limitless replicative potential: replenishing telomeres that grow
shorter after each division

e Sustained angiogenesis: promoting blood vessel growth to get an
increased supply in nutrients

o Tissue invasion and metastasis: breaking the local confinement
of the tissue it first arose

e Avoiding immune destruction: not being targeted by cytotoxic
T-lymphocytes

e Deregulating cellular energetics: still producing energy with a
lack of oxygen

1.1.5 Tumour heterogeneity

Cells in a tumour are not homogeneous, but the latter should rather
be seen as an evolutionary process of diverse clones that compete for a
growth advantage subjected to positive and negative selection. This has
implications for cancer growth as well as therapy, and hence assessing
this heterogeneity has become an important research topic (Heppner
and Miller, 1983; Alizadeh et al., 2015).

However, there are a couple of challenges when trying to assess the
whole genetic diversity of a sample. It is important to take it not only
in one place, but either homogenise the tissue or selectively take small
samples in different subsections. Another challenge is that for detecting
very minor frequencies, one needs to read the genome many times over
and be sure that the resulting variants are not only due to errors in this
process, or any other by which the sample is treated after acquisition.

1.2 THERAPEUTIC INTERVENTIONS
1.2.1  The therapeutic window

Within a therapeutic intervention, our goal is to selectively treat (or
kill) the diseased cells while not impacting the normal function of other
cells in the body. If at first we assume that a treatment can be delivered
to all cells of the body in the same amount, the question is whether
the impact it has is impacting the cells we want to act on more than
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all the other cells we want to impact as little as possible. If we take
the simple example of killing cells, we want a drug that kills all the
bad cells and leaves the good cells alone. Hence, an effective drug will
work on the bad cells at a lower concentration than on the good ones.
If the concentration is too high, it will undoubtedly affect other cells
as well. This range of concentration, where a given drug already acts
on the target cells but does not confer toxicity to other cells is called
the therapeutic window. The broader it is, the easier it is to work with
this drug.

Elaborating on our simplification, it is of course not the case that an
administered compound will be available to all cells at the same concen-
tration. Instead (Ruiz-Garcia et al., 2008), it first needs to reach the
bloodstream (which includes uptake and resorption, then modification
in the liver and pancreas if taken orally), then be distributed by the
flow of blood into all the capillaries (with the exception of the brain
that has an additional barrier), until finally cells are able to absorb it.
As a rule of thumb whether a drug can be orally absorbed or not, a
common measure is “Lipinsky’s Rule of Fives” (Lipinski et al., 2012),
that states that an orally effective drug has no more than one violation
of (1) no more than five hydrogen bond donors, (2) no more than ten
hydrogen bind acceptors, (3) a molecular mass less than 500 daltons,
(4) an octanol-water distribution coefficient (logP) of less than five.3

1.2.2  Cytotoxic drugs

The easiest way to kill cancer cells is to expose them to a compound
that is generally toxic to cells. While this is expected to have a neg-
ative impact on all cells, there are certain properties of cancer cells
that make them more susceptible. One such property is that they
grow more actively than most other cells, and so a therapeutic win-
dow exists for compounds that interfere with cell growth, as is the case
for most chemotherapy. This could be DNA synthesis (Cisplatin or
Carboplatin), microtubule disassembly (Paclitaxel and more generally
Taxol-based compounds), or others (Skeel and Khleif, 2011).

1.2.3 Targeted therapies

A recurrent theme of cancer development and progression is the aber-
rant activation of specific molecular cues in cell signalling. An example
of this is the well-known BRAFYE mutation, already mentioned in
section 1.1.3. But there are many more instances where a mutation in
a gene yields a gene product that is abnormally active or inactive. This

Note that these are only four and not five rules. The “five” in the rule’s name stems
from the components being multiples of five, not that there are five rules
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often includes members of the MAP kinase pathway (like EGFR, RAS,
RAF, MEK, or ERK), but frequently also other proteins and pathways
that confer a selective advantage in a given context. An important
aspect in that regard is the concept of oncogene addiction: Once a cell,
or a population of cells, suffers a molecular lesion that causes aberrant
signalling, the cell (or cells) become dependent on exactly that signal.
Turn it off, and those cells are likely to die (Weinstein, 2002).

This has an important implication for cancer therapy: if we are able
to find (or design) a compound that specifically turns off one of those
abnormally active proteins, we can kill cells that have it active. In ex-
ample of the BRAFVE mutation, computational chemists indeed de-
signed and developed a small-molecule inhibitor called Plexicon (more
specifically, PLX4720 or nowadays called Vemurafenib) that proved to
bind the mutated version of the BRAF protein with a much higher af-
finity than the one found in wild-type cells. This, in some ways, could
be considered the perfect drug for cancer therapy, because it has fa-
vourable uptake in the body and afterwards the therapeutic window
is much larger compared to other compounds due to this difference in
binding affinity (Chapman et al., 2011).

There are, however, many other kinase inhibitors as well as antibod-
ies that specifically target a protein to abrogate its activity.

1.2.4  Development of resistance

Unfortunately, targeted therapies often can not kill all cells before they
acquire a resistance mechanism to the treatment, or a sub-population
of cells were resistant to begin with. These cells then outgrow their
competitors. This is one of the reasons why targeting mutations in
driver genes is a good start, but it needs to be augmented with know-
ledge of the dynamic changes mutations induce in the cellular signalling
network and the evolutionary paths for a cell to respond.

Let us revisit one of the most well-known examples in targeted ther-
apies, the inhibition of BRAFVF mutants. This example of targeted
therapy works with the intended effect in such that it kills cancer cells
to an extent that makes multiple, from the outside clearly visible, tu-
mours completely disappear for months (Chapman et al., 2011), which
could be hailed as a success for identifying a target and rationally
designing an inhibitor that abrogates oncogenic signalling. However,
there was one drawback: after a couple more weeks past the initial suc-
cess the tumour cells were able to overcome the effects of the inhibitor,
leading to the recurrence of tumours that the patient later died from.

This, together with multiple other examples, proved to show that
targeted therapies work for a while, but they are, in a lot of cases,
unable to permanently suppress tumour growth. But how does this
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work? In order for a tumour to regrow, there need to be some cancerous
cells left alive after treatment, as this rapid regrowth of mass can not
be explained by an independent inception. Hence, some cells must have
survived the process of therapy (Heppner and Miller, 1983; Reya et al.,
2001).

Many distinct strategies have been suggested to more effectively kill
cancer cells, most notably the combination of a MEK and BRAF inhib-
itor in melanoma (Long et al., 2014). In fact, the very nature of killing
off the majority of cells and pushing the rest through an evolutionary
bottleneck has been suggested as a basis for designing therapies taking
into account those temporal patterns in adaptation (Hata et al., 2016).

1.3 DISEASE MODELS
1.3.1 Rationale

It is easy to argue that in order to find better cancer treatments, we first
need to understand better the molecular mechanisms that drive it. This
is especially true because the mechanisms involved from the inception
of cancer up the its progression and spreading are in fact molecular
mechanisms that have spun out of the normal biological control that
cells of an organism exert on each other. In order to improve our
understanding, it is required to collect data about the different types,
stages, and treatments of the disease.

This poses a problem: it is not possible to perform all of the assays
required on the actual patients. There is just no justification for a pa-
tient to undergo surgery if we want to know if protein A interacts with
protein B. Also, we can not try new treatments without a strong indic-
ation that this might be the best known possibility of curing a patient,
as this would be highly unethical. It follows that there is a requirement
for some biological system that mirrors the disease while, at the same
time, is easy to handle in the laboratory. In choosing such a system,
the points mentioned involve a trade-off: one that mirrors the disease
perfectly and is easy to handle does not exist, but there are multiple
systems (outlined in the sections below) that are closer to one or the
other. Which one to use must be decided in each experiment individu-
ally - considering its goals, effort, conclusiveness and applicability to
the question studied.

If these disease models provide a strong indication that a certain
treatment approach is truly beneficial to a certain patient or patient
group, this needs to be thoroughly tested to make sure that those
indications previously shown using a model system - that are known
to mirror a lot of aspects of the actual disease, but never all - actually
hold in humans as well (Fields and Johnston, 2005).
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1.3.2 Cell lines

One of the easiest model systems that provide a reasonably accurate
mirror of a lot of the biology involved in the disease are cell lines, which
is basically taking a number of cells from a tumour, and growing them
in a petri dish for multiple generations (passages). An advantage of this
method is that the biological material that assays can be performed on
is virtually unlimited, as well as easy to produce and maintain. This
is because cells grow in the dishes as long as they are supplied with
nutrients and potentially growth factors or cytokines, while still reflect-
ing a lot of the properties that cells in a tumour would. However, by
passaging cells consecutively in petri dishes for many generations, the
evolutionary pressure that they are selected by is essentially the growth
rate on the dish, which will not reflect the forces one would find in a real
tumour. In fact, the fastest growing clone will outcompete all others
in a couple of generations - which gives a relatively uniform molecular
phenotype across all cells, but in turn also loses the heterogeneity found
in a primary sample.

Today, there is a multitude of cell lines available from commercial
suppliers. The maybe best-known example is that of the HeLa cell line
(Gey, Coffman, and Kubicek, 1952) that was derived from a patient of
cervical cancer in 1951, named Henrietta Lacks. This cell line, however,
considering how long it has been kept in culture as well as its high muta-
tion rate, has produced a genotype that no longer resembles primary
cancer samples in many ways. One property is that a normal human
cell has two copies of the genome (the two alleles), whereas HeLa cells
have four copies, and its genome sequence revealed more extensive ab-
errations (Landry et al., 2013). In most cases however, experimentally
used cell lines are more closely tied their origin: they have, albeit with
aberrations, a genome that resembles primary tumours and they hence
in many ways still resemble their tissue of origin in molecular terms
(Iorio, Knijnenburg, et al., 2016).

However, there are biological dynamics involved in a real tumour
that can not be recapitulated by cell lines, like their interactions with
other cells (especially immune cells) or with their surroundings (the
extracellular matrix). Also, their number is limited. With the approx-
imately 1,000 cell lines that the Genomics of Drug Sensitivity in Can-
cer (GDSC, cf. section 1.5.4) screened for compound sensitivity (Iorio,
Knijnenburg, et al., 2016), it is time to think about how many more cell
lines would be needed to gain enough statistical power for the high num-
ber of rare mutations and whether the required amount of diversity can
theoretically be generated with cell lines (Francies and Garnett, 2015).
One way to resolve this issue could be organoid cultures: these are
small assemblies of primary cells taken out of a tumour and grown in
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matrigel, where the spatial separation of mini-cultures retains much of
the tumour heterogeneity (Sachs and Clevers, 2014). Because of these
properties, they could advance in silico cancer screening in a way that
is not possible with other platforms (Francies and Garnett, 2015).

1.3.3  Animal models

For some kinds of experiments, it is necessary to model the effects on
a whole organism. For this purpose animals have long been used, from
a simple multicellular worm (Caenorhabdilis elegans, mostly for devel-
opment and its simple central nervous system) to frogs (Xenopus, for
induced pluripotency), and mammals (mice, rats, and chimps; often
for diseases). Just as the complexity of these organisms increases, they
also mirror more closely aspects of human physiology. However, exper-
iments performed in higher organisms also require more time, they are
more difficult (and expensive) to set up, and there are ethical concerns
on keeping, handling, and killing animals for the purpose of ultimately
saving human lives.

In terms of cancer, looking at the number of articles published about
a specific molecular mechanism or the detailed characterisation of a
compound and its usability as a drug, mice seem to be considered a
reasonable trade-off between providing a close enough match of human
biology and being not too difficult to keep (Fields and Johnston, 2005).
To gain insights, a mouse’s genome can be engineered to include for
instance a mutated version of a human gene that is known to induce
the formation of tumours (Talmadge et al., 2007), or can be inoculated
with cancerous cells derived from either a cell line or a patient (Fogh,
2014). Mouse models have taught us how cancerous cells influence
and modify the microenvironment around them and how the cells can
sustain themselves and grow, attract the formation of blood vessels,
and ultimately metastasise (Talmadge et al., 2007).

1.4 MOLECULAR DATA TYPES AND ASSAYS
1.4.1  Role of molecular data

One of the issues of both understanding as well as preventing or treat-
ing cancer development and progression is that it is a process with
such complexity that a simple observation of patients with the disease
will not suffice to come up with effective models of disease inception
and progression, or treatments for that matter. Fortunately, we have
got a battery of tests available, quantifying different molecular aspects
of a biological sample. Examples of these data include the sequence,
structure, and modification of DNA, but also the expression of RNA
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or proteins, including modifications. These different layers, able to
quantify different projections of a cell’s state, have provided us with an
unprecedented opportunity to truly understand many molecular mech-
anisms that govern the processes active in both a normal and a diseased
cell, and the differences between them.

1.4.2 DNA

When Frederick Sanger discovered (Sanger, Nicklen, and Coulson, 1977)
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that one could read DNA by supplying a minor fraction of di-deoxynucleotides

in addition to labelled deoxynucleotides that are normally incorporated
into DNA during replication, in turn halting the replication chain and
revealing the sequence, it was soon clear that this technology would
revolutionise biology and medicine. Further incremental improvements
and then the switch to next-generation sequencing has enabled the sci-
entific community to read DNA on an unprecedented scale (Schuster,
2008), with the implication that the genome of individual (cancer) pa-
tients could soon be used to decide upon optimal treatment of each
individual (McDermott, 2015).

1.4.3 RNA

All healthy cells contain roughly the same genome, yet the functions
they perform in the body is vastly different. This is why in contrast to
DNA, the RNA that is transcribed represents more the state a cell is
currently in and functions that need to be performed at a given time
and in a given context. It can hence be argued that the sum of RNAs
(the transcriptome), or more specifically mRNAs, provides an overview
of that state. Measuring those RNAs will allow us to get a picture
of the processes going on in a cell at a given time. The two ways by
which this is usually done are either microarrays or RNA sequencing,
as outlined below.

Microarrays

The classic way to measure RNA expression is using microarrays (Brown
and Botstein, 1999; Debouck and Goodfellow, 1999). These are, in the
simplest case, a carrier matrix (glass can be used but the more recent
chips use a polymer matrix) that has fixed single-stranded oligonuc-
leotides spotted on them. From our sample, we would then extract
and clean the RNA while simultaneously degrading any DNA that it
contains, and label the RNA either with one dye (Gohlmann and Tal-
loen, 2009; Du, Kibbe, and Lin, 2008) (if we want to quantify the
expression levels of transcripts in a given sample) or two different dyes
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(Shalon, S. J. Smith, and Brown, 1996) (if we want to quantify the dif-
ference between two samples). Such fluorescent dyes used are e.g. Cy3
and Cyb, that emit light in the green and red wave lengths upon stim-
ulation, respectively. Note that if the technical reproducibility of the
platform is good enough, it is also possible to compare conditions by
using two different arrays where we measure each sample individually
and then compare the outcome. - A technique that has been favoured
by companies like Affymetrix as it allowed chips at much higher dens-
ity and the comparison between each sample in a control- and in a
experimental condition, as well as between them.

An obvious drawback of this technology is that we need to know in
advance which oligonucleotides to spot, so in turn which genes we are
looking for. There needs to be different chips for different organisms,
depending on the gene sequences that they carry. This selection of
genes that we look at can of course introduce bias, in such that we
can’t look for transcripts that we don’t know exist, but also we might
focus on transcripts and isoforms that we think are important before
carrying out an experiment. Another possible issue is their detection
threshold. As the readout is fluorescence based and there will always
be a base-line level of it, and it is hard to quantify the amount of
RNA bound on a spot of the total number of molecules are so low that
a few molecules do not significantly change the readout. Turning this
argument around, RNA binding to spots also has its point of saturation,
where it does not matter if there is more RNA present or not once all
probes bind to their complementary sequence and thus produce a signal
(Duggan et al., 1999).

RNA sequencing

An alternative approach that has become more popular recently with
the falling costs of DNA sequencing is to apply this technology to RNA
as well (Marioni et al., 2008; Z. Wang, Gerstein, and Snyder, 2009). In
this case, we can use the RNA that we isolated from a sample, reverse-
transcribe it into DNA, and sequence the DNA like we would normally.
This has got the advantage that it can be used even if there is no genome
sequence or chip available and as a consequence we are also not biasing
our selection of genes by previously knowing what to look at (Trapnell,
Williams, et al., 2010), with the exception of sections in the RNA that
can be more less easily transcribed into DNA (like GC-rich regions
that also pose challenges for sequencing). Another advantage is that
the dynamic range of this technology (i.e., the differences in transcript
numbers it can detect) is much higher than it is for microarrays, both
on the lower as well as on the upper bound: we can detect a single read,
but also having a lot of reads won’t saturate our signal the same way
that spots on the microarray do (although if a large proportion of the
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reads is from a highly abundant molecule, this will decrease sensitivity
for detecting other RNAs).

The way RNA-seq quantification (Mortazavi et al., 2008; B. Li and
Dewey, 2011) is usually done is to align the reads to a known genome,
allowing gaps in the alignment for splicing and differential use of exons
(Trapnell, Roberts, et al., 2012). The transcription level of a gene,
transcript or exon are then quantified by how many reads align to the
corresponding section in the genome. As this is computationally very
expensive, there have been efforts recently to get around performing
the alignment step by k-mer counting and so-called pseudo-alignments.
Methods for the latter include Sailfish (Patro, Mount, and Kingsford,
2014), Salmon*, or Kallisto (Bray et al., 2016).

The data produced by RNA-sequencing is different to the one from
microarrays, as it is based on read numbers that thus counts (so dis-
crete data) instead of the continuous fluorescence signal that microar-
rays provide. These counts are negatively binomially distributed (Si-
mon Anders and Wolfgang Huber, 2010), and require specialised soft-
ware packages to call e.g. differential expression like edgeR (Robinson,
McCarthy, and Gordon K Smyth, 2010), DEseq (Simon Anders and
Wolfgang Huber, 2010) and DEseq2 (M. 1. Love, Wolfgang Huber, and
Simon Anders, 2014; M. Love, Anders, and Huber, 2014), or transform-
ation before they can be used in standard linear modelling techniques,
for instance provided by voom in the limma package (Law et al., 2014).

1.4.4  Proteins and phosphorylation

It can easily be argued that in order to get an appropriate picture of
what goes on in a cell it would be better to look at the proteins that
perform most functions, as opposed to the mRNA levels of genes. The
latter will in many cases be translated into proteins that then exert their
activity, yet mRNA measurements are one more step removed from the
functional process than proteins, and two steps from measuring post-
translational modifications (PTMs) that modify activity already gives
us a lot of functional information - as long as we know how to interpret
it.

Taking these facts together, we might want to look at proteins instead
of gene expression. Yet, gene expression is a lot cheaper and easier
to measure and provides more coverage than the proteomic methods
currently can. In addition, the publicly available gene expression data
far exceeds the one of proteomic data. There are different experimental
methods for quantifying proteins and their state, the most well-known
are listed below. This thesis, however, is focussed on gene expression
for the reasons outlined.

4 https://github.com/COMBINE-lab/salmon
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Reverse-Phase Protein Arrays (RPPA)

In this method (Tibes et al., 2006), there is an array of spotted an-
tibodies, similar to the nucleic acids on a microarray. A labelled cell
lysate (or other sample) is incubated with the antibodies, and we can
quantify the amount of the proteins (or phospho-proteins) correspond-
ing to each antibody afterwards. In contrast to microarrays, however,
this is relatively low throughput as antibodies can not be as readily
synthesized as nucleic acids.

Mass spectrometry

Mass spectrometry (Domon and Aebersold, 2006; Bensimon, Heck, and
Aebersold, 2012) is based on fragmenting proteins into peptides that
are then ionized and sprayed into an electrical field in a vacuum tube,
where their mass-to-charge ratio causes them to behave in a certain
way. For instance, in Time of Flight (TOF) instruments, the electrical
field is used to accelerate the peptides; the force that accelerates them
is then proportional to their charge, and their inertia to their mass—
hence the time it takes to reaches the detector is proportional to the
ratio of the two.

For more complex samples, there are too many peptides to detect
at any given time, so the Mass Spectrometry is often coupled with
another technology that first separates proteins contained in a sample
using some other property (e.g. their hydrophilicity /hydrophobicity) in
columns of gas (gas chromatography, GC) or liquid (high performance
liquid chromatography, HPLC).

1.5 DATA SETS
1.5.1 Public gene expression repositories

There are two major repositories of gene expression experiments using
microarrays, the Gene Expression Omnibus (GEO) (Barrett, Troup,
Wilhite, Ledoux, Rudnev, Evangelista, I. F. Kim, Soboleva, Tomashevsky,
and Edgar, 2007; Barrett, Troup, Wilhite, Ledoux, Rudnev, Evan-
gelista, I. F. Kim, Soboleva, Tomashevsky, Marshall, et al., 2009) at
the National Institutes of Biotechnology Information (NCBI) and Ar-
rayExpress (Parkinson et al., 2007; Helen Parkinson et al., 2009) at the
European Bioinformatics institute. The reporting standards defined in
the Minimal Information about a Microarray Experiment (MIAME)
(Brazma et al., 2001), played a pivotal role to ensure that experiments
where one could not only measure one gene but the entire transcrip-
tome remained interpretable. Both of these are synchronised, which
means that submissions one will be imported and made available on
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the other as well. More recently, ArrayExpress also started collecting
RNA-seq and ChlIP-seq experiments.

1.5.2 Gene sets and pathways

With about 22,000 human genes whose transcription can be measured
simultaneously using the methods described in section 1.4.3, it is im-
portant to put genes into functional groups for several reasons: (1)
groups of higher level processes are more interpretable, (2) gene level
measurements in microarrays (and to a lesser extent RNA-sequencing)
are inherently noisy and the more measurements we combine the clearer
the signal gets, and (3) it may be possible to solve statistical problems
where the number of observations per sample is greater than the num-
ber of samples.

There are multiple databases available that link gene sets into func-
tion groups. Some of the most well-known are listed below, but there
are others.

Gene Ontology

Gene Ontology (GO) (Ashburner et al., 2000; Gene Ontology Consor-
tium, 2004) is “a major bioinformatics initiative to develop a compu-
tational representation of our evolving knowledge of how genes encode
biological functions at the molecular, cellular and tissue system levels”.
It has encoded over 40,000 biological concepts based on experiments
reported in over 100,000 publications according to its web portal at
http://geneontology.org/.

KEGG

KEGG (Kanehisa and Goto, 2000) was one of the first pathway data-
bases. To provide an idea of how widely it was (and still is) used,
Google Scholar (query 25th February 2016) reported 6863 publications
that cited the original article. However, in 2011 the platform went com-
mercial, allowing access only via a subscription-based portal.> While
the authors removed public access also to earlier versions of the data-
base, its pre-commercial license (OICR by Pathway Solutions, Inc.)
allowed it to still be used. It will, however, not receive any more up-
dates.

Reactome

Reactome (Croft et al., 2011) is a “a free, open-source, curated and
peer reviewed pathway database” hosted and curated (mostly) by the

5 http://www.pathway.jp/
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European Bioinformatics Institute (EMBL-EBI). It has a web portal at
http://www.reactome.org/, and the current version is v55 released in
December, 2015. It has an open license (Creative Commons Attribution
4.0%) for its own data and the pre-commercial license for imported

KEGG data.

1.5.3 Primary cancer cohorts

A lot of molecular information about cancer cohorts has been collected,
analysed, and released. The best-known are the TCGA and ICGC.

The Cancer Genome Atlas (TCGA)

The Cancer Genome Atlas is a United States-based consortium that
aims to profile primary tumours belonging to many different cohorts
on the DNA, RNA, protein, and epigenetic level. The initial release
(The Cancer Genome Atlas Research Network et al., 2013) contained
12 tumour types, but it has grown to 35 with their June 2016 release.
There are many secondary portals that allow access to the TCGA data,
such as the BROAD Firehose tool” or cBioPortal (Gao et al., 2013), the
latter of which also includes data from other projects.

International Cancer Genome Consortium (ICGC)

The International Cancer Genome consortium is an umbrella effort
with the same goals, yet it incorporates many more studies from differ-
ent countries and thus represents a superset of the TCGA data (Inter-
national Cancer Genome Consortium et al., 2010).

1.5.4  Cancer cell line drug sensitivity resources

There are many studies measuring the drug sensitivity of different cell
lines. The two biggest are the GDSC and CCLE.

Genomics of Drug Sensitivity in Cancer (GDSC)

The first release of the cell ling drug screening from the Cancer Gen-
ome Project of the Wellcome Trust Sanger Institute contained 639 cell
lines treated with 130 cancer drugs that were in either clinical use or
pre-clinical development, where the cell lines have also been profiled by
capillary sequencing of 77 known oncogenes (Garnett et al., 2012). The
subsequent release increased this count to 1,001 cell lines and 265 drugs,

6 https://creativecommons.org/licenses/by/4.0/
7 https://gdac.broadinstitute.org/
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with a full molecular characterisation of cell lines comprised of full ex-
ome sequencing, SNP6 arrays for copy number, high-quality microarray
gene expression, and DNA promoter methylation (Iorio, Knijnenburg,
et al., 2016).

Cancer Cell Line Encyclopedia (CCLE)

The Cancer Cell Line Encyclopedia (Barretina et al., 2012) character-
ised the mutations of 947 human cancer cell lines along with SNP 6.0
copy number and Affymetrix U133 Plus 2.0 array gene expression, ap-
proximately 500 of which they treated with 24 anti-cancer compounds.

In contrast to the GDSC, they did not chose concentration ranges of
the screened drugs in order to detect the few cell lines that are sensitive
to a given drug, but rather a generally applicable range. The resulting
differences compared the the GDSC caused a number of inconsistencies
(Haibe-Kains et al., 2012) but they are largely resolved (Cancer Cell
Line Encyclopedia Consortium and Genomics of Drug Sensitivity in
Cancer Consortium, 2015).

1.5.5 Drug-induced transcriptional changes

Original Connectivity Map using microarrays

The first large-scale project providing signatures of drug-perturbed gene
expression changes in the MCF-7 cell line was the Connectivity Map
(Lamb et al., 2006). It comprised a total of 1,309 compounds, yet most
of them were not anti-cancer compounds. It has introduced and en-
abled the paradigm of signature matching (section 1.6.3), a method of
using gene expression changes upon drug treatment to match either
drugs with drugs for finding similarities or drugs with diseases for a
potential treatment indication (Iorio, Rittman, et al., 2013).

The L1000 platform

The new version of the Connectivity Map is based on Luminex beads
(Peck et al., 2006) that are able to measure about 500 transcripts. For
the L1000 platform®, the BROAD institute managed to put twice the
amount of genes on one bead by scanning it in two different dilution
ranges and deconvoluting them computationally afterwards. After that,
they scaled the experimental readout by 80 control genes that are sup-
posed to be constant across experiments, optionally infer the whole
transcriptome from their 978 “landmark” genes (projections shown in
figure 1), and compute z-scores (number of standard deviations of a

8 More information is available at: http://www.lincscloud.org/11000/
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Figure 1: Overview of number of experiments available in LINCS using can-
cer drugs.

perturbed condition over the mean of the control) for each perturba-
tion?.

In 2015, the BROAD institute released the raw data and z-scores
between each control- and drug-perturbed experiment for 978 oligonuc-
leotide probes and a total of 1.4 million conditions in a 111 gigabyte
.gctz (HDF5 and metadata) file where they projected their actual meas-
urement to the full gene space using publicly available microarray data.
At this time, no one knew about the quality of the data (the authors
claimed it to be equal with microarrays; my own tries and conversa-
tions with other people using the data have indicated that it is below
that). The main publication is still not out today (August 2016), and
they refused to share e.g. the linear transformation matrix they used
to obtain the projected gene space.

1.6 COMPUTATIONAL METHODS

Over the last decades and years, biology moved from an observational,
qualitative to a very much quantitative science. This can largely be
attributed to high throughput assays, led by the advance of DNA se-
quencing and followed by its derivatives as well as other approaches,
like high-content phenotypic screening - each allowing for measuring
not one data point, but hundreds and sometimes thousands at a time.
The magic component in this process is automation: the bulk of the
data generated by scientific laboratories are not longer carried out by
individual scientists pipetting together reagents, but by machines con-
trolled by computers and designed by both scientists and industry alike.
This shift of paradigm has not only produced much more data, but
arguably led to an increase in the quality of such data as well, by re-
moving the human element (mood, ability to concentrate, etc.) from
large parts of the outcome of an experiment.

This transformation has not only come with its benefits, but also
with its challenges. Setting aside the view of some prominent scientists
that each experiment needs to have a specific question or hypothesis in
mind and that generating data first and using the data itself as a hypo-

9 http://www.lincsproject.org/data/data-releases/
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thesis generator is an inferior approach (as best demonstrated by Sid-
ney Brenner’s quote “low input, high throughput, not output” (Fried-
berg, 2008)), a biomedical scientist’s skill requirements have moved
from knowing, for instance, as many details about a given gene as
possible to understanding how to set up reproducible assays, generate
reliable data, but especially treating the resulting data in a way that
yields biological insights.

There are two crucial parts to this: one is algorithms, that trans-
form the raw data generated by a given experiment into biologically
interpretable indications, and the second is statistics, to make sure the
effect observed is due to the data and not due to random chance while
analysing the results. I will outline some very successful ideas that in
turn led to algorithms and usable software packages for investigating
molecular data, both in terms of cancer as well as in general, in the
sections of this and the next section.

However, let us first reconsider the goal we are trying to achieve in
terms of this thesis as well as a lot of the related work: we ultimately
want to improve how cancer is diagnosed and treated for patients, and
those algorithms help us to define markers of their pathogenesis or
how they could reap benefits from being offered a particular treatment
(Rubio-Perez et al., 2015). We thus want to transform the numbers
reflecting the molecular data we have in a meaningful way so they
connect to this endeavour.

1.6.1 Patterns of mutations

When looking at sets of mutations instead of individual ones distinct
patterns emerge. One such pattern is that there are modules that are
either co-occurring or mutually exclusive (Babur et al., 2015). In the
event of co-occurring mutations, this might mean that a given mutation
is not sufficient to obtain a certain trait and thus a second mutation
is necessary to confer it. In the case of mutual exclusivity, a second

mutation is not conferring a growth advantage after the first one arose.

This may be due to evolutionary parsimony or a fitness defect. In the
first case, a second mutation that inactivates, for example, an already
inactivated tumour suppressor pathway is unlikely to happen on the
population-level because there is no selective pressure, as the required
trait has already been acquired by the cell. In the second case, the
growth advantage conferred by one mutation might be cancelled out
or counteracted by the presence of a second one, thereby mediating a
selection growth disadvantage (fitness defect) of the cells carrying both
mutations as opposed to either one of them.
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Much focus has devoted to identifying driver mutations in different
cancer types that, combined with oncogene addiction'?, forms the basis
of many targeted therapies: if you can inhibit signalling stemming from
a mutation that drives a cancer’s development and progression, the
affected cells’ growth will be severely abrogated.

The concept that a second mutation kills a cell with a given mutation
has been termed synthetic lethality. It has been used to study genetic
interactions in model organisms for a long time (Nijman, 2011). The
loss of both genes in a synthetic lethal pair is, as the name suggests,
lethal to the organism, but the loss of each individual gene is not. More
recently, these interactions have been used to identify probes interfer-
ing with RNA that are purified from a starting population (Cheung et
al., 2011) and efficient computational algorithms have been developed
to find those pairs in primary cancer data sets like the TCGA (Ciriello
et al., 2012; Gobbi et al., 2014). These interactions can then be trans-
formed in a network (Jerby-Arnon et al., 2014), which can then be used
to predict sensitivity of cancer cell lines to a certain drug treatment, as
well as clinical outcome given the level of co-expression of its pairs. An
example of a synthetic lethal pair that can be therapeutically exploited
are loss of function mutations in BRCA1/2 and treatment with PARP
inhibitors (Farmer et al., 2005).

Including those sorts of analyses is an interest and future goal in my
research, but has not contributed significant results to this thesis.

1.6.2 Gene expression clustering

Cancer is known to be a heterogeneous disease, with individual tumours
forming different subtypes even if it arose from the same tissue. One of
the arguably most effective ways of elucidating the state of individual
tumours and cell populations therein is quantifying its transcriptome
using methods such as microarrays or RNA sequencing.

We can use the global pattern of gene expression to identify different
subtypes of the disease in a given tissue (or even between tissues). A
challenge with this is that the transcriptome could be comprised of up
to 22,000 genes without even considering most regulatory or ribosomal
RNAs. This space needs to be reduced to something more manage-
able for inspection, which may reveal subgroups that have prognostic
or therapeutic relevance. Approaches that allow for visual inspection
of a high-dimensional data set are called dimensionality reduction tech-
niques, while methods assigning the different samples to different sub-
types are called clustering algorithms (Xu and Wunsch, 2005).

the tendency of a transformed cell to become dependent on sustained impact of the
lesion it first obtained, see section 1.2.3
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Visualising patterns in high-dimensional data

Principal Component Analysis (PCA) (Wold, Esbensen, and Geladi,
1987) is one of the simplest linear transformations that rotates samples
in N-dimensional space (where N is the number of observations per
sample) in a way that its projection to M-dimensional space (the tar-
get dimensions - for interpretability usually two or three) maximises
the variance contained in M. The rotation is calculated using a mat-
rix factorisation that yields a unique solution. Its parameters provide
the position of a sample in M space where the axes are principal com-
ponents, and the latter’s projection back into N called loadings (which
represent how much of each original axis is contained within the new
axes). It is important to note the meaning and interpretability of such
a decomposition is strongly dependent on the amount of variance cap-
tured in the reduced space. PCA is closely related to Singular Value
Decomposition (SVD), which has applications in dimensionality reduc-
tion as well (Wall, Rechtsteiner, and Rocha, 2003).

T-distributed Stochastic Neighbour Embedding (t-SNE) (Van der
Maaten and Hinton, 2008), instead of relying on the most variable
global structures, visualises local structures in a given data set: starting
from a point in space (a sample), additional samples are distributed in
its vicinity depending on their distance to the original sample, as well
as the other points considered (that are a subset of the total number of
points). This method provides much better resolution than PCA, but
one can only trust the points neighbouring each other up to a number
specified by the perplexity parameter. It has later been extended by
the original author to use the Barnes-Hut method (Maaten, 2013) that
is usually used in large N-body simulation in astrophysics (and chapter

4).

Clustering

One of the simplest clustering algorithms is K-means (Hartigan and
Wong, 1979) that requires the number of clusters to be known a priori.
It starts with assigning N cluster centres randomly in a given data set,
and then assigning all samples that have a smaller distance to a given
centre than the others to that centre. These assignments are iterative,
which means that once the cluster centres have been determined and
the samples assigned, the centres are updated to correspond to the
centre of the samples each cluster is associated with. In turn, which
samples are associated with which clusters is also updated after each
time clusters get new samples assigned, until the process converges and
further updating steps do not change cluster assignments anymore.
Non-Negative Matrix Factorisation (NMF) (D. D. Lee and Seung,
2001) is a matrix factorisation method that decomposes the matrix
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V' (usually with observations in rows and samples in columns) into
the matrices W (with samples in columns and weights for each cluster
in rows) multiplied with the matrix H (cluster assignment vectors in
columns and samples in rows). It does not determine the optimal
number of clusters by itself, but can be run with different numbers
of clusters that is later evaluated using the cophenetic coefficient (a
measure of goodness of fit of the samples to the cluster centres).
There are also other methods (Spectral Clustering (Ng, Jordan, Weiss,
et al., 2002), Latent Dirichlet Allocation (Blei, Ng, and Jordan, 2003)—
a modern, Bayesian method for clustering that is an active research
topic. I have worked with NMF clustering to investigate cancer cell
line drug sensitivity, but the results have not made it into this thesis.

1.6.3 Gene expression signatures

Signature definition

Maybe the simplest way to investigate a biological system using gene
expression data is to not make any assumptions concerning translation,
protein activity, signalling, or pathways. Instead, one could use the
transcriptional state of a cell as a black box entirely and just treat it as
a readout of its phenotype. This has the advantage that many of the
assumptions that we normally make that are not quite correct (mRNA
expression corresponds to protein level or activity, exactly those genes
in a set have that function and there is no overlap or partial member-
ship, etc.) no longer have an impact on the result we obtain - we can
just use the induced gene expression of a disease, a drug treatment, or
really anything else that produces gene expression changes and use it
as a signature for the phenotype. These gene expression signatures can
then be used for different purposes (Iorio, Rittman, et al., 2013), some
of which are listed below.

Hence, we can define a gene expression signature S as a function that
takes the gene expression levels E as input and transforms then into an
inferred phenotype P:

The signature S itself is most commonly derived from differences in
gene expression E of a certain perturbation compared to a control or
different sample conditions. It represents a model of transformation
(e.g. a linear model of coefficients or GSEA on a gene list) that can
then be applied to gene expression levels in a different sample E to infer
the phenotype P (which is a different experiment than was used to infer
E). Tt is important to note that the inferred phenotype P may not be
the same as the actual phenotype P but is only an approximation.
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Such a phenotype could be drug treatment (section 1.6.3) or pathway
activity for a single condition (Bild, Yao, et al., 2005; Gatza, Lucas, et
al., 2010) or using a consensus model (Parikh et al., 2010). However,
both of these published approaches have drawbacks that I will discuss
later.

Signature Matching

When investigating the effect small bioactive molecules (i.e., drugs)
have on a system, we might not want to look at the mechanism by which
this happens at all, but instead rely on the changes of gene expression
upon treatment (Lamb, 2007). Then we could use the downstream
genes that are changing as a signature of treatment with that drug.
This has got two applications that have indeed been used, which are: (1)
matching a drug’s signature with another drug’s signature, and if they
are a close match but have e.g. different indications, suggest that each
drug may be used for the other indication (where directionality may be
limited by additional factors), or (2) matching a drug’s signature with
the inverse gene expression changes that a disease exhibits over normal
controls, we can suggest that this drug may be used to counteract the
effects of the disease (lorio, Tagliaferri, and Bernardo, 2009; Pacini et
al., 2013), i.e. be a potential treatment if the disease is indeed caused
by the gene expression changes that the drug reverses. However, those
matches should rather be seen as hypothesis generators than definite
indications for repurposing and treatment. Of course, this kind of
approach relies on the availability of signatures of the drugs we look at,
or of a given drug and disease, respectively.

1.6.4 Networks

An important consequence of the central dogma is that gene expres-
sion patterns are not randomly but hierarchically organised. Starting
with perturbations on a cell’s surface or its interior, a signal is propag-
ated from its origin up to proteins that bind to DNA and change their
expression as a response to the stimulus. The terminal nodes of this
signal transduction are called transcription factors, that upon binding
on the DNA mediate and direct (either in a promoting or in an inhibit-
ing fashion) binding of DNA-dependent RNA polymerase (Polll) that
forms a complex with available factors in order to start transcription
of a factor’s target genes (Watson, 1987).

The genes transcribed upon activation of transcription factors may
in turn be transcription factors themselves that cause increased or de-
creased transcription of other genes. These interactions between dif-
ferent transcription factors are usually referred to as a transcription
factor network or gene regulatory network (Bansal et al., 2007). There
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are multiple ways these can be investigated: by characterising which
transcription factors bind to which genes. This can be done either
experimentally (Lachmann et al., 2010; L. Chen, Wu, and Ji, 2011;
Auerbach, B. Chen, and Butte, 2013) or computationally by looking
at which sequence of nucleotides a given factor is likely to bind (T L
Bailey and Elkan, 1995; Timothy L Bailey et al., 2009; Matys et al.,
2003; Portales-Casamar et al., 2009; Mathelier et al., 2013). An altern-
ative approach is to find genes that change in a coordinated fashion and
hypothesise that those might be regulated by the same set of factors,
or by inferring which combination of which factors is required for a cer-
tain gene to be transcribed (Langfelder and Horvath, 2008; Margolin
et al., 2006).

Pathways and signalling

Cell signalling is deregulated in many diseases, including cancer that I
focus on here because of the sheer wealth of available data. But how
to best quantify the signalling activity? The closest proxy we have
would be to quantify post-translational modifications that are known
to confer activity. In the simplest case this could be a phosphate group
attached to a certain position that is known to make a kinase active,
that is that it in turn phosphorylates its downstream targets. But
phosphorylation data, and to a lesser extent protein data in general is
much harder to come by than sequencing data. Mass spectrometry and
Reverse Phase Protein Arrays just do not produce the same clarity that
a DNA sequence or RNA level provides, plus is much harder to generate
because the technology that could do it with the same throughput as
sequencing technologies just does not exist.

We can thus argue that computational methods are required to make
statements about cell signalling, starting from DNA and RNA instead
of protein and PTM data. The simplest approach to this is looking
how much mRNA of signalling molecules are expressed that comprise a
pathway, and designate a high expression a high activity and vice versa
(using algorithms like Gene Set Enrichment Analysis (Subramanian et
al., 2005), more in chapter 2). This, however, is at odds with the way
cell signalling works and is regulated. Inferring the protein levels from
mRNA levels may indeed be viable (Gry et al., 2009; Maier, Giiell,
and Serrano, 2009), but two steps removed from the PTMs. Methods
have been developed to address the issue of taking the expression level
of a gene set as activity proxy by considering the structure and signs
of the different pathway molecules, e.g. Signaling Pathway Impact
Analysis (Tarca et al., 2008) or Pathifier (Drier, Sheffer, and Domany,
2013). They, however, do still not distinguish between expression level
and activity. Another method, PARADIGM (Vaske et al., 2010) could
in theory support it, depending the pathway structure supplied for
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inference. Yet, the focus has never been to tell apart activity from
expression. I elaborate on these issues further in chapter 2-4, with a
possible way to resolve them.

Binding motifs

Some, albeit not all, transcription factors prefer to bind a specific se-
quence of nucleotides that they recognize on the DNA strands, called
a motif. Starting from binding data such as ChIP-seq peaks, they can
be found using tools such as MEME (T L Bailey and Elkan, 1995) that
will report different weight matrices for nucleotides around the binding
region (which correspond to how often a given nucleotide is found in a
given position). These motifs in turn can be used to scan the genome
for the same or a similar sequence using a sliding window approach
that may indicate sites where a transcription factor could bind but did
not in the original experiment. Such can for instance be the case if
the chromatin is too densely packed in a region (but may not be if the
cell was in a different state or from a different tissue), or the binding
site is occupied by another transcription factor blocking the binding of
the one we are looking at. There are databases that collect and store
those motifs from experimental data and their known and predicted
binding in different cell types, such as JASPAR (Portales-Casamar et
al., 2009; Mathelier et al., 2013), TRANSFAC (Matys et al., 2003), or
the Ensembl Regulatory Build (Zerbino et al., 2016).

Mutual Information for transcription factor networks

Another question that we might be interested in is which genes share
a common regulator. In the simplest case this is a transcription factor
that, upon activation, transcribes a set of genes in a coordinated fashion.
Thus, we can look for genes that are expressed in a coordinated fashion
across different conditions by calculating the mutual information of all
gene pairs and setting a lower bound to consider. Further, we can prune
the edges in the resulting network by postulating that a link between
genes A and C is indirect if the mutual information of A and B, as well
as B and C is higher than the one of A and C—a concept called Data
Processing Inequality. This is the principle of ARACNE (Margolin et
al., 2006) and Master Regulator Analysis (MRA), first used to identify
the regulatory network in human B cells (Basso et al., 2005).

An extension to the method proposed by the same group is to con-
dition the mutual information on the expression of a modulator called
MINDy (K. Wang et al., 2009). The idea here is to look at the upper
and lower third of the modulator expression, and calculate mutual in-
formation for both of these sets. Afterwards, instead of inferring the
network, the authors look for the strongest changes in mutual informa-

45



46

INTRODUCTION

tion between the two subsets: if that is the case, the modulator can be
seen as a co-factor required for transcription factor regulation. If a high
modulator expression correlates with an increase of mutual information
it will likely be activating, or inactivating in case of a decrease.

1.7 REPRODUCIBILITY OF RESULTS
1.7.1  Ezxperimental and computational

Reproducibility of scientific experiments has recently gotten into the
spotlight when Amgen published a high-profile study trying to inde-
pendently validate findings of 53 findings reported by different groups
in the journals Nature, Science and Cell (Begley and Ellis, 2012; Baker,
2016). For 47 of the studies that they investigated, they could not ob-
tain the same results that the respective authors reported. Needless
to say, this raised some concerns about the current paradigm of pub-
lishing new results quickly instead of thoroughly and over-claiming the
effect or significance of a study in order to have an article accepted
in the top tier journals. Follow-up studies have pointed a part of the
blame on use of different antibodies (Baker, 2015) that did not always
show the affinity and specificity to their target as the vendors claimed
that resulted in the creation of a registry for validated antibodies at
(Bradbury and Pliickthun, 2015).

It is easy to argue that experimental reproducibility is a hard issue to
tackle, as the potential for confounding variables is huge and a lab will
hardly ever have the resources to account for all of them. In general,
good study design, that is proper controls and randomisation, should
go a long way (especially in the case of clinical trials), but even then,
there may be confounding effects unknown to the experimenters that
can not properly be controlled for, as has later been shown in the case
where male vs. female stewards in a mouse facility produced different
reactions of the animals, potentially influencing the results obtained
from a very large number of studies (S. Reardon, 2016).

Apart from experimental reproducibility, computational reproducib-
ility should be an issue that is easier to tackle, because at least for
deterministic algorithms the same input should always produce the
same output using the same tools. However, this is also easier said
than done because the tools will depend on other tools, maybe with
different versions, and each version may change the way they treat the
data to go from input to output in a slightly different way. This is es-
pecially true as computational analyses, as well as the tools employed,
are getting more and more complex. However, even if the potential
confounding factors are smaller than for experimental scientists, com-
putational analysis also has its high-profile cases fraught with issues.
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The most well-known example of this are maybe Anil Potti’s cancer
gene signatures'! that Keith Baggerly later spent six months trying to
reproduce—and failed, but in the process found considerable errors that
later caused the original article to be retracted (Baggerly and Coombes,
2009).

To summarise, ensuring that a subsequent study has the possibility
to arrive at the same conclusions given the same starting point, and
in turn build on the results in a more confident way, has gotten a big
enough issue to dedicate an introductory chapter to it. Since I did
not perform any experiments to produce data myself, the focus of this
chapter shall be to ensure that the results obtained by transforming raw
(or in some cases already processed) data into other types of data, plots,
and ultimately interpretation are reproducible in a sense that a person
not involved in the projects could arrive at the same conclusion, being
provided this thesis, the code used, and the technical documentation
written in conjunction with it. This is especially true because the
maybe best known retraction caused by computational irreproducibility
handled a topic very similar to the one I investigate in this thesis: the
effect of signalling pathway signatures of different cancers (chapter 3)
and their significance (chapter 4).

1.7.2  Scientific software ecosystem

With computational analyses getting more complex, it is no longer
enough to just apply a simple statistical test for a number of observa-
tions of one condition vs. another. The wealth of data that has become
available needs pre-processing, normalising, statistical analysis, and in-
terpretation of results. No one scientist can perform all of these tasks
completely independently, as some of them may detailed knowledge of
all the algorithms involved, up to an extent that is prohibitory. It is
thus required to package repeated steps together in higher-order func-
tionality.

This is where the scientific software ecosystem comes in. And, to a
larger extent, the ecosystem of general software. For instance, I want
to obtain, pre-process, and normalise microarray data to then compute
differentially expressed genes in two conditions. The concepts of obtain,
pre-process, and normalise are well enough defined that I should not
have to worry about their exact implementation. I just need to know
what these concepts mean and that there is a software that abstracts
the low-level implementation to a higher-level function that I can just
apply. And, in addition, I want to script those steps together without
needing to worry about things like the exact memory allocation in each
step.

11 http://retractionwatch.com/2015/11/07 /its-official-anil-potti-faked-data-say-feds/
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Two programming languages, along with the packages they them-
selves as well as their users provide, have been fundamental in provid-
ing a tool set that allows processing, exploration, and analysis of the
amount of data contemporary experiments provide. These are R (Thaka
and R. Gentleman, 1996) and Python (Van Rossum and Drake, 1995),
along with packages hosted on CRAN/BioConductor (R. C. Gentleman
et al., 2004)'2 and PyPI, respectively. Without those tools, performing
analysis like I do to obtain the results shown later would not be pos-
sible. Note that there are other tools, but they do not play a similarly
important role in contemporary data analysis.

1.7.3 Reproducible workflows

Keeping past versions of scripts

Requirements for analyses are going to change, and so will the scripts
that were used to generate them. There is nothing that is keeping us
from updating and changing them of course, but at times it is required
to reproduce the behaviour and outcome of an analysis after that. This
is where version control systems (VCS) come in. These are software
that will keep track of all previous versions of code (and potentially
other files as well) in case they are ever needed again. One of the first
to be widely used was CVS (Thomas and Hunt, 2003), later Subversion
(Pilato, Collins-Sussman, and Fitzpatrick, 2008) and now mostly Git
(Loeliger and McCullough, 2012). A company that has been widely
successful in promoting the use of git both in general and academia!?
in particular is GitHub (Dabbish et al., 2012).

Defining workflows with a single entry point

A challenge that often is underestimated is that even when all of the
code that was used in order to generate the result is provided, it is
often not trivial know which script generates which part of the ana-
lysis, and which other scripts, analyses, or data it depends on. Hence
it is not only important to provide the code as it is, but also inform-
ation on how to run it, so to not only have all the bits and pieces
but a way to connect them to a workflow from the data to the res-
ults. Some tools have been proposed to manage scientific workflows
like KNIME (Warr, 2012) and Taverna (Wolstencroft et al., 2013), but
they are heavy monolithic pieces of software whose use has never taken
off. A simple and lightweight alternative is GNU’s make (Stallman and

including dplyr (Wickham and Francois, 2014) and ggplot2 (Wickham, 2011), used
extensively in the analyses I performed

Github has become the de facto standard in academic code sharing. The technology
for version tracking is state of the art, the functionality of their website unparalleled
and they offer their services to academics for free: https://education.github.com/
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McGrath, 1991; Stallman, McGrath, and P. D. Smith, 2004), which
was originally designed for tracking dependencies in software compila-
tion, but has been proposed to enable reproducible scientific workflows
(Schwab, Karrenbach, and Claerbout, 2000). It has been extensively
used in the analyses because of its single entry point (the Makefile) and
simple definition of dependency rules.

Generating reports directly from the analysis

While the above tools take care of performing and keeping track of
analyses, the crucial point that is missing for reproducible research is
integration with reporting. A tool to combine R code with written
text and annotation (as opposed to technical documentation) is knitr
(Xie, 2014) that can work with either Latex or Markdown. For Python,
the IPython notebooks (McKinney, 2012) (now JupyterLab'?) has seen
wide adoption (Shen, 2014).

1.8 MOTIVATION AND OUTLOOK

With sequencing technologies becoming more and more commonplace
for cancer diagnosis in both the clinical (The Cancer Genome Atlas Re-
search Network et al., 2013; International Cancer Genome Consortium
et al., 2010) and preclinical setting (Garnett et al., 2012; Barretina et
al., 2012; Iorio, Knijnenburg, et al., 2016), there is a wealth of molecu-
lar data available that likely harbours yet undiscovered disease markers
and treatment opportunities. Efforts like the TCGA/ICGC have pion-
eered this characterization on a large scale, offering the opportunity to
derive large amounts of information about individual tumours. This
represents a step forward over basing the treatment of an individual on
the tissue of tumour origin alone, with mutational screens and sensitiv-
ity markers providing a first glimpse of the direction that personalized
medicine is going to take.

Investigations of cancer drug response and survival are mostly fo-
cussed on DNA mutations. This has yielded multiple markers, however,
they are rarely put in functional context of the signalling aberrations
they create. Because the amount of phosphorylation data available lags
behind the one of genomic data, gene expression may be a valuable sub-
stitute.

One way gene expression has shown promise is using global clustering
to identify subtypes of the disease, and associating those with different
drug response or survival outcome. I believe that stratifying patients
in a reproducible manner should involve both the overall clustering of
the data as well as more specific, functionally relevant readouts. An ex-

14 http://blog.jupyter.org/2016/07/14/jupyter-lab-alpha/
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ample of those functional readouts is the expression level of pre-defined
pathway sets - mostly using the GSEA scores - that has been reported
in numerous publications, but also more sophisticated pathway meth-
ods that attempt to quantify the signal flow, such as SPIA (Tarca et
al., 2008), PARADIGM (Vaske et al., 2010), or Pathifier (Drier, Sheffer,
and Domany, 2013).

These methods, however, stand at odds with the notion that sig-
nalling in animal - and thus human - cells is tightly post-translationally
regulated, since they are based on mapping the mRNA expression of
the signalling proteins, in one way or another. To date, it is largely un-
explored how much those pathway-expression-based methods are able
to make statements about the signal transmission in a protein network.

This is why, after establishing a baseline for gene set methods to
explain drug response (chapter 2), I followed different strategy: use a
large body of publicly available perturbation experiments to quantify
gene expression responses to a specified set of stimuli (chapter 3), and
then use those genes to infer the upstream signal required to change
their expression (Bild, Yao, et al., 2005; Gatza, Lucas, et al., 2010;
Parikh et al., 2010). This is one way by which-only using gene ex-
pression data—I can indirectly observe activity instead of just mRNA
expression (chapter 4), as well as apply similar signatures for poten-
tially synergistic drug combinations (chapter 5).



GENE SET METHODS FOR DRUG RESPONSE

Pathway methods are often used in a cancer context, both for cell lines
and primary tumours. Most of the time, the method of choice is to take
a gene set from either Gene Ontology (GO) (Ashburner et al., 2000),
KEGG (Kanehisa and Goto, 2000) or Reactome (Croft et al., 2011),
and calculate a combined expression score using either a Fisher’s exact
test (e.g. by a tool called DAVID!) if one is to test gene sets against
differentially expressed genes, or some variant of Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005) if the sets are pre-defined,
but one wants to avoid cutting of continuous expression values at an
arbitrary threshold. There are, however, more advanced pathway meth-
ods available. Signalling Pathway Impact Analysis (Tarca et al., 2008)
and Differential Expression Analysis for Pathways (Haynes et al., 2013)
take into account the directionality and sign of edges in a pathway.
Pathifier (Drier, Sheffer, and Domany, 2013) calculates probable in-
formation flow between the set items. PARADIGM (Vaske et al., 2010)
employs a Bayesian framework that models translation, activity, and
interactions. I will leave the more complex methods for a later chapter
and focus on GSEA using different gene sets here.

GSEA using GO gene sets is ubiquitous, often following a differential
expression analysis to see which higher-level function the differentially
expressed genes mediate. After computing the enrichment scores, our
list of genes is condensed down to a list of significantly enriched GO cat-
egories that may be related to the phenotype we are observing. This
may work very well in some cases. There are, however, a couple of
caveats to observe: (1) a gene does not exclusively belong to one pro-
cess; we might very well get a significant p-value only caused by the
overlap between different sets, (2) if we test all categories and correct
by false discovery rate we might dilute our signal so much that small
categories can no longer be significant, or (3) the process that did in-
deed cause our phenotype does not correspond to a gene set at all
(this can be due to missing biological knowledge, annotation errors, or
simply the fact that curators have not yet added a certain gene to a
certain category). Maybe the most dangerous caveat of them all is that
once we see our list of resulting categories, we are inclined to pick out
category that “makes sense”. Taking this selection of desired categor-
ies on its head, we may also be inclined to overlook a category that we

note that although this tool is still widely used, it has last been updated in 2010
and misses a lot of annotations (Wadi et al., 2016)
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don’t want to see, e.g. because the involved process is already known in
literature and we could not publish our new findings in a high-impact
journal. The aim of this chapter is to illustrate these issues.

I will use this chapter to examine which processes are involved in
making cancer cell lines sensitive or resistant to different drugs in the
GDSC panel (Garnett et al., 2012; Iorio, Knijnenburg, et al., 2016). I
will not filter the gene sets I use, to see how well represented signalling
pathways are among the top hits for drug sensitivity, where they are
known to play a pivotal role for targeted therapies (Garnett et al., 2012;
Iorio, Knijnenburg, et al., 2016; Yap and Workman, 2012).

Results obtained in section 2.3 contributed the pathway scores for
latest publication of the GDSC screening. All analyses, plots, and
written text in this thesis I produced myself:

Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert
M, Aben N, Gongalves E, Barthorpe S, Lightfoot H, Cokelaer T, Gren-
inger P, van Dyk E, Chang H, de Silva H, Heyn H, Deng X, Egan RK,
Liu Q, Mironenko T, Mitropoulos X, Richardson L, Wang J, Zhang T,
Moran S, Sayols S, Soleimani M, Tamborero D, Lopez-Bigas N, Ross-
Macdonald P, Esteller M, Gray NS, Haber DA, Stratton MR, Benes
CH, Wessels LF, Saez-Rodriguez J, McDermott U, Garnett MJ. “A
Landscape of Pharmacogenomic Interactions in Cancer”. Cell (2016).

2.1 METHODS USED THROUGHOUT THIS THESIS
2.1.1 (ene sets

To obtain Gene Ontology sets, I used the BioMart R package (Smed-
ley et al., 2009) to query the Ensembl (Hubbard et al., 2002; Yates
et al., 2016) hsapiens_gene_ensembl database for all HGNC symbols
that had a Gene Ontology (Ashburner et al., 2000; Gene Ontology
Consortium, 2004) ID (go_id field) associated with them, yielding
three main categories (biological process, molecular function, cellular
compartment) with 16413 gene sets covering 18806 genes total®. For
Reactome (Croft et al., 2011), I downloaded the file ReactomePath-
ways.gmt>. Tt contained a total of 1675 pathways covering 7852 genes.

For other gene sets, I used the Enrichr platform (E. Y. Chen et
al., 2013) and the gene sets the authors assembled in their GitHub
repository?. They encompassed gene sets for 35 pathway and pathway-
related resources, including Gene Ontology, Reactome (where I queried
the original databases to obtain more up-to-date gene lists), as well as

2 query of Ensembl Biomart on March 1st 2016
3 http://www.reactome.org/pages/download-data/
4 https://github.com/yokuyuki/Enrichr
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KEGG (Kanehisa and Goto, 2000) (that already used the last non-
commercial release).

2.1.2  Gene Set Variation Analysis (GSVA)

Gene Set Enrichment Analysis (Subramanian et al., 2005) is the de
facto standard to compute the expression level of a set of genes. It uses
as an input a ranked list of genes (e.g. fold changes). It then computes
the running sum of a set of interest by starting at the beginning of this
list and adding a score if the current gene is in the set, or subtracts a
score otherwise. This can be summarised like the following:

1/ 1 g € set
S =S, +
g+l — 8 { —1/(n—ngt) g ¢ set

A schema of this calculation is shown in figure 2. In the case of
GSEA, the overall score is the maximal deviation from zero. As is
shown in the example, this leads to a bimodal distribution of scores
when testing different sets or the same set on different samples, because
even if the genes in the set of interest are evenly spread, there will
always be a deviation. As GSEA is commonly used to compute the
significance of enrichment between two conditions (left panels in figure
2), this is not a problem: we can obtain the distribution of scores
under the null hypothesis by shuffling the labels of the reference and
the samples we are looking at, and then compute the empirical p-value
as quantile of this distribution. This, however, also means that we
need to compare two conditions in order to do this reliably. We can
not compute enrichment scores for each individual sample.

Gene Set Variation Analysis (Hanzelmann, Castelo, and Guinney,
2013) solves this: instead of taking the maximal deviation, it takes the
difference between maximum positive and negative enrichment score.
This directly yields a unimodal distribution of enrichment scores in
different samples that can hence be used in statistical tests that assume
normality®. As I am interested in correlating one continuous value
(drug sensitivity) with the set enrichment score, using GSVA (and the
GSVA R package) instead of GSEA is the natural choice.

2.1.3  Drug associations using the half-mazximum inhibitory concentra-
tion (1C50)

The original GDSC data set contained different dilutions of drugs that
the cell lines in the panel were subjected to, measuring how much it

raw gene enrichment scores could still be used in nonparametric tests, but they are
usually less powerful
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Figure 2: Calculation of the running sum statistic for GSEA and GSVA.
Calculation of the running sum statistic (top left) and absolute
deviation for enrichment score in case of GSEA vs. the difference
in GSVA. Genes are ordered by differential expression, genes that
are in the query set are indicated by black bars. The red line
indicates the running sum score where a score is added each time
there is a hit and subtracted otherwise. GSEA hence produces
a bimodal distribution of scores (left), while GSVA produces a
unimodal distribution (right). This is why the former needs label
shuffling of two conditions (bottom left) to compute empirical p-
values, while the latter produces scores for each sample (but no
statistical significance; bottom right).
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Figure 3: Calculation of ICsy values.Calculation of ICsy values. Cell viabil-
ity is measured at different drug concentrations and then a drug
response curve is fitted to the data. The halfway point of viability
between the minimum (E,;;) and maximum effect (Ej;y) is the
ICsg. The curve is defined by these three values and the steepness
of the slope.

interfered with their growth. Since I have got a pathway score for each
cell line, T also need a single value corresponding to the sensitivity to a
given drug. One way to do this is to measure the growth inhibition at
different concentrations, and then fit a dose-response curve to the data
points, interpolating (or extrapolating, if necessary) the concentration
at which the half-maximal inhibition occurred. This term is referred to
the ICsp value, and has already been calculated in (Iorio, Knijnenburg,
et al., 2016). The curve to fit is of sigmoid shape (figure 3) and has the
formula:

_E. . —slope
e ron (552)
max

I obtained already processed gene expression matrix from the GDSC
cell lines and their fitted ICsy values to 265 public drugs from the
GDSC publication (Iorio, Knijnenburg, et al., 2016). I performed a
linear regression using the 1m function in R between the gene set score
as an independent variable (S;, where j corresponds to each different
phenotype from 1 to k; this could e.g. be pathways or the presence of
a mutation) and the logio of the IC50 in micro-molar as the response
variable (D;, where i is the drug index). I regressed out the contribution
of individual tissues by including it as a covariate (T) in the fit.

D; ~T+S; Vi € drugs Vj € phenotypes
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In other words, for each drug D;, I fit the following model for all cell
lines ¢ in the GDSC panel.

c c1
Dé1 Ta S{;
2

DZ.C2 T¢2 N S].
~ C

DZ.3 T¢s S].3

I performed this association between every drug and all gene set
scores, yielding an effect size (how many units of drug response changed
per unit of enrichment score) and p-value for each pair. I corrected the
p-values for each pair using the False Discovery Rate (FDR) (Benjamini
and Hochberg, 1995). In addition, I performed these associations using
each tissue separately:

D; ~ S Vi € drugs Vj € phenotypes | T =t; Vt € tissues

In this case, I only include cell lines ¢ whose tissue Tequals ¢t and
build models for each tissue separately.

€1 €1
D Sé

(%] 2
D; S j

cz N c3
D s

2.2 CELL LINE DRUG RESPONSE
2.2.1 Associations with Mutations

Associations between drug response and mutated genes have already
been published with the 2012 and 2016 versions of the GDSC screening
(Garnett et al., 2012; Iorio, Knijnenburg, et al., 2016). I reproduce
them here in order to ensure that the associations I obtain are the
same as the ones previously published. P-values vary slightly between
the two because the cell lines included in this study are not exactly
the same as in the original article. But the overall results (volcano
plot in figure 4 and associations in appendix A.1) very much agree:
the strongest hit in both cases is that TP53 mutations correlate with
resistance to Nutlin-3a, drugs that specifically target mutant BRAF
require such a mutation to be effective (Dabrafenib, PLX4720), and
MEK inhibitors work better with mutations in KRAS or NRAS.5

The pan-cancer volcano plot has been removed in the published version, but is
available here: http://www.cancerrxgene.org/gdsc1000
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Figure 4: Volcano plot of associations between driver mutations and drug
response. Effect size is fold changes between cell lines harbouring a
mutated vs. a wild-type copy on the horizontal axis, FDR-adjusted
p-values on the vertical axis.
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Figure 5: Volcano plot of associations between expression of Gene Ontology
categories and drug response. Effect size is standard deviations
of the score on the horizontal axis, FDR-adjusted p-values on the
vertical axis.

2.2.2  Associations with Gene Ontology categories

The most significant associations for Gene Ontology (Croft et al., 2011)
are much less clear than the ones for mutations. I used all categories
for “biological processes” and “molecular function” between 5 and 500
genes to calculate gene set scores using GSVA. The results for their
correlations with drug response are shown in figure 5 (associations in
appendix A.1).

Among the the top drugs, there are MEK inhibitors (Trametinib,
RDEA119), p53-stabiliser Nutlin-3a, and the multi-kinase inhibitor
WZ3105. The biological processes that they are involved in have no
obvious connection with their mechanism of action: While the “ex-
trinsic apoptotic signaling pathway via death domain receptors” and
“cellular response to UV-C” could somehow be linked to Nutlin-3a via
pH3-mediated apoptosis and DNA damage respectively, there is no ob-
vious connection between glycoprotein binding, protease binding, the
ruffle membrane, or hemidesmosomes and MEK inhibitors. Similarly,
“xenobiotic metabolic process” gives a hint that YM155 may be inac-
tivated by modification of the drug, but it does not tell us anything
about the mechanism of the drug (it binds the promoter of Survivin,
suppressing its expression’) or its possible indications. Overall, there
are so many significant associations that it is necessary to select inter-
esting categories either before or after computing those in order to be
able to interpret them.

7 https://www.caymanchem.com/product/11490
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Figure 6: Volcano plot of associations between expression of Reactome path-
ways and drug response. Effect size is standard deviations of the
score on the horizontal axis, FDR-adjusted p-values on the vertical
axis.

2.2.3  Associations with Reactome pathways

Compared to Gene Ontology, the drug associations with Reactome
pathway enrichment using GSVA are maybe even harder to interpret
(figure 6 and associations in appendix A.l1). The MEK inhibitors
Trametinib and RDEA119 associate most strongly with fibrin clot dis-
solution and laminin interactions (a fibrous protein present in the basal
lamina of the epithelia). Gemcitabine and Etoposide are more effective
if Influenza-related pathways are expressed, possibly hinting at involve-
ment of the DNA replication machinery in promoting sensitivity to a
Topoisomerase inhibitor and nucleoside analogue, respectively. Resist-
ance to WZ3105 is again associated with a process acting on the drug,
but this time it is export rather than modification. There is no obvi-
ous link between Bleomycin (which induces DNA double strand breaks)
and the “Neurotransmitter Release Cycle”. Again, there are so many
significant associations that we need to limit the pathways in order to
make sense of them.

2.3 PATHWAY-RESPONSIVE GENES: THE SPEED PLATFORM

Another possibility is to start off with fewer gene sets that we know we
are interested in. In the case of cancer signalling and drug response,
these could be the signalling pathways that we know are involved.
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The original SPEED platform (Parikh et al., 2010) consists of signa-
tures of 11 pathways, derived and comprised of the genes responsive to
a total of 215 experiments (the perturbations between a control and a
perturbed condition). They use a consensus gene signature across mul-
tiple experiments, perturbing agents, and other conditions to arrive at
a gene list that corresponds to pathway activation in a wide range of
conditions. These consensus signatures of pathway perturbations are
distinct from the expression level of pathway members that I described
above, as they are a downstream readout and not the expression status
of the signalling molecules.

2.3.1 Separability-optimised Gene Sets

The authors of the original SPEED publication used four parameters
to generate gene lists from their input experiments:

o Z-score cutoff: the top n% of upregulated genes

o Total expression cutoff: the top m% of genes considering their
basal expression in each experiment

o Experiment overlap: the percentage of experiments for which the
other two conditions must be met

e Uniqueness: whether only genes should be returned that were
unique to the stimulation of a specific pathway

With the SQLite database® and Python query tools the authors provided,
I extracted gene lists using the above parameters. First, I used the de-
fault parameters in their implementation, which was to include all genes
that were top 5% of up-regulated genes by z-score, overall top 50% of
expressed genes, in at least 20% of the experiments per pathway, and
disregarding whether the gene was in any other pathway or not. Using
these default parameters, I obtained scores that were highly correlated
between the different pathways, as shown in figure 7 (left).

To counteract this problem, I extracted gene lists for different com-

binations of the four parameters:

e Z-score: 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5,
7,7.5,8,9,10, 11, 12, 15, 20, 25

e Total expression: 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
e Overlap: 5, 10, 20, 30, 40, 50, 60, 70, 80

e Uniqueness: True or False

8 http://speed.sys-bio.net/SPEED_ db.zip
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Figure 7: Correlation plots for GSEA scores per pathway across cell lines
for the original SPEED lists (left) and my separation-optimized
version (right).

For each combination, I optimised the order obtained by GSEA scores
between control and stimulated experiments. For each combination of
parameters, i.e. for each of the 4950 gene lists, I calculated the raw
enrichment score for each pathway and cell line, yielding a total of 55
million enrichment scores (as the ordering is non-parametric, the raw
GSEA score is good to use here while being quicker to compute). I then
went on to, for each pathway, construct a precision-recall curve that
quantified how well the GSEA scores were able assign lower pathway
activation scores to the control arrays than the perturbed arrays (where,
in the case of an inhibition I performed GSEA using negative z-scores).

The set of control arrays comprised all the un-stimulated arrays in
the database, and the stimulated set of all unperturbed arrays in the
database where a certain pathway was perturbed. I used as a measure
of performance the area under the precision-recall curve. A perfect
ordering (that is, all control arrays and then all stimulated arrays)
corresponded to a precision-recall AUC (prAUC) of 1, while a random
ordering would respond to a prAUC about 0.5.

By using not only the matched control arrays to the perturbed arrays
but all arrays present in the data set, I allow in my resulting signature
the cross-activation of pathways while minimizing the fit to random
differences in gene expression by different initial conditions.

I split the data set (both control and perturbed arrays) in five differ-
ent subsets, where four of the five were the designated training set and
the fifth the test set. I calculated the prAUC for all the parameters
described in the previous section, and chose the set with the highest
score. I then went on to the part that was not used in training and
quantified the prAUC there as well. T performed the whole process five
times, with another subset functioning as the test set each time. I then
chose the set that the highest prAUC in the test set, or in the training
set if it was lower than in the test set. I did not simply select the
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Table 2: Parameter selection overview for each pathway. Z: Z-value cutoff
(0.25-20%), O: array overlap (20-80%); E: overall expression cutoff
(5-100%), U: unique (+) or all (-) genes considered. Gene lists
had to be between 50 and 250 genes to be considered. Values for
optimized and original lists are shown. Precision-recall AUC shown
for training, cross-training for optimized lists, and whole data set
for optimized lists vs. the one obtained by using the original lists.

2*pathway cutoffs used # genes in list precision-recall AUC all arrays
Z O E U opt original train cv opt  original

H202 20 50 20 + 191 60 0.99 1.00 0.99 0.66
IL-1 20 60 20 + 75 141 0.91 0.99 0.93 0.85
JAK-STAT 20 20 70 + 162 114 0.78 0.87 0.81 0.68
MAPK _only 20 70 10 - 65 559 0.94 0.97 0.95 0.46
MAPK_PIBK 15 20 5 - 171 118 0.82 0.89 0.84 0.63
TLR 6.5 40 50 + 78 181 0.88 0.91 0.89 0.81
PI3K_ only 15 20 30 + 227 67 0.80 0.97 0.83 0.49
TGFB 20 20 60 + 119 142 0.78 0.88 0.80 0.68
TNFa 1.5 50 70 - 56 259 0.77 0.99 0.81 0.66
VEGF 1220 30 + 121 56 0.92 0.94 0.92 0.84
Wnt 75 30 5 4+ 195 83 0.93 0.94 0.93 0.65

highest highest AUC in the test set because I would not want to select
a model that performed badly on the training set to begin with. This
selection procedure can be represented using the following formula:

selected = max™'"" (minPe ™ (pr AUC!™ ™, pr AUCH))

For the optimised lists, I observed a much lower overall correlation
of the pathway scores (figure 7, right). The values for the different
gene list cutoff parameters that I selected after optimisation are listed
in table 2, including the number of genes in the signature and prAUC
(training and test set) compared between the original cutoffs used in the
query tool and my selection. For all the pathways, the optimisation of
parameters yielded a better separation of control- vs. perturbed arrays.

2.3.2  Associations between Pathway Scores and Tissues

As a control, I compared the inferred pathway activation scores between
different tissues. If the assigned scores per tissue are biologically mean-
ingful, I would expect to find well-established literature evidence sup-
porting them. An overview heatmap of pathway activation scores is
shown in figure 8. Relating this to known biology, the scores seem
well supported by previously known evidence. A couple of examples to
illustrate this are listed below.
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Figure 8: Heatmap of inferred pathway activation scores for different tis-
sues. Pathways in rows, TCGA tissue labels in columns, relative
pathway activation indicated by colour. Rows and columns are
clustered so that similar tissues and pathways are shown close to
each other, with branch lengths indicating distance.

e JAK-STAT signalling is well-known to be upregulated in blood
cancer cells (Dutta and W. X. Li, 2013; Vainchenker and Con-
stantinescu, 2012), including in particular AML (H. J. Lee et al.,
2012; Danial and Rothman, 2000), CML (Danial and Rothman,
2000), ALL (Vainchenker and Constantinescu, 2012), and DLBC
(Gupta et al., 2012). This correlates well with the inferred activ-
ity scores for JAK-STAT signalling. Similarly, TLR signalling has
been shown to be induced by CpG oxydinucleotides in B-(DLBC,
MM) and dendritic myeloid, but not T-cells (Rothenfusser et al.,
2002).

e High production of reactive oxygen species has been shown to
occur in certain mesotheliomas (Kahlos et al., 1999), and gliomas
(Drukala et al., 2010).

o TGFB (Yamada et al., 1995; Kjellman et al., 2000) and VEGF
(D. A. Reardon et al., 2008) expression have been shown to be
increased in gliomas, correlating with malignancy (Kjellman et al.,
2000; Leon, Folkerth, and Black, 1996). Both were also increased
in mesothelioma (Kuwahara et al., 2001; Aoe et al., 2006), and
VEGF in melanoma (Rajabi et al., 2012; Gajanin et al., 2010) as
well.

o MAPK_only/MAPK_PI3K signalling seems to be evenly dis-
tributed among non-blood cancer tissues. We found the highest
activity of MAPK and MAPK_PI3K can be found in KIRC and
BLCA/PAAD, respectively. However, the difference was a lot
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less apparent than for other pathways, suggesting that MAPK
and EGFR pathway are important for all solid cancers.

2.3.3  Pan-Cancer Drug Associations

I performed a linear regression between the obtained pathway scores
and the ICsps for all cell lines and pathways while correcting for tissue
labels (used as covariate; details section 2.1.3). I adjusted p-values by
controlling the false discovery rate and visualized the result as volcano
plots and individual fits.

Linear associations of inferred pathway activity within all tissues
and drug response are shown in figure 9 (associations in appendix A.2).
Negative regression slopes (left side of the graph, green) indicate sens-
itivity markers, i.e. a higher pathway activation score correlates with
a lower ICsp. Positive regression slopes (right side, red) indicate resist-
ance markers, i.e. higher activation scores correlate with higher ICsgs.

Sensitivity markers:

o RDEA119 (Iverson et al., 2009), PD-0325901 (Ciuffreda et al.,
2009), and CI-1040 (Allen, Sebolt-Leopold, and Meyer, 2003) are
all MEK inhibitors and are thus to be expected to be more effect-
ive in cell lines where MAPK signalling is more active. In fact, the
strongest associations are between those drugs and MAPK__ PI3K
signalling. However, MAPK and PI3K are difficult to distinguish
in expression response due to pathway crosstalk (Parikh et al.,
2010).

o BIBW2992 and Gefitinib showed higher efficacy with PI3K_only
activity. As both are are EGFR inhibitors and PI3K is known to
cause resistance to those (Jeannot et al., 2014), this result is sur-
prising because the association is stronger than with MAPK__only
or MAPK_ PI3K. It may be because the authors of the SPEED
platform chose to include MEK inhibition as condition for PI3K

activation.

e [ found sensitivity correlating with Wnt activity for the drugs
Etoposide, QS11, and GSK-650394. QS11 modulates ARF activ-
ity and B-catenin localisation (Q. Zhang et al., 2007), which may
offer a treatment strategy for Wnt-driven tumours. GSK-650394
targets SGK1, which is activated by Wnt/B-catenin signalling
and has been shown to inhibit ROS-induced apoptosis in liver
cells (Tao et al., 2013). Etoposide induces DNA damage and sen-
escence, where this process may be inhibited by negative feedback
by SFRP1 (Elzi et al., 2012) due to Wnt signalling.



2.3 PATHWAY-RESPONSIVE GENES: THE SPEED PLATFORM 65

~
RDEA119:MAPK_PI3K

107°-
=)
L PD—0325901:MAPK_PI3K
© /
=
©
>
& BIBW2992:PI3K_only
8 10_3 - CI—1040:MAPK_PI3K/ GSK—650394:Wnt BIBW2992:H202
I3 Etoposide:Wnt _ A QS11:Wnt EHT 1864:MAPK_PI3K
'-g‘ Bleomycin:TNFa \H __ Gefitinib:PI3K_only
I \ _P AZD6482|1:TNFa
ch: T FTI-277:H202
- " @
1071~
1 1 1
-0.4 -0.2 0.0 0.2

Regression slope

Figure 9: Volcano plot of linear associations of inferred pathway activity
within all tissues and drug response. Tissue of origin used as a
covariate in the regression. P-values FDR-adjusted. Negative re-
gression slopes (left side of the graph, green) indicate sensitivity
markers, i.e. a higher pathway activation score correlates with a
lower ICsg. Positive regression slopes (right side, red) indicate res-
istance markers, i.e. higher activation scores correlate with higher
I C5os.
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o FTI-277 is more effective when reactive oxygen response (H202)
is active. Farnesyl transferase inhibitors are known to induce
DNA damage via ROS (Pan et al., 2005), which may cause growth
arrest or apoptosis in cells that already suffer ROS damage.

o AZD6482 is a PI3K inhibitor (Nylander et al., 2012), for which
cells show increased sensitivity in our study when TNFa signalling
is active. While the latter can be both oncogenic and tumour-
suppressive (Pikarsky and Ben-Neriah, 2006), it has been shown
that PI3K activation is necessary for NFKb-mediated cell sur-
vival in DLBC (Kloo et al., 2011) and the combination of PI3K
inhibition and active TNFa is known to cause apoptosis in vitilig-
ous keratinocytes (N.-H. Kim et al., 2007).

o TNFa (Sleijfer et al., 1998) signalling has been shown to be in-
creased after Bleomycin treatment, thereby mediating cytotox-
icity. It can be hypothesised that if this pathway is active in cell
lines, they are more likely to be affected by this.

Resistance markers:

o EHT 1864 is a Rac-family GTPase inhibitor (Shutes et al., 2007),
and MAPK_PI3K signalling is associated with resistance to this
drug. Racl is known to be involved in MAPK signalling specific-
ally for cancer development (Khosravi-Far et al., 1995). Hence,
cells with a higher MAPK activity may be less susceptible to
Racl inhibition.

2.4 DISCUSSION
2.4.1 Cell line drug response

The importance of mutations, especially when they are drivers, and
their role in a cell line’s response to the different drugs is well estab-
lished. With the new GDSC release (Iorio, Knijnenburg, et al., 2016)
the authors uncovered previously unknown links that may ultimately
lead to new clinical indications, or prioritise the development of certain
drugs over others.

In contrast to this, the biological meaning of the top associations
between gene set or pathway scores and drug response I obtained is
doubtful at best. What does it mean to have an association of the “T
cell receptor” in Head and Neck Squamous Carcinoma (HNSC)? There
are no immune cells involved in the culturing of HNSC cell lines, for
example.

Hence, we have two options: we either need to link seemingly unre-
lated gene sets back to the process that actually caused a difference in
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drug response by looking for evidence that may support it, or we need
to pre-select gene sets that may be relevant for drug response.

For the first case, we can not easily follow the chain of causality
between a biological process that mediates differential drug response
and its downstream readout as change of gene expression. The second
alternative does not solve this, but leads to a much higher probability to
catch causative gene sets when we already select candidates of exactly
this by prior knowledge.

2.4.2  Pathway-responsive genes

Using pathway-responsive genes instead of pathway expression to infer
signalling activity makes a lot of sense: we look at the footprint of
the actual signalling activity (the expression changes downstream of a
signalling pathway) and not the potential mediators (protein kinases,
among others) by means of mRNA expression level that is a lot fur-
ther removed from the actual signalling going on in a cell. However,
the SPEED platform has some issues in terms of the level in which
its pathways correlated to one another: If we did calculate drug associ-
ations with the original scores, hits would be groups where a given drug
is correlated with all pathways in about the same extent. This is likely
due to how they only evaluated gene lists by their overlap with Gene
Ontology categories, and not how well its enrichment scores are able to
differentiate between microarrays where a given pathway perturbation
is present and those where it is absent. The original version was hence
not very useful for my purposes.

There is a need for scores that are more potent in distinguishing the
gene expression footprints from one pathway to another. A way to do
this in the existing platform is what I did: no longer require that the
signature genes from all pathways are obtained using the same cutoffs
of the author’s 4 parameters, but instead optimise them in way so that
they are best able to tell apart the pathways one from another. Looking
at the correlations between the original cutoffs and the ones I suggest
after the cross-validated optimisation, I know that this worked at least
on those terms.

The next question to answer is whether we get more meaningful drug
associations. Looking at the volcano plot, associations are, for one,
not between a drug and all pathways, and for the other much better
supported when searching for literature corresponding to the top hits.

However, there is still a number of potential issues with the current
model, many of which can be traced back to using the original platform:

e The authors use raw microarray data as well as processed data.
For the processed data, we have no idea of what the original au-
thors did with their data to arrive at the expression levels they
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report. Sometimes they report this in their respective experi-
mental or data analysis procedures, but often they don’t. There
is a potential of a variety of biases that we can not control for.

e The platform as it currently stands needs four parameters to be
specified, each of which corresponds to a somewhat arbitrary
cutoff. Even if we ignore this, they limit the number of signa-
ture genes in a way that does not support down-regulated genes
at all (as the z-scores are filtered by top percentile only).

o We bias the selection of genes to the ones most commonly found
in microarrays. If a gene is highly upregulated but not present in
arrays and thus failing the overlap cutoff, we would lose it.

e MAPK inhibition was in the curated set of PI3K activators. This
is an error in curation and could explain many PI3K associations.

Hence I argue that, while the optimisation of parameters yielded vast
improvements in terms of correlatedness of scores and resulting drug
associations, it still has enough drawbacks to suggest that a different
approach keeping the overall idea of using pathway-responsive genes as
signature for pathway activity may be worth exploring. I describe the
approach I developed in the next chapter.



BUILDING AN IMPROVED MODEL OF
PERTURBATION-RESPONSE GENES

There are numerous examples of using Gene Set Enrichment Analysis
(GSEA) for a set of signalling molecules in order to infer signalling
activity. Most of them, however, use the expression of those proteins
directly as a proxy for their activity. My hypothesis is that using this
footprint of signalling activity is a better proxy than assuming that it
is proportional to the expression of the proteins involved in the signal
transduction pathway, which assumes the latter accurately represents
not only the protein levels but also their activity. To my knowledge,
the only similar efforts are the SPEED database (Parikh et al., 2010)
and two studies MCF10A breast signatures (Bild, Yao, et al., 2005;
Bild, Potti, and Nevins, 2006; Gatza, Lucas, et al., 2010; Gatza, Kung,
et al., 2011; Gatza, Silva, et al., 2014).

Whereas the former used a smaller but still significant set of publicly
available experiments, the only analysis they did using their signatures
was to compute the overlap between genes present in their signatures
and Gene Ontology categories, and genes between their pathways.

In the latter article the authors experimentally derived pathway-
response signatures for a single condition (MCF10A cell line, one per-
turbation/time point per experiment). Without claiming a direct con-
nection, one of the involved authors later had his medical license re-
voked and multiple articles retracted because of irreproducibility of
results, as investigated by (Baggerly and Coombes, 2009).

A later generation of signatures (Gatza, Lucas, et al., 2010) still had
this author involved, but the signatures themselves seem to be well
documented and the raw data was deposited in a public microarray
repository. Finally, in 2014 the main author (Gatza, Silva, et al., 2014)
linked the inferred pathway activity to drug response in a handful of
breast cancer cell lines. The MCF10A cell line itself is non-cancerous, so
it will represent the behaviour of cells without cancer-causing molecular
alterations. While the data in general seems to be of high quality, I
am not confident to make any statements about the genes responsive
in this cell line can be extrapolated to other tissues, especially because
it has previously been shown that signatures generated in a certain
lab can correlate more with the lab they were produced in than the
biological condition (Chibon, 2013), which I can not control for if there
is only one lab producing them.
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Figure 10: Reasoning about pathway activation. Most pathway approaches
make use of either the set (top panel) or graph (middle panel)
of signalling molecules to make statements about a possible ac-
tivation, while our approach considered the genes affected by
perturbing them.

So far, it is unknown how well it is possible to derive consensus
signatures that provide meaningful estimates of pathway activity across
different conditions. Only SPEED computed them, and the authors
did not do a detailed investigation of either this, or any large-scale
functional association with the pathway scores they obtained. It also
relies on a framework that applies multiple arbitrary cutoffs in order to
obtain signature sets, even though a simple linear model would abrogate
the requirement for such cutoffs, while being able to take into account
both up- and downregulated genes.

The chapter represents the model building stage of improved path-
way signatures. All analyses, plots, and written text in this thesis I
produced myself, while incorporating comments from the coauthors:

Schubert M, Klinger B, Kliinemann M, Garnett MJ, Bliithgen N,
Saez-Rodriguez J. “Perturbation-response genes reveal signaling foot-
prints in cancer gene expression.” bioRxiv 065672 (2016). doi:10.1101/065672

3.1 CURATING AND ASSEMBLING A DATABASE OF PUBLICLY AVAIL-
ABLE PERTURBATION EXPERIMENTS

3.1.1 Defining scope and format

Because the experiments in the SPEED database were curated in a
first iteration in 2009 and other pathways were added in 2012, it is
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Figure 11: Workflow of data curation and model building. (1) Finding and
curation of 208 publicly available experiment series in the Array-
Express database, (2) Extracting 556 perturbation experiments
from series’ raw data, (3) Performing QC metrics and discard-
ing failures, (4) Computing z-scores per experiment, (5) Using a
multiple linear regression to fit genes responsive to all pathways
simultaneously obtaining the z-coefficients matrix, (6) Assigning
pathway scores using the coefficients matrix and basal expression
data.
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quite likely that there are many more relevant experiments that were
deposited in ArrayExpress or GEO after the data was curated. Also,
previous efforts made no distinction based on the availability of raw
data or how many arrays were indeed available in a given contrast. For
the latter, I set the requirement to have at least two arrays in the control
condition to be able to obtain an estimate of the variability of the
expressed genes without a pathway perturbation, and one perturbed
array to compare to the controls. I kept the requirement of the original
SPEED for the perturbation to last 24 hours or less in order to focus
the analysis on primary pathway responses and not long-term rewiring.

I decided on focussing on the pathway set of the original SPEED
publication, with the following modifications:

o Focus on EGFR-related signatures instead of MAPK__ PI3K, which
could be either any of EGFR, MAPK, or PI3K where in the latter
two the respective other was inhibited

e MAPK inhibition should be interpreted as inhibition of MAPK,
not activation of PI3K (which may happen and we do indeed see
this in a couple of cases, but this is not generally true)

e Remove TLR, instead use TNFa and NFkB

Taking into account these modifications, the final pathway sets I re-
curated were: EGFR, H202, JAK-STAT, MAPK, NFkB, p53, PI3K,
Trail, VEGF, and TGFb.

Instead of creating an SQLite database (original SPEED) or flat
text files with semi-defined fields (additional pathways for the original
platform), I used the markup language YAML' (Ben-Kiki, Evans, and
Ingerson, 2005) to create index files for all the curated experiments.
This has the advantage over a simple tabular format in that it sup-
ports structured data, including field names and comments. It has the
advantage over XML that it is easily machine- and human-readable. It
can hence easily be reused by other projects for which a curation of
perturbation-response experiments on the resolution of pathways is of
interest. An overview of the format structure is shown in table 3.

3.1.2  Finding suitable Experiments

I used the following searches on the ArrayExpress database to find
experiments:

o EGFR: (egf* OR "growth factor” OR TGF*alpha OR epiregulin
OR heregulin OR neuregulin OR epigen OR betacellulin OR am-
phiregulin OR iressa OR gefitinib OR cetuximab OR erlotinib

1 short for Yet Another Markup Language
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Table 3: Structured data in the YAML file format that I used from exper-
iment curation for different pathway perturbation experiments in

ArrayExpress
Identifier Description
- — = marker for the beginning of a record
id the experiment identifier; consists of
accession  the experiment accession in ArrayExpress, e.g. E-GEOD-15986
platform the microarray platform
pathway the pathway identifier
cells a description of the cells used in the experiment
treatment a description of what the cell were treated with
effect if the effect was “activating” or “inhibiting”
hours how many hours the perturbation lasted
control a list of array identifiers used for the basal condition
perturbed a list of array identifiers used for the perturbed condition

marker for the end of file

OR lapatinib OR AG1478 OR trastuzumab OR herceptin) organ-
ism:sapiens samplecount:[4 TO 10000] raw:true exptype:”Transcription
profiling”

o H202: (h202 OR *peroxide) organism:sapiens samplecount:[4 TO
10000] raw:true exptype:”Transcription profiling”

o Hypoxia: (hypoxia® OR HIF1 OR HIF-1) organism:sapiens sample-
count:[4 TO 10000] raw:true exptype:”Transcription profiling”

o JAK-STAT: (ifn* OR interferon OR JAK OR STAT OR prolak-
tin OR EPO OR IL-2 OR IL2 OR IL-3 OR IL3 OR IL-6 OR IL6
OR IL-10 OR IL10 OR IL-13 OR IL13) organism:sapiens sample-
count:[4 TO 10000] raw:true exptype:”Transcription profiling”

o MAPK: (b-raf OR braf OR raf* OR mek* OR erk* OR PD*0325901
OR CT*1040 OR PLX* OR U0126 OR AZD6244 OR GSK1120212
OR *metinib OR PD*325901) organism:sapiens samplecount:[4
TO 10000] raw:true exptype:”Transcription profiling”

o NFkB: (LPS OR sa:lps OR tlr OR sa:lipopolysaccharide OR
pam3c* OR zymosan OR parthenolide OR sa:11-7082 OR CAY10512
OR sa:*salicyl*) organism:sapiens samplecount:[4 TO 10000] raw:true
exptype:”Transcription profiling”

e p53: (sa:*ph3 OR sa:mdm2 OR sa:nutlin®* OR sa:*radiation OR
sa:*radiated OR sa:”’dna damage” OR sa:ddr OR sa:*rubicin OR
sa:*platin OR sa:docetaxel OR sa:gamma) organism:sapiens sample-
count:[4 TO 10000] raw:true exptype:”Transcription profiling”

o PI3K: (SF1126 OR LY294002 OR TGR*1202 OR SAR2454* OR
GSK1059615 OR 80*6946 OR Perifosine OR Idelalisib OR PI3K
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OR PIK3* OR PTEN OR BEZ235 OR RP6530 OR GDC*941 OR
INK1117 ) organism:sapiens samplecount:[4 TO 10000] raw:true
exptype:” Transcription profiling”

o TNFa: (tnf* OR "necrosis factor”) organism:sapiens samplecount:[4
TO 10000] raw:true exptype:”Transcription profiling”

o Trail: (rtrail OR trail* OR fas OR fasl) organism:sapiens sample-
count:[4 TO 10000] raw:true exptype:”Transcription profiling” array:(A-
AFFY-33 OR A-AFFY-44 OR A-AFFY-37 OR A-AFFY-141)

o Trail (alternative): (Genasense OR ABT-737 OR ABT-199 OR
obatoclax OR GX15-070 OR casp8 OR caspase) organism:sapiens
samplecount:[4 TO 10000] raw:true exptype:”Transcription profil-
ing”

o VEGF: (VEGF* OR sunitinib OR nexavar OR sutent OR pazo-
panib OR everolimus OR afinitor OR votrient OR Bevacizumab
OR sorafenib OR itraconazole OR PDGF* OR PGF OR FIGF
OR Withaferin) organism:sapiens samplecount:[4 TO 10000] raw:true
exptype:”Transcription profiling”

o TGFb: (tgf OR 7tgf-*” OR ”"bmp*” OR "SMAD*” "transform-
ing growth factor” OR ”A 83-01” OR ”A-83-01” OR ”A83-01”
OR 7D 4476” OR "D4476” OR "D-4476” OR "GW 788388” OR
"GW788388” OR "GW-788388” OR "LY 364947” OR "LY-364947”
OR "LY364947” OR "R 268712” OR ”"R-268712” OR "R268712”
OR RepSox OR ”SB 431542” OR ”"SB-431542” OR ”"SB431542”
OR ”SB 505124” OR "SB-505124” OR ”SB505124” OR ”SB 525334”
OR ”SB-525334” OR ”SB525334” OR ”SD 208” OR ”SD208” OR
”SD-208”) organism:sapiens samplecount:[4 TO 10000] raw:true
exptype:”Transcription profiling”

Those searches yielded between 30 and 650 results in the database,
the majority of which had nothing to do with the perturbation I was
looking for but the search term was rather mentioned in the experiment
description. I read the description, sample attributes, metadata files,
and if required the associated article to fill in the required information
about each experiment (listed in table 3).

I found a total of 208 submissions encompassing 11 pathways, 572
experiments, and a total of 2687 arrays. This is the same number
of pathways in the SPEED platform (Parikh et al., 2010), but about
three times as many experiments and more than four times as many
microarrays than were used to derived their signatures. Because the
collection of (Gatza, Lucas, et al., 2010) is breast cancer only and only
consists of a single experiment per signature, my number of pathway
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Figure 12: Comparison of dataset size between SPEED, Gatza (2009), and
my Pathway-responsive genes (PRGs). (Gatza, Lucas, et al.,
2010) derived 18 pathway signatures using only the MCF-10A
cell line (thus also 18 experiments), and a total of 287 arrays.
In 2014, they included additional signatures from other sources
to a total of 53, but some are redundant, others not pathways,
and all still limited to breast cancer (Gatza, Silva, et al., 2014).
SPEED(Parikh et al., 2010) assembled consensus signatures for
for 11 pathways using 69 GEO submissions, 215 different condi-
tions and 572 arrays. My data set consists of 11 pathways, 217
GEO submissions, 568 different experiments and a total of 2687
arrays. This means I use more evidence per pathway and cover
a broader set of experimental conditions, but also reflects the
imposed limitation of only considering experiments if there are
at least two unperturbed arrays available in order to estimate
the basal variability. In addition, all my expression values are
derived from raw data and not preprocessed data that I can not
reproduce.
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signatures is smaller but the number of overall experimental data much
bigger (for a comparison, see figure 12).

I designed a pipeline to parse the experiment index, and download
and process the corresponding experimental data as described in section
3.1.3. At the time, the release of the ArrayFzpress R package was
unable to process most of the experiments although the raw data as
well as experiment description was available. In the spirit of increased
reusability, I aimed at fixing the package instead of just writing my own
processing routines, and the new version is available on BioConductor?.

3.1.3 From Ezperiments to Expression Data

To go from an experiment accession identifier in the ArrayExpress data-
base to the actual expression values of the arrays referenced in the cur-
ated data set, I planned to use the ArrayFxpress package with its main
function that should do exactly that: take an accession, and return an
annotated data.frame with probe IDs in rows and samples in columns
- with the annotation containing the metadata of the experiment. This
was not working for the majority of experiments however, so I rewrote
parts of the package and gave the patches to the original maintainers
(for detailed list of changes, see the BioConductor VCS diff between
1.28.1 and 1.30.1). The update package has been downloaded by over
4,000 people since?.

With the R package patched, I was able to download the associated
data with all the Affymetrix accessions. I fitted a probe-level model
(PLM) for each accession, calculating the NUSE and RLE quality con-
trol scores for each array. Arrays that had a NUSE or RLE over 0.1 I
discarded as quality control failures. If less than two control and one
perturbed array were remaining, I removed the whole experiment. If
there were enough, I performed background correction, normalisation,
and probe summarisation using the rma function in the oligo (Carvalho
and Irizarry, 2010) or affy (Gautier et al., 2004) package (depending on
whether the object was a FeatureSet or AffyBatch, respectively) using
the corresponding platform design package. I then mapped the probe
set identifiers to Human Genome Nomenclature Consortium (HGNC)
symbols using the respective annotation packages (platform design and
annotation package see table 4). I discarded probe identifiers mapping
to more than one HGNC symbol, and averaged multiple probe sets
that belonged to the same HGNC symbol using the avereps function
in the limma package (G K Smyth, 2005). After processing and quality
control, a total of 568 experiments and 2867 arrays remained, with a

total of over 64 million single-gene measurements.

2 http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
3 http://bioconductor.org/packages/stats/bioc/ArrayExpress/
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Table 4: Microarray platforms used in the curated experiments

ArrayExpress Platform ID GEO Platform ID Platform design package

Annotation package

A-AFFY-9 GPLI1 pd.hg.u95a hgu95a.db
A-AFFY-10 GPL92 pd.hg.u95b hgu95b.db
A-AFFY-1 GPL8300 pd.hg.u95av2 hgu95av2.db
A-AFFY-33 GPL96 pd.hg.ul33a hgul33a.db
A-AFFY-34 GPL97 pd.hg.ul33b hgul33b.db
A-AFFY-44 GPL570 pd.hg.ul33.plus.2 hgul33plus2.db
A-AFFY-37 GPL571 pd.hg.ul33a.2 hgul33a2.db
A-GEOD-13667 GPL13667 pd.hg.u219 hgu219.db
A-AFFY-141 GPL6244 pd.hugene.1.0.st.v1 hugenelOsttranscriptcluster.db
A-GEOD-11532 GPL11532 pd.hugene.1.1.st.v1 hugenellsttranscriptcluster.db
A-AFFY-141 GPL6244 pd.hugene.2.0.st hugene20sttranscriptcluster.db
A-GEOD-17692 GPL17692 pd.hugene.2.1.st hugene21sttranscriptcluster.db
A-AFFY-143 GPL20188 pd.huex.1.0.st.v1 huex10sttranscriptcluster.db
A-GEOD-16209 GPL16209 pd.huex.1.0.st.v2 huex10sttranscriptcluster.db
A-AFFY-76 GPL3921 pd.ht.hg.ul33a hthgul33a.db
A-GEOD-13158 GPL13158 pd.ht.hg.u133.plus.pm ?
A-GEOD-17586 GPL17586 pd.hta.2.0 hta20sttranscriptcluster.db

3.2 A MODEL FOR PERTURBATION-RESPONSE EXPERIMENTS

3.2.1 Building a linear model from z-scores

With the curated experiments, one requirement was that there were at
least two arrays available that represent the control condition. This
way, I can use the distribution of the control condition of each gene
symbol as the reference distribution, and calculate the number of stand-
ard deviations that the average perturbed sample lies above or beneath
its mean:

zi = alin o K

where i is the index of the gene, z; is the obtained z-score, X; is the
mean perturbed expression level, y; is the mean expression level of the
reference condition and o; its standard deviation. In addition, I use a
loess model to smooth the relationship between a gene’s expression
level and its variance across samples as described in (Parikh et al., 2010).
From the z-scores of all experiments and all pathways, I performed a
multiple linear regression with the pathway as input and the z-scores
as response variable for each gene separately:

Ze~M Vg € genes
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Figure 13: Structure of the perturbation-response model. For the multiple
linear regression, I set the coefficients or perturbed pathways to 1
if a pathway was perturbed, 0 otherwise. In addition, EGFR per-
turbation also had MAPK and PI3K coefficients set, and TNFa
had NFkB set.

Where Z, is the z-score for a given gene ¢ across all input experiments
(as a column vector of experiments). M is a coefficients matrix (rows
are experiments, columns pathways) that has the coefficient 1 if the the
experiment had a pathway activated, —1 if inhibited, and 0 otherwise.
For instance, the Hypoxia pathway had experiments with low oxygen
conditions set as 1, HIF1A knockdown as —1, and all other experiments
as 0. The same is true for EGFR and EGF treatment vs. EGFR
inhibitors respectively, with the additional coefficients of MAPK and
PI3K pathways set to 1 because of known pathway cross-talk. An
overview of all modelled cross-talk is shown in figure 13.
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From the result of the linear model, I selected the top 100 genes
per pathway according to their p-value and took their estimate (the
fitted z-scores) as coefficient. I set all other gene coefficients to 0, so
this yielded a matrix with HGNC symbols in rows and pathways in
columns, where each pathway had 100 non-zero gene coefficients (cf.
figure 11).
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EGFR Hypoxia JAK-STAT MAPK
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Distribution of the top 100 genes used in the model, as outcome
for the multiple regression of all pathways. Top: Distribution of
FDR-corrected p-values for signature genes (double log). Genes
(horizonal axis) are ordered by significance. Dashed line at 5%
FDR, dotted line at 1071°. Bottom: Distribution of z-scores
of the top 100 significant genes (different order compared to a).
Signature genes are comprised of both up- and downregulated
genes for most of the pathways. In no pathway a single or a few
z-scores are high enough to overshadow the rest of the signature,
indicating that the model is numerically stable.
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Figure 15: Overlap of signature genes for different pathways. For the 100
genes I selected for each individual pathway, this shows how
many of those signature genes are present in another pathway as
well. The overlap is generally minimal, with the highest numbers
between TNFa and NFkB (18 of 100) and EGFR and MAPK (9
of 100). As both of these pathway pairs have one component that
is directly upstream of the other, this is to be expected. It also
shows that the response genes are specific to their perturbation
and not a common phenotype like stress response that happens
with any perturbation.
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plane
normal

Figure 16: 2-dimensional schema of a distance calculation of a point from
a plane by means of a dot product. The plane is defined by its
normal vector, and the distance between it and the point marked
A is calculated by using the formula 7 - A.

3.2.2  Computing pathway scores

For each pathway signature I obtain an N-dimensional vector in gene
expression space Z;. This vector defines not only a direction, but also a

plane on the origin of a coordinate system whose normal it represents.

The distance of each sample (A) from that plane corresponds to the
activation state of the pathway, calculated as the dot product between
Z; and the gene expression of a given sample (or fold change). A schema
of this is shown in figure 16.

While the above only explains how to calculate the score for one
pathway in one sample, I have 11 pathways and M samples. Each
column in the matrix of perturbation-response genes (Z with N genes
in rows and M samples in columns) corresponds to a plane in gene
expression space (Z; with N genes, i € M). For samples, I have a gene
expression matrix E with genes in columns (N dimensions) and samples
in rows (M dimensions). I can now calculate all the dot products
between Z; and Eggppie by performing a matrix multiplication to yield
P, a matrix with all pathway scores (rows, indexed by i) in all samples
(columns, M dimensions):

P=ExZ

This approach is vastly simpler and more computationally efficient
than any other way of computing scores for other pathway methods
that I compare in section 3.3.2. As I am more interested in the relative
activation status between samples than the absolute values that are
not particularly meaningful, I scaled each pathway or gene set score to
have a mean of zero and standard deviation of one across all samples.
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Figure 17: T-SNE plots for separation of perturbation experiments with dif-
ferent pathways in different colours. Fold changes of genes in
individual perturbation experiments (10% FDR) do not cluster
by pathway (left). Using a consensus signature of genes whose
z-score is most consistently deregulated for each pathway instead,
we can observe distinct clusters of perturbed pathways (right).

3.2.3 Consensus gene signatures reveal pathway-response transcrip-

tional modules

Each experiment in my data set consisted of between 3 and 30 arrays,
measuring between 8597 and 24,041 genes (72% over 15,000 genes).
For extracting the individual signatures for each experiment, I calcu-
lated differential expression between the basal and perturbed condition
and selected all fold changes that were significant at 10% FDR. If the
pathway was inhibited, I took the negative fold changes. This yielded
between 1 and 14,014 z-scores of significantly changing genes, reflecting
the strength of the perturbation, experimental design and number of
genes on the array. I assembled a matrix of significant fold changes
by setting all non-significant or non-existent gene coefficients to 0, and
use t-SNE (Van der Maaten and Hinton, 2008; Maaten, 2013) for di-
mensionality reduction on that matrix.

Looking at the fold changes in each perturbation experiment, I do
not see an obvious clustering in which pathway was perturbed (figure
17, left). Distances between the fold changes of different experiments
are about equal, with the slight exception of JAK-STAT and Hypoxia
that are grouped to some extend, but the fold changes do not allow for
a separation of pathways.

To compare this to my model, I calculated pathway scores from
the unfiltered fold changes of my input experiments, or negative fold
changes in the case of inhibitions. Applying the model building as de-
scribed in section 3.2.1, I obtain an expression matrix with genes in
rows and pathways in columns. As this is a linear model of the z-scores
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of those different pathways, I can obtain activation scores (my inferred
pathway activity) by a matrix multiplication between the model matrix
and gene expression values from samples, as long as the identifiers are
in the same order. Using only the top 100 significant genes (figure 14),
I can show a separation of all pathways in groups (and some weak per-
turbations overlapping in the centre). However, these clusters only tell
us that across all scores, individual pathways produce patterns distinct
from others. It does not tell us the obtained scores actually correspond
to the perturbed pathway.

I calculate linear associations using the 1m function in R between
a pathway coefficients matrix (experiments in rows and pathways in
columns, with the value 1 where a pathway was activated, —1 where a
pathway was inhibited, and 0 otherwise; here, no cross-talk was mod-
elled explicitly) and the pathway scores obtained by using the different
methods as described in sections 3.2.2 and 3.3.2. I then plot the result
of the associations as a matrix (figure 18, left) where the perturbed
pathway and the obtained pathway score are on the axes, and the col-
our (blue for positive and red for negative correlation) indicates the
Wald statistic between them.

With the linear model I use for this purpose (implementation details
in section 3.2.3), I find that all pathway scores are strongly associated
with the perturbation they were derived from (figure 18, left), and
some for a perturbation with a known pathway cross-talk (e.g. EGFR
activating MAPK or TNFa activating NFkB).

As a method for inspection of the pathway scores of the individual
experiments, I plot a heatmap using the R package pheatmap with the
pathways scores in rows, experiments in columns, and the colour in-
dicates the relative (column-scaled) activation of each pathway (figure
18, right). In order to make activations and inhibitions more compar-
able, I take the negative pathway score for each inhibition and annot-
ate the columns separately indicating which pathway was perturbed,
and which kind of perturbation it was. This way, I can show clusters
of similar pathway activation patterns that should correspond to the
pathways that were perturbed.

The above test showed us that the mean of assigned scores is signific-
antly altered when a given pathway is perturbed, but it gives us only
limited information about the heterogeneity in the individual experi-
ments. To this end, I calculated the relative pathway activations for
each individual experiment (details section 3.2.3) and show the results
in a heatmap ordered by perturbation (figure 18, right). For easier
interpretation, I show all scores in the direction of activation by taking
the negative scores of inhibitions (so red indicates a match, not neces-
sarily an activation) and indicating whether the original experiment
was an activation or inhibition separately. We can clearly see that the
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Signaling Footprints
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Figure 18: Recovery of the perturbations across pathways (left) and for in-

dividual experiments (right) using the consensus signature. Left:
Associations calculated between perturbed pathways and the
scores obtained by the model of pathway-response genes (PRGs).
Along the diagonal each pathway is strongly (p < 10719) as-
sociated with its own perturbation. Significant off-diagonal ele-
ments are sparse and only show a strong association between
EGFR/MAPK and TNFa/NFkB and a weaker association (p <
107°) between EGFR/PI3K and MAPK/TNFa. Right: Heat-
map of relative pathway scores in each perturbation experiment.
523 experiments in columns, annotated with the perturbation ef-
fect (green for activation, orange for inhibition) and pathway per-
turbed (same order as b). Pathway scores in rows cluster between
EGFR/MAPK and to a lesser extent PISK, and TNFa/NFkB.
Colour indicates activation or inhibition strength. Order of path-
ways: EGFR, H202, Hypoxia, JAK-STAT, MAPK, NFkB, PI3K,
TGFb, TNFa, Trail, VEGF, and p53.
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majority of pathway scores across experiments agrees with the pathway
that was actually perturbed in the experiment.

Taken together, those two approaches imply that the perturbation-
response signature is both correct on average, as well as in the majority
of individual cases. For the remaining cases, I do not know if this is
something my (admittedly very simple) model misses or the pathway
was not sufficiently perturbed with the given parameters the experi-
mentalists used (e.g. a low concentration of the perturbing agent, too
little time for genes to change their expression significantly, or a general
experimental error).

3.3 COMPARISON TO PATHWAY MAPPING METHODS

3.3.1 Transcriptional footprints are fundamentally different to path-
wWay eTpression

As already indicated in my initial motivation (figure 10), commonly
used pathway methods map the mRNA expression level of signalling
molecules on the corresponding pathways to infer a pathway-level score.

But are those really different? Maybe the genes expressed upon path-
way perturbation are feedback regulators of the same pathway. In this
case, pathway mapping could very well identify perturbations because
those are already incorporated in the pathway structure.

However, I find that the overlap of my pathway-responsive genes and
known Gene Ontology categories or Reactome pathways is either small
or non-existent, as shown in figure 19. Interestingly, I find that for
the only pathway signature that is strongly tied to a specific inhibitor
(MAPK and MEK inhibitors), the one gene to overlap between all
methods is MEK itself. This effect of an inhibitor on the expression of
its target gene has been shown before (Iskar et al., 2010).

Notwithstanding these differences, computing which unfiltered GO
gene sets are over-represented in our signature genes may still give us
additional insight into which lower-level processes (and not signalling
pathways) are activated upon pathway stimulation. For this, I com-
puted enrichment of Gene Ontology categories using a Fisher’s exact
test and all gene sets that had between 5 and 500 members.

What I find is largely expected, but it also goes to show that mod-
ulation of signalling pathways mainly triggers expression changes in
biological processes related to the pathway and not the pathway mem-
bers itself.

For instance (figure 20), EGFR and MAPK drive, while p53-mediated
DNA damage response abrogates the cell cycle and DNA replication
(especially the G1/S checkpoint (Di Leonardo et al., 1994)). In addi-
tion, MAPK and p53 have more specific opposing roles in components
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Figure 19: Difference in gene sets between Perturbation-response genes and
Gene Ontology/Reactome. Perturbation-response genes are dif-
ferent to path- way members and gene annotations, with between
0 and 4 genes in common. However, pathway annotation is quite
different from gene annotations here as well.
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Figure 20: Functional annotations of perturbation-response genes



3.3 COMPARISON TO PATHWAY MAPPING METHODS 87

Table 5: Mapping of pathways to Gene Ontology Categories

2*Pathway Gene Ontology
1D Name
EGFR GO0O:0007259 ERBB signaling pathway
Hypoxia GO:0071456 cellular response to hypoxia
JAK-STAT GO:0007259 JAK-STAT signal transduction
MAPK G0:0000165 MAPK cascade
NFkB G0:0038061 NIK/NF-kappaB signaling
p53 GO0:0030330 DNA damage response, signal transduction by p53 class mediator
PI3K G0:0014065 phosphatidylinositol 3-kinase signaling
TNFa G0O:0033209 tumor necrosis factor-mediated signaling pathway
TGFb GO:0007179 transforming growth factor beta receptor signaling pathway
Trail GO0O:0036462 TRAIL-activated apoptotic signaling pathway
VEGF G0:0038084 vascular endothelial growth factor signaling pathway

of the spindle pole or mRNA splicing (among others). PI3K stim-
ulation also promotes G1/S transition, as well as regulation of ubi-
quitin. Hypoxia on the other hand inhibits the expression of G1/S ge-
nes and mitochondria-related genes (where oxidative phosphorylation
happens (Schultz and Chan, 2001)). TNFa/NFkB show enrichment in
the category of genes responsive to known pathway activator LPS (P
A Baeuerle and Henkel, 1994), and so does Trail (Halaas et al., 2000).

3.3.2  Computing pathway scores for other methods

Pathway and Gene Ontology scores

I matched my defined set of pathways to the publicly available pathway
databases Reactome (Croft et al., 2011) and KEGG (Kanehisa and
Goto, 2000; Minoru Kanehisa et al., 2009), and Gene Ontology (GO)
(Ashburner et al., 2000; Gene Ontology Consortium, 2004) categories.
In order to make them comparable, I selected the same set of pathways
across different resources. I calculated pathway scores for these sets
using GSVA as described in section 2.1.2.

The pathways I used are shown in table 5 for Gene Ontology, table 7
for Reactome (used in Reactome enrichment and Pathifier), and KEGG
in table 6 (used in Signaling Pathway Impact Analysis).

SPIA scores

Signaling Pathway Impact Analysis (SPIA) (Tarca et al., 2008) is a
method that utilizes the directionality and signs in a KEGG pathway
graph to determine if in a given pathway structure the available species
are more or less able to transduce a signal. As the species considered
for a pathway are usually mRNAs of genes, this method still infers
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Table 6: Mapping of pathways to SPIA (KEGG pathways)

2*Pathway SPIA
1D Name
EGFR 04012 ErbB signaling pathway
Hypoxia

JAK-STAT 04630  Jak-STAT signaling pathway
MAPK 04010 MAPK signaling pathway
NFkB 04064 NF-kappa B signaling pathway

p53 - -

PI3K 04150 mTOR signaling pathway
TNFa - -
TGFb 04350  TGF-beta signaling pathway
Trail 04210 Apoptosis

VEGF 04370 VEGF signaling pathway

signalling activity by proxy of gene expression. In order to do this,
SPIA scores require the comparison with a normal condition in order
to compute both their scores and their significance.

I used the SPIA BioConductor package (Tarca et al., nodate) in my
analyses that implements an updated version of the 2008 algorithm.
I calculated my pathway scores either for each cell line compared to
the rest of a given tissue (for the GDSC and drug response data) or
compared to the tissue-matched normals (for the TCGA data used in
driver and survival associations).

Pathifier scores

As with SPIA, Pathifier (Drier, Sheffer, and Domany, 2013) requires
the comparison with a normal condition in order to compute its scores.
The difference is that it infers pathway structure from gene expression
data itself instead of relying on prior knowledge.

I used the Pathifier BioConductor package (Drier, Sheffer, and Domany,
2013) in my analyses. I calculated pathway scores either for each cell
line compared to the rest of a given tissue (for the GDSC and drug
response data) or compared to the tissue-matched normals (for the
TCGA data used in driver and survival associations).

PARADIGM scores

I downloaded the PARADIGM software from the public software re-
pository* and a model of the cell signalling network published in (The
Cancer Genome Atlas Research Network et al., 2013) from the corres-

5

ponding TCGA publication®. I used my voom-transformed RNA-seq

gene expression data that I normalized using ranks to assign equally

4 https://github.com/sbenz/Paradigm
5 https://tcga-data.nci.nih.gov/docs/publications/coadread 2012/


https://github.com/sbenz/Paradigm
https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/
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Table 7: Mapping of pathways to Pathifier (Reactome pathways)

1*Pathway Name
2*EGFR Signaling by EGFR
Signaling by EGFR in Cancer
Hypoxia Cellular response to hypoxia
3*JAK-STAT Signaling by Interleukins

Interferon Signaling

Signalling to STAT3
MAPK Signalling to ERKs
2*NFkB TAK1 activates NFkB:w: by phosphorylation and activation of IKKs complex

RIP-mediated NFkB activation via ZBP1
pH3 Transcriptional Regulation by TP53
4*PI3K PI3K Cascade
Constitutive Signaling by Aberrant PI3K in Cancer
PI3K/AKT Signaling in Cancer
PISK/AKT activation

TNFa TNF signaling

TGFb Signaling by TGF-beta Receptor Complex
Trail TRAIL signaling

VEGF Signaling by VEGF

spaced values between 0 and 1 for each sample within a given tissue, as
recommended in the manual. I then ran PARADIGM inference using
the same options as in the above publication for each sample separately.
I used nodes in the network representing pathway activity to our set of
pathways to obtain pathway scores that are comparable to the other
methods, averaging scores where there were more than one for a given
sample and node.

3.3.3  Comparison within perturbation experiments

My first investigation is to which extent pathway expression is correl-
ated with known perturbations. They would be if the perturbation
causes feedback cycles where stimulation (or inhibition) of a pathway
will lead to changes in the expression of some of its own components,
such as inhibitors in the case of negative feedback.

But is this enough of a change to determine pathway activity from the
gene expression of its components? If so, it would enable the expression
to be used as an actionable biomarker for modulating the pathway’s
activity, e.g. by means of treatment using a kinase inhibitor. If not,
we can still use it as a measure of pathway expression, but not make
statements about its activity or whether adding a drug would change
its state.

For methods based on Gene Set Enrichment Analysis (Reactome,
BioCarta, Gene Ontology), the associations they provide between a
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Table 8: Mapping of pathways to PARADIGM nodes

2*Pathway 2*PARADIGM
EGFR epidermal growth factor receptor activity (abstract)
Hypoxia response to hypoxia (abstract)
JAK-STAT STAT-1-3-5-active
1*MAPK MEK-1-2-active
NFkB NFkB Complex (complex)
p53 response to DNA damage stimulus (abstract)
PI3K PIK3CA
TNFa tumor necrosis factor receptor activity (abstract)
TGFb SMAD1-5-8-active
Trail induction of apoptosis (abstract)

VEGF platelet-derived growth factor receptor activity (abstract)
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Figure 21: Comparison to pathway member GSVA. Significant associations
(marked with * for p < 107 and *** for p < 10717) between a
pathway perturbation and a higher (blue) or lower (red) pathway
score are shown on the left, pathway scores for individual exper-
iments on the right (order of pathways: EGFR, H202, Hypoxia,
JAK-STAT, MAPK, NFkB, PI3K, TGFb, TNFa, Trail, VEGF,
p53)
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Figure 22: Comparison to other pathway methods, legend as in figure 21

perturbed pathway and a significant change in score (figure 21) are
very much different from the pathway scores obtained from the con-
sensus of the response itself (figure 18). Reactome shows the strongest
associations for the perturbation and pathway score for Hypoxia and
JAK-STAT (followed by NFkB, MAPK, and JAK-STAT pathway ex-
pression upon NFkB perturbation). Gene Ontology shows strong self-
associations for Hypoxia and NFkB, and NFkB expression changes
upon TNFa stimulation.

These results provide a further confirmation that pathway expressed
as defined as a consensus score of pathway members is fundamentally
different to pathway activity and can not be used as a measure for such.
All the categories that provide strong associations are explicitly curated
to contain the pathway response, as opposed to the members. This is
true for a “Response to Hypoxia” for Reactome and Gene Ontology
(cf. tables 7 and 5), while the BioCarta pathway that does not provide
an association focussed more on the pathway itself. A similar pattern
can be observed for TNFa/NFkB and the “Response to LPS” category
(also tables 7 and 5).

SPIA (figure 22, top) seems to assign more extreme relative scores to
a couple of pathways (MAPK, EGFR, NFkB, Trail) no matter which
pathway was perturbed. It does not show a clear unique link between
a pathway stimulation and its impact on scores in the same pathway.
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Table 9: Area under the ROC curve (AUC) for methods and pathways in
figure 23. Best performance in bold.

2*Pathway Method
Perturbation-response Gene Ontology Reactome SPIA Pathifier

EGFR 0.84 0.38 0.50 0.64 0.50
Hypoxia 0.95 0.86 0.86 - 0.71
JAK-STAT 0.80 0.76 0.50 0.43 0.76
MAPK 0.83 0.59 0.46 0.29 0.48
NFkB 0.77 0.56 0.75 0.79 0.60
PI3K 0.81 0.26 0.47 0.35 0.46

TGFb 0.94 0.68 0.75 0.15 -
TNFa 0.87 0.70 0.53 - 0.63
Trail 0.91 0.42 0.56 0.52 0.39
VEGF 0.76 0.58 0.52 0.52 0.52
p53 0.86 0.32 0.67 - 0.48

Pathifier (figure 21, bottom) fails to derive scores for the majority of per-
turbation experiments (their method tries to construct principal curves
from control-experiments that need at least three arrays in that condi-
tion) and for the remaining does not provide any strong associations
(with the strongest being the up-regulation of the hypoxic response
upon JAK-STAT stimulation, otherwise all p > 107°).

3.3.4 Comparison across perturbation experiments

The previous section focussed on pathway activation in relative terms
(whether, given a pathway perturbation, the score assigned to any one
pathway is higher or lower compared to other pathways). I am now in-
terested in how well pathway methods are able to assign activity scores
across different experiments. I use as input data the fold changes (dif-
ference in log space, or negative difference if inhibition) of the curated
perturbation experiments, and see how well the pathway scores derived
from those are ordered for each pathway across experiments. This is
meant as a comparison of how well the pathway scores obtained by
different methods correspond to perturbations, and not to assign signi-
ficance of the perturbation-response signature model.®

The standard non-parametric (i.e., only based on order rather than
value) of quantifying this is the area under Receiver-Operator (ROC)
curves, the results of which is shown in figure 23 (AUCs in table
9). For all pathways except NFkB and JAK-STAT (where multiple
methods are tied), the consensus gene signature I derived is also bet-

6 Because then I would need an independent set of experiments. This is not required
as I assessed the significance of the genes in the model analytically, with results
shown in figure 14. The comparison here serves to show that my model corresponds
better to perturbations.
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Figure 23: Perturbation recall on input experiments as a comparison across

methods for each pathway. ROC curves for different meth-
ods ranking perturbation experiments by their pathway score.
Pathway-response genes (PRGs) show better performance for all
pathways except JAK-STAT and NFkB, where other methods are
equal. Gene Ontology and Reactome scores are obtained by Gene
Set Variation Analysis (GSVA). Pathifier using Reactome gene
sets. Performance is indicated with the area under each curve,
values indicated in table 9. Lines for methods are only drawn if
there were at least five experiments where a given pathway was
perturbed and the method could derive scores.
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ter able to detect pathway activations across experiments. VEGEF is
not well recovered by any method, potentially due to the relatedness
with EGFR/MAPK and the low number of experiments. Interestingly,
SPIA in 4 out of 11 cases systematically assigns pathway scores in the
wrong direction of the experimental perturbations (this may be due to
increased expression of negative feedback regulators that SPTA picks
up due to the underlying directed KEGG graph).

3.4 DISCUSSION
3.4.1 Need for an improved database and model

As 1 have outlined already in the discussion of chapter 2, the ori-
ginal SPEED implementation suffered from a multitude of arbitrary
cutoffs (z-score, overall expression, highest expressed fraction of genes,
whether the signature genes are allowed to overlap between pathways),
highly correlated gene sets (that could be fixed by optimising those
cutoffs), discarding most of its information (not taking into account
down-regulated genes in general, modestly but consistently upregulated
genes, etc.), and potentially weak input experiments (mostly processed
data without any knowledge of how this was done, calculating z-scores
for only one control condition, and never thoroughly assessing the qual-
ity of the model).

Also the results that I obtained in terms of drug associations were sig-
nificant but not stellar. This, combined with the fact that the original
database was curated in 2010 where there were fewer perturbation ex-
periments available, is an indication that building a new database could
result in a much improved model.

3.4.2  Value of curated perturbation experiments

The average entry in the ArrayExpress database comes with a fair
level of curation. Newer entries are often linked to ontology terms
in the Experimental Factor Ontology (Malone et al., 2010) or others.
Linking those to pathways, however, is non-trivial because the available
information is not accessible via an API. This is only possible using
the Gene Expression Atlas (Parkinson et al., 2007; Helen Parkinson
et al., 2009), but it also requires a much higher level of curation than
the experiments that are just deposited in the database and hence the
number of experiments that made it into the Atlas is much smaller. In
order to interrogate cellular systems (as those provided by the GDSC
and the TCGA in this study), I needed a high number of perturbation
experiments that are not available in the Atlas yet. This required a
focussed curation of those pathways.
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The value of this approach, combined with putting it into a machine
readable format that includes metadata (as opposed to the original
SPEED database that came either as a collection of un-annotated text
files or SQLite database), allows for easy reuse in other projects and
extension by adding additional experiments or pathways.

3.4.3 Importance of distinguishing between pathway expression and
activity

Seeing how my model compares to other pathway methods that map
mRNA expression to signalling molecules in one way or another un-
derlines the importance of distinguishing between pathway expression
and activity and, by extension, that the expression of pathway mem-
bers should not be used to make inferences about activity. This is
irrespective of using the pathway as a simple gene set or a directed
graph. Pathway expression alone does not tell us much about the in-
volved biology (a more expressed pathway likely only has an impact on
the cell if it is more active as well.

However, this is a jump in reasoning that we can not make for the
reasons outlined above. Also, pathway expression is not actionable by
itself, because there is no straightforward way to change the expression
of a pathway instead of its activity (as does a drug, for instance).

It can of course be argued that there are feedback loops where the
stimulation of a pathway triggers changes in expression in its com-
ponents (as I find with JAK-STAT and Hypoxia), either in the same
(positive feedback) or the opposite (negative feedback) direction.

This way of thinking makes sense only for positive feedback on the
same pathway: if it is negative feedback we would see an incorrect de-
crease of expression or a increase of associated inhibitors (I see this kind
of correlation using SPTA and how it incorrectly orders experiments in
figure 23), or if it is on another pathway we would assign significance to
the expression change of this pathway although this is merely a down-
stream consequence that did not cause the phenotype we observe at
all.

I can not claim that my model will always find causal aberrations.
But I do argue that it is more likely for it to find them compared to
other pathway methods, because the way it infers pathway activity
from gene expression is closer to the actual activity by definition. If
this is true, I would expect it not only to be able to recover known per-
turbation experiments better (figures 21 and 22) but also provide more
insight into which pathways driver activate mutations and influence
drug sensitivity due to oncogene addiction. Now that I have a model
that I know corresponds to pathway perturbations in a wide range of
conditions I can actually put those statements to the test.
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FUNCTIONAL EVALUATION OF PATHWAY
METHODS IN BASAL GENE EXPRESSION

This chapter represents the evaluation of the model proposed in the pre-
vious one. It aims to investigate the functional relevance of pathway-
responsive genes (PRGs) compared to other pathway methods. In
terms of outcomes, I am interested in how well the available platform
is able to explain:

e The signalling activity mediated by driver mutations and copy
number aberrations

o How this affects sensitivity to targeted therapies

e Which pathways have implications for patient survival

The chapter represents the results stage of improved pathway signa-
tures. All analyses, plots, and written text in this thesis I produced
myself, while incorporating comments from the coauthors:

Schubert M, Klinger B, Kliinemann M, Garnett MJ, Bliithgen N,
Saez-Rodriguez J. “Perturbation-response genes reveal signaling foot-
prints in cancer gene expression.” bioRxiv 065672 (2016). doi:10.1101/065672

4.1 PERTURBATION-RESPONSE SIGNATURES FOR BASAL GENE
EXPRESSION

4.1.1  Correlation in basal expression

For all pathway scores described in sections 3.2.2 and 3.3.2 using basal
gene expression, I calculated the Pearson correlation across all samples
and tissues, and plotted the correlation matrix between each pathway
combination using the R package corplot for GDSC and TCGA data
separately. The correlation between a pathway and itself is 1 by defin-
ition, all other values range from —1 (where the values are identical
except for a constant factor x; = k * xp + € where k < 0 and residual
e =0) to 1 (same for k > 0).

4.1.2 A linear model is easily transferable
As I am most interested in how basal signalling activity in cancer cell

lines and tumour samples correlates with outcomes such as drug re-
sponse and survival, one crucial point of deriving pathway response
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Figure 24: Correlation for TCGA primary tumour data (left) and GDSC cell
lines (right) for perturbation-response genes in basal expression.
Positive correlation in blue, negative in red. Circle size and shade
correspond to correlation strength. Pathways that showed cross-
activation with pathway perturbations are more highly correlated
in basal expression as well.

signatures is that they also need to reflect pathway activation in basal
gene expression. At this point, I know that my perturbation-response
signature genes correspond to the pathway activation between a basal
and perturbed condition, but not how well the pattern of pathway ac-
tivation from those perturbation experiments corresponds to gene ex-
pression footprints of a constitutively active signalling pathway leaves
in basal gene expression.

Providing a definitive proof that the same signatures obtained cor-
respond to constitutive activation in basal expression is only possible
using a range of functional readouts, e.g. mutations activating path-
ways and drug response on oncogene addiction.

What I can more easily show, however, is how well known pathway
cross-talk and structure (as is known in literature and I have shown in
figures 13 and 18) translates to pathway correlation in basal expression,
and how well they agree between tumours and cell lines. To this end,
I computed pathway scores for all primary tumours in the TCGA and
cell lines in the GDSC (details section 4.1.1), and checked how well
they correlate.

I find that not only are the correlations in basal gene expression
(figure 24) similar to the ones in perturbed experiments (figure 18), but
they also correlate very well with known cross-talk and do not change
more than could be biologically expected between primary tumours
and cell lines. I find a high correlation between EGFR and MAPK
and a lesser one to PI3K, as well as TNFa and NFkB. Another high
correlation is between NFkB and JAK-STAT that I also observed in
perturbation experiments (below cutoff of 107> of figure 18).
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Figure 25: Stability of basal pathway scores when bootstrapping input ex-
periments. The variance of pathway scores in cell lines given
bootstraps is more than five times as high compared to the vari-
ance of bootstraps given cell lines for all pathways except two
(Trail and VEGF), where it is roughly twice as high.

4.1.3 Dependence on input experiments

At this point I found strong indications that the gene expression changes
in perturbation experiments can be described across many conditions
using a linear consensus signature whose score reflects pathway activ-
ation and this signature is translatable to basal pathway activity in
non-perturbed gene expression.

What I have not shown yet is how stable the whole process is, i.e.
much the selection of input experiments influences the scores in basal
expression. In order to investigate this, I bootstrapped the experiment
selection 1,000 times and built models as described in section 3.2.1,
using the GDSC basal expression and yielding a 3-dimensional scores
tensor with a score for each cell line, pathway, and bootstrap. I re-
gressed out either the effect of the individual cell lines or the effect of
the bootstraps, and quantified the relative remaining variance in the

Scores:

_wvar(cell lines | bootstraps)
~ var(bootstraps | cell lines)

ratio

The overview of those relative variances is shown in figure 25. Here, a
value smaller than 1 indicates that the experiment selection has a bigger
effect than the cell line T apply the model to (i.e., we can not observe a
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biological effect because it is hidden by the noise of input experiments)
and values bigger than 1 indicate the times the biological context is
more influential for providing the score than the input selection (i.e, the
biological context outweighs the exact selection of perturbation input).
For most pathways (TNFa, NFkB, MAPK, JAK-STAT, Hypoxia, and
EGFR) the variance of the input experiments was only a negligible
influence (smaller than 10%) on the final scores. For p53, TGFb, and
PI3K selection of the input experiments still accounts for under 20% of
the observed variance of basal pathway scores. For Trail and VEGF, it
is about twice as large as the variance of the input experiments. This
can either point to the pathway not being particularly well defined (if
the experiments are also not well recovered by the signature, like for
VEGF in figure 23), or that the overall number of input experiments
is too small to guarantee a stable signature (like for Trail, where the
signature performs well but the overall number of experiments are low,
cf. figure 23).

4.1.4 Pathway scores for other methods

I used the Firehose tool! (release 2016_01_28) from the BROAD insti-
tute to download data labelled level 3 RNA-seq version 2 (files names
including RSEM_genes __ data.Level 3, unpacked them, selected all
files contained in the archive that contained the name rnasequ2) for
all cancer types for which it was available. I extracted the raw counts
from each of the text files for each gene. I then performed a voom trans-
formation (R package limma (G K Smyth, 2005)) for each TCGA study
separately. The result of this transformation are expression values that
I can use linear modelling techniques on, unlike the raw RNA-seq read
counts. With the resulting expression matrix, I selected only genes
that had an HGNC symbol associated with them. I used the function
avereps (R package limma) to average rows that had the same gene
symbol. This resulted in one expression matrix per TCGA tissue, for
a total of 34 tissues including 9179 tumour and 661 matched normal
samples.

I computed the pathway scores for perturbation-response genes as
well as all other method using the subset of tissues in the TCGA gene
expression data that had 30 or more normals in the same tissue (TCGA
identifier 11A) to compare. This is to make full use of the advanced
pathway methods (figure 27). For the cell lines in the GDSC, I do not
have tissue-matched normals, so this is not possible and I calculate the
scores for the cell lines alone or comparing one cell line to the rest of
the tissue if the method requires it (SPIA and Pathifier).

1 http://gdac.broadinstitute.org/
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101



102 FUNCTIONAL EVALUATION OF PATHWAY METHODS IN BASAL GENE EXPRESSION

For the gene set methods (figure 26), the amount of correlation
between pathway scores they provide is in the same order of the one for
pathway-response genes. Reactome (top) shows increased correlation
between EGFR and MAPK (to a lesser extent PI3K), and between
TNFa and NFkB (and to a lesser extent also JAK-STAT and Trail).
Gene Ontology (bottom) is very similar to Reactome. For both meth-
ods, the correlation between pathways is similar from primary data
(TCGA, left panel of figures) to cell lines (GDSC, right panel).

In comparison to the the pathway-responsive genes (figure 24) and
the gene set methods (26), SPIA and Pathifier had more data avail-
able to compute their scores for the TCGA cohorts because they made
use of the tissue-matched normals. This has a minor impact on the
correlation between pathway scores obtained by SPIA (both show a
high correlation between MAPK, NFkB, and Trail, top panel), but a
major impact on the ones obtained by Pathifier (middle): here, sup-
plying normals cause all the pathway scores to be highly correlated,
while there is almost no correlation to be observed for the cell lines.
For PARADIGM (bottom), there is almost no correlation between the
nodes in the inference graph that correspond to pathway activity.

4.2 RECALL OF KNOWN PATHWAY MODIFIERS
4.2.1 Pathway scores and mutations/CNAs

I computed pathway scores for TCGA cohorts where there were tissue-
matched normals available. For mutated genes, I considered all genes
that had a change of coding sequence (SNP, small indels in MAF files)
as mutated and all others as not mutated. For copy number alterations,
I used the thresholded GISTIC scores, where we considered homozyg-
ous deletions (—2) and strong amplifications (2) as altered, no change
(0) as basal and discarded intermediate values (—1, 1) from my ana-
lysis. I focussed on the subset of 464 driver genes that were also used
in the GDSC. T used the sets of mutations and CNAs to compute the
linear associations between samples for all different methods I looked
at. I did not regress out the cancer type in order to keep associations
where mutations/CNAs are highly correlated with it, but highlighted
all associations that passed the significance threshold of FDR < 0.05
(for each pathway method individually) after such a correction.

4.2.2  Associations using driver mutations and CNAs

If my reasoning is correct and pathway-response signatures indeed cor-
respond to intrinsic signalling activity, I should be able to see a higher
pathway score in cancer patients with an oncogenic driver mutation
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4.2 RECALL OF KNOWN PATHWAY MODIFIERS

and a lower score when a tumour suppressor is mutated or lost com-
pared to patients where no such alteration is present. Depending on
how those aberrations are spread across cancer types, I should be able
to detect them within or across cancer types.

I selected all cancer types in the TCGA for which there were tissue-
matched normals available, in order to make full use of the pathway
methods that require them. I calculated pathway scores for those us-
ing pathway-response genes, Reactome and Gene Ontology enrichment,
SPIA, Pathifier, and PARADIGM. I used an ANOVA to calculate sig-
nificant associations between the presence and absence of mutations
and copy number alterations and the inferred pathway scores, both
with and without regressing out cancer types (volcano plot in figure 28;
other methods in figures B1 and B2, as well as tables in appendix B.1
and B.2 for mutations and CNAs, respectively).

In terms of proliferative signalling, I find that EGFR amplifications
are correlated both with EGFR- and MAPK-responsive genes (FDR <
10~2Y), and to a lesser extent PI3K, VEGF, and Hypoxia (FDR<10-9).
ERBB2 amplifications show an increase in EGFR and PI3K-responsive
genes, but also a reduction in the Trail signature (FDR < 0.05), sug-
gesting a relatively stronger impact on cell survival. KRAS mutations
show an increase in inferred EGFR activity, and amplifications addi-
tionally for MAPK and PI3K (FDR < 10~°). BRAF mutations have
a positive effect on EGFR and MAPK (FDR < 10~%) but not PI3K
(FDR > 0.4).

For TP53 mutations I find a significant reduction in p53/DDR activ-
ity (FDR < 107'%) that also explains the associations with MYC,
RAD21, NDRG1, and PABPC1 (p > 0.04 if conditioned). It is also as-
sociated with a significant activation of the pathways for MAPK, PI3K,
and Hypoxia (FDR < 10~%). This is in contrast to loss of TP53, where
I only find a reduction in p53/DDR (FDR < 10~3) but no modifica-
tion of any other pathway (FDR > 0.15). The dual nature of TP53
mutations and CNAs are in line with the recent discovery that TP53
mutations can act in an oncogenic manner in addition to the protein
losing its tumour suppressor activity that has been shown for individual
cancer types (Olive et al., 2004; C. Zhang et al., 2013; Weissmueller
et al., 2014; Zhu et al., 2015). In addition, I can suggest a link between
TP53 mutations and genes that are specifically induced by activation
of canonical oncogenic signalling.

I find that VHL mutations (which have a high overlap with Kidney
Renal Carcinoma, KIRC) are associated with a stronger induction of
hypoxic genes compared to other cancer types. More surprisingly, I
find that presence of PIK3CA and PIK3CB amplifications and PTEN
deletions is also more connected to increasing the hypoxic response
(FDR < 107°) compared to an effect on the PI3K-responsive genes
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(FDR between 1072 and 107°). A role of PI3K signalling in hypoxia
has been shown before (Zhou et al., 2004; Yang et al., 2009; Kilic-Eren,
Boylu, and Tabor, 2013).

4.2.3 Comparison of methods

Comparing different methods (figure 29), I found that for TP53 muta-
tions (top left panel) only PRGs are able to recover the expected negat-
ive association between the mutation and p53/DDR activity. GO and
Reactome showed a much weaker effect in the same, while Pathifier
and SPIA showed an incorrect positive effect. For KRAS mutations
(top right panel) only my method can detect a strong activation of
the MAPK/EGFR pathways where the other methods either show no
significant effect or an effect in the wrong direction. The same goes
EGFR amplifications (bottom left panel). Across tissues, my method
is the only one to recover hypoxia as the expected (Maxwell et al., 1999)
strongest link with VHL mutations (bottom right panel).

4.3 CELL LINE DRUG RESPONSE USING THE GDSC
4.3.1 Drug associations using GDSC' cell lines

The next question I tried to answer is how well our pathway-responsive
genes are able to explain drug sensitivity in cancer cell lines. I took ICsg
values from the GDSC project (Iorio, Knijnenburg, et al., 2016) and
calculated statistical associations with our method, and GSEA using
the same pathways in Reactome (Croft et al., 2011) or Gene Ontology
(Gene Ontology Consortium, 2004), both for a pan-cancer and a tissue-
specific condition.

I performed drug association using a linear model between 265 drug
IC50s and 11 inferred pathway scores (1m function, R stats package),
doing a total of 2915 comparisons for which I correct the p-values using
the false discovery rate. For pan-cancer associations, I used the cancer
type as a covariate in order to discard the effect that different tissues
have on the observed drug response.

While this will also remove genuine differences in pathway activa-
tion between different cancer types, I would not be able to distinguish
between those and other confounders that impact the sensitivity of a
certain cell line from a given tissue to a drug. My pan-cancer asso-
ciation are thus correcting for different tissues when computing dif-
ferences in drug response explained by inferred (our method, GO, or
Reactome) pathway scores. For tissue-specific associations, I fit the
linear model and correct p-values for the false discovery rate for each
cancer type separately.
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Figure 29: Comparison of pathway score (vertical axis) associations across
different methods (horizontal axis). TP53 and KRAS mutations
within cancer types in top row, EGFR amplification bottom left.
VHL across cancer types. Wald statistic shown as shades of
green for downregulated and red for upregulated pathways. P-
value cutoffs shown as indicated. White squares if a pathway
could not be used for a method.
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Figure 30: Pathway context of EGFR/MAPK and its inhibitors.

4.3.2  Pan-cancer Associations with Drug Response

I found that for the pan-cancer setting, there were 199 significant as-
sociations (FDR<10%, conditioned on tissue of origin) for my method
and 27 and 66 for Gene Ontology and Reactome pathways, respectively.
The top hit using my method was the associations between Nutlin-3a
and p53-responsive genes. Nutlin-3a is an MDM?2-inhibitor that in turn
stabilizes p53, where it has also previously been shown that a mutation
in TP53 is strongly associated with increased resistance to Nutlin-3a
(Garnett et al., 2012). This is thus a well-understood mechanism of
sensitivity (presence) or resistance (absence of TP53 activity) to this
drug that our method recovers but neither GO or Reactome pathways
do.

I also find strong association between different MEK inhibitors (Tramet-
inib, RDEA119, CI-1040, etc.) and MAPK/EGFR activation, but also
a Raf (AZ628) or TAK1 (7-Oxozeaonol) inhibitor. These are all as-
sociations that the other methods miss or associate with a different
pathway (figure B3 and tables in appendix B.3).

The other pathway methods showed a much lower number of asso-
ciations across the range of significance (figure 32 and appendix B.3).
Using the same significance threshold (10% FDR) mutated driver genes
only yield 136 associations. They provide stronger associations only
for TP53, where the signature is a compound of pb3 signalling and
DNA damage response, and PLX4720/Dabrafenib, drugs that were
specifically designed to target mutated BRAF. For 170 out of 265
drugs covered by significant associations with either PRGs or muta-
tions, the PRGs provided stronger associations for 85, with a signi-
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Figure 32: Comparison of the associations obtained by different pathway
methods. Number of associations on the vertical, FDR on the
horizontal axis. PRGs yield more and stronger associations com-
pared to all other pathway methods. Mutation associations are
only stronger for TP53/Nutlin-3a and drugs that were specifically
designed to bind to a mutated protein. PARADIGM not shown
because no associations < 10% FDR.

ficant enrichment in cytotoxic drugs compared to targeted drugs for
mutations (Fisher’s exact test, p<0.002).

However, stratification using PRGs and mutated driver genes is not
mutually exclusive. My pathway scores are able to further stratify
mutated and wild-type sub-populations into more and less sensitive cell
lines (shown in figure 33 with additional statistics in table 10). This
includes, but is not limited to, BRAF, NRAS or KRAS mutations us-
ing MAPK pathway activity and the MEK inhibitor Trametinib (top
left) or Raf inhibitor AZ628 (bottom left), BRAF mutations with Dab-
rafenib (top right), and TP53 mutations with p53/DDR and Nutlin-3a
(bottom left). For MAPK- and BRAF-mutated cell lines, I find that cell
lines with an active MAPK pathway according to the PRGs are 175
(AZ628), 7596 (Trametinib), or 105 fold (Dabrafenib) more sensitive
than those where it is inactive. For Trametinib, cell lines with active
MAPK but no mutation in BRAF, NRAS or KRAS are six times more
sensitive than cell lines that harbour a mutation in any of them but
MAPK is inactive.

Taken together, these results indicate that my pathway scores can
be used to complement mutation-derived biomarkers by either refining
them or providing an alternative where no such marker exists.
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Figure 33: Comparison of stratification by mutations and pathway scores
for the MAPK pathway (BRAF, NRAS, or KRAS muta-
tions) and Trametinib (top left)/AZ628 (bottom left), BRAF
mutation and Dabrafenib (top right), and p53 pathway/TP53
mutations/Nutlin-3a (bottom right). Mutations indicated by col-
our of the box (from left; blue for mutated, green wild-type, white
mixed) and pathway scores by colour and shade of the violin
(from right; pink for MAPK and and yellow for TP53). The more
sensitive genomic phenotype (middle; mutated for MAPK/BRAF
and wild-type for TP53) is further stratified by top- and bottom
quartiles of pathway score (fold change of medians and p-value
of Mann-Whitney U test as indicated).
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Table 10: Stratification statistics: significance tests for figure 33. For the
same subsets, results of the Mann- Whitney U test between differ-
ent quartiles of the pathway score within different subsets defined
by mutational status with p-value as indicated. Difference in muta-
tions indicated by wt (wild-type), mut (mutated), or blank (any).
Inferred pathway activity is indicated by + (top quartile) — (bot-
tom quartile) or blank (any). Distance reported as a fold change
(FC) of medians.

Treatment Reference Comparison  p-value FC (medians)
MAPK + Trametinib MAPK wt MAPK mut 4.65e-29 950
MAPK + Trametinib MAPK+ MAPK- 3.45¢-33 10819
MAPK + Trametinib MAPK+ wt MAPK- wt  6.53e-13 166
MAPK + Trametinib MAPK+ mut MAPK- mut 3.83e-06 7596

MAPK + AZ628 MAPK wt MAPK mut 1.03e-14 102
MAPK + AZ628 MAPK+ MAPK- 2.11e-14 2665
MAPK + AZ628 MAPK+ wt  MAPK- wt  7.69e-07 20
MAPK + AZ628 MAPK+ mut MAPK- mut 6.72e-03 175
BRAF + Dabrafenib BRAF wt BRAF mut 1.88e-24 314085
BRAF + Dabrafenib MAPK+ MAPK- 3.12e-13 18
BRAF + Dabrafenib  MAPK+ wt MAPK- wt  1.93e-04 4
BRAF + Dabrafenib MAPK+ mut MAPK- mut 4.02e-02 212416
p53 + Nutlin-3a TP53 wt TP53 mut  3.09e-35 113
p53 + Nutlin-3a pH3+ pH3- 9.60e-08 8
p53 + Nutlin-3a pH3+ wt ph3- 1.69e-02 5
p53 + Nutlin-3a pH3+ mut pH3- mut 9.29e¢-01 1
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Figure 34: Volcano plot of tissue-specific associations between pathway
activity and drug response for clinical drugs only. Horizontal
axis shows the regression slope, vertical axis the per-tissue FDR-
adjusted p-values. Dots with black circles are shown in more
detail below.

4.3.3  Tissue-specific Associations with Drug Response

I performed drug associations also on the tissue-specific level. However,
by dividing my dataset into the different cancer types I lose statistical
power, so I chose in the first instance to only look at the subset of
clinically approved drugs for the already stratified populations.

A drug association analysis for each tissue separately (figure 34) res-
ulted in 75 significant associations for PRGs vs. 36 for Reactome and
12 for GO (regression, FDR<10%; associations of different methods in
figure B4 and tables in appendix B.3). The strongest association was
response to the MEK inhibitor Trametinib where sensitivity was posit-
ively correlated with expression of MAPK-responsive genes, explaining
a total of 54% of the total variance observed in the ICsps of BRCA drug
response (p < 108, FDR < 107°). My method is the only one able to
recover this association, which is expected due to oncogene addiction to
a hyper-activated MAPK pathway, or any other associations involving
EGFR/MAPK for BRCA.

Perhaps more interestingly, I found two associations to drugs with
strong effect sizes. The inferred activity of Trail correlates with in-
creased sensitivity to Docetaxel in Low-Grade Glioma (LGG), where an
increased response to Docetaxel (figure 35) in combination with a Bel-2
inhibitor has been previously shown in BRCA (Lyseng-Williamson and
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Figure 35: EGFR activity may mediate resistance to Rapamycin (macrolide
antibiotic) in Esophageal Carcinoma (ESCA). Coloured boxes
show the drug response of a certain tissue and the stratification
achieved by negative and positive scores for a given pathway,
white boxes indicate range of drug response for other tissues.
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Figure 36: Trail activity mediates sensitivity to Docetaxel (microtubule sta-
bilizer) in Low-Grade Glioma (LGG). Legend as in figure 35.
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Fenton, 2005). Also, EGFR activity correlates with increased resist-
ance in Esophageal Carcinoma (ESCA) cell lines treated with Rapamy-
cin (figure 36). While BRCA and ESCA are already more sensitive to
these drugs than most other tissues (unlike the case above of BRCA for
Trametinib), the additional stratification by pathway scores identifies
a subset comprised of half the cell lines per tissue with a more sensit-
ive median response compared to all tissues, including those where the

drug is in clinical use.

4.4 PATIENT SURVIVAL USING THE TCGA

The implications of inferred pathway activity compared to pathway ex-
pression is expected to be less clear for patient survival than for cell line
drug response due to more heterogeneity and many more confounding
factors involved that affect the phenotype observed. Nonetheless, I was
interested in how my inferred pathway activity compared to the path-
way expression methods in terms of overall patient survival. I would
expect activity of canonical oncogenic pathways to be negatively correl-
ated with patient survival and pro-apoptotic pathways to be positively
correlated.

4.4.1 Clinical data and methods

Using the Firehose tool, I downloaded clinical data (file names including
Merge__Clinical. Level 1, unpack them, select all clin.merged.tzt files)
for all cancer types for which it was available. I extracted the fields for
study (admin.disease_code), age of the patient (age_days), their vi-
tal status (where a field days_to_death with a missing value indicated
that the patient was alive, encoded with 0 if the patient is alive and 1 if
they are not), days that they survived (either patient.days_to_death
or if that was not available patient.days_to_last_followup), the
TCGA patient barcode (patient.bcr_patient_barcode), and their
sex (patient.gender). I converted the days of survival to months by
dividing by 30.4. I discarded all patients that had a negative survival
time. I removed duplicates, and in the case there were multiple records
of the same patient I took the one recorded latest (the row where the
field patient.days_to_birth had the highest number).

Starting from the pathway scores derived with GO/Reactome GSEA,
SPIA, Pathifier, PARADIGM, and my method on the TCGA data as
described above, I used Cox Proportional Hazard model (R package sur-
vival) to calculate survival associations for pan-cancer and each tissue-
specific cohort. For the pan-cancer cohort, I regressed out the effect of
the study and age of the patient, and fitted the model for each pathway
and method used. For the tissue-specific cohorts, I regressed out the
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Figure 37: Comparison of pathway methods by association of a pathway
with increased (green) or decreased (red) patient survival. Col-
ours correspond to z-score (grey: FDR>20%, white: no path-
way available). Method (vertical) and pathway (horizontal) la-
bels as indicated. For our method, MAPK/EGFR provide the
strongest negative contribution to survival. Trail/apoptosis is
the only pathway mediating prolonged survival, but missing the
significance threshold.

age of the patients. I adjusted the p-values using the FDR for each
method and for each method and study separately. I selected a signi-
ficance threshold of 5 and 10% for the pan-cancer and cancer-specific
associations respectively.

4.4.2 Pan-cancer associations with survival

The pathway activity inferred by PRGs showed a strong association
with decreased survival for EGFR, MAPK, PI3K, and Hypoxia (figure
37; associations of different methods in figure B5 and tables in appendix
B.4). Gene Ontology found much weaker associations for those path-
ways, and the other methods missed them almost entirely. In terms of
Trail activity, PRGs find an increase in survival while the other meth-
ods show either a decrease or no effect. For JAK-STAT, NFkB, p53,
and VEGF there are no significant associations that are picked up by
more than one method (FDR < 0.05). Compared to pathway scores,
driver mutations only showed a significant decrease in survival for T P53
(FDR < 0.03 vs. FDR > 0.2) with a weaker effect size.

4.4.3 Tissue-specific associations with survival

For individual cancer types, I found a similar separation between onco-
genic and tumour-suppressor pathways for the associations using PRGs
(figure 38; associations of different methods in figure B6 and tables in
appendix B.4) that other methods fail to provide. In addition, I found
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Figure 38: Volcano plot of cancers-specific associations between patient sur-
vival and inferred pathway score using our method, effect size on
the x-axis, FDR-adjusted p-values on y. For these associations I
can recover significant hits for apoptosis in multiple cancers and
are the only method to do so.

cancer-specific associations of pathways with no effect in the pan-cancer
setting. Adrenocortical Carcinoma (ACC) showed a significant survival
increase with p53 activity (FDR < 1073). It is interesting that in
this case also none of the samples harbours a reported gain-of-function
TP53 variants (Zhu et al., 2015).

4.4.4 Kaplan-Meier survival curves for specific hits

For Kaplan-Meier survival curves (figure 39) it is only straightforward
to plot discrete classes of input and not the continuous pathway scores
I obtained using the different methods. In order to get distinct classes
needed for interpretable survival curves, I split all obtained pathway
scores in upper, the two middle, and lower quartile and respectively
assigned the classes “up”, “unknown”, and “down” to show for the
three examples of associations found.

As already found with the tissue-specific associations, Kidney Renal
Clear Cell Carcinoma (KIRC) and Low-Grade Glioma (LGG) show
decreased survival with TNFa and the latter with JAK-STAT, path-
ways where activating mutations are much less well established than
for EGFR/MAPK.

For these associations, I found a difference in one-year survival of
over 25% between the top and bottom quartiles of the assigned path-
way scores (figure 39). Compared to mutations, PRG associations were
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stronger (FDR 10~7 vs. 1073) and more consistent (strongest associ-
ations with small number of mutated genes).

4.5 DISCUSSION

The functional context in terms of cancer hallmarks that mutations
create are similar despite obvious differences in the exact mode, as ex-
emplified by the long tail of different variants seen in cancer genomes.
For cancer diagnosis in both the clinical and preclinical setting, efforts
like The Cancer Genome Atlas(The Cancer Genome Atlas Research
Network et al., 2013) or the International Cancer Genome Consortium
(ICGC) have pioneered this characterization on a large scale, offer-
ing the opportunity to derive large amounts of information about indi-
vidual tumours and in turn likely harbours yet undiscovered treatment
opportunities.

While the recent focus on linking outcomes with mutations represents
a step forward over basing treatment of an individual on the tissue of
tumour origin alone, putting mutations in a functional context with the
signalling aberrations that they create may provide additional insight
in mechanisms of pathogenesis and treatment opportunities.

In terms of drug associations, I have shown that my method out-
performs the associations obtained by using GSEA on either pathway
expression or GO modules, that strong tissue-specific associations are
able to explain a significant part of the overall variability in the re-
sponse to some drugs, and that pathway associations can be used to
refine mutational biomarkers, or act as biomarkers themselves when
there is no known associated mutation for a given drug.

I expect that this method of deriving signatures for pathway activity
will also in other contexts be able to discover both oncogene addic-
tion footprints to support available mutational biomarkers, as well as
provide insights into pathway activation patterns that mediate sensit-
ivity or resistance to a subset of drugs that other pathway-expression
based methods are not able to.

For survival associations, only my signatures find the pathways that
we would most expect to decrease patient survival by accelerating tu-
mour growth (EGFR and MAPK) and promoting survival by apoptosis
(Trail) to be associated with the respective outcome in both the pan-
cancer and the tissue-specific cohorts. Other methods fail to separate
those, only obtain significant associations for a very limited number of
cancer types, and show high correlation between pathways.

Overall, my results suggest that consensus pathway response signa-
tures provide a better measure of pathway activity than pathway ex-
pression, irrespective of whether the latter was derived from gene sets
or directed paths. I have shown that they are able to refine our under-
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Figure 39: Examples of Kaplan-Meier curves where our method is able to
separate between groups of up-, downregulated pathways vs the
rest. Hits shown are TNFa in KIRC, JAK-STAT in LGG, and

Trail and CESC, where the stratification between top and bottom
quartile is always at or greater than 25% after a year.
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standing of the impact of mutations, as well as their utility for cell line
drug response and patient survival. The examples I outlined show that
a downstream readout should be used as a proxy for pathway activity
instead of mapping mRNA expression levels to signalling molecules.



MODELLING DRUG INTERACTIONS

At the time I started this project, the LINCS Connectivity Map (cf.
section 1.5.5) data had just been released. The BROAD institute held
a small symposium and workshop about the platform (the L.1000), the
data they had collected, and how they were planning to take it forward
with web-based “apps” that did signature matching based on GSEA
without actually exposing the data to its users.

Despite the drawbacks of the only 978 genes measured and the lack
of a publication, it would be of enormous interest to combine this data
set with what I am already working on with the GDSC: this way, 1
have for the same cancer tissue (sometimes even the same cell line) not
only high-quality baseline expression and drug response curves, but
also lower coverage/quality drug-perturbed gene expression for a lot of
different compounds, including 150 drug that are overlapping between
the GDSC and the LINCS project.

I could use these for signature matching methods. Even more inter-
esting, I could generate a signature between cells that are sensitive and
those that are resistant to a certain kind of drug, and then match this
signature with another drug that potentially converts the cells from a
resistant to a sensitive phenotype. If this interaction is causal, I would
expect the two drugs to work better in combination than any single
treatment suggests, hence providing a synergistic effect between the
two.

This has been shown to work when trying to overcome glutocorticoid
resistance in acute lymphoblastic leukaemia (ALL) (Wei et al., 2006),
where the authors identified Rapamycin as a modulator of the resist-
ance phenotype. Now, I could do it systematically with the 150x150
drugs overlapping between the LINCS and GDSC projects, and could
thus obtain the first view of drug sensitisation over a large target space.
This could ultimately lead to a new drug combination or regimen that
restrict the development of resistance in clinical cancer patients, which
is one of the main challenges in patient treatment today (Ramaswamy,
2007).

Results of this chapter are unpublished. I produced all analyses,
plots, and written text in this thesis myself. Data for experimental
validation in chapter 5.3 was produced by and obtained from Ole Pless,
Bernhard Ellinger, and Milena Kalmer (Department ScreeningPort,
Fraunhofer Institute for Molecular Biology and Applied Ecology IME,
Hamburg).
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5.1 MANTRA AND THE ORIGINAL CONNECTIVITY MAP

5.1.1 Two-Tailed GSEA using MANTRA

The original Connectivity Map (Lamb et al., 2006) consisted of 6100
perturbation experiments on five different human cell lines (but mostly
the MCF-7 breast cancer cell line) using 1309 different, mostly non-
cancer-related, small molecules as perturbations and microarray data
as readout. On top of this data set (Iorio, Bosotti, et al., 2010) ordered
differentially expressed genes by their fold change for each drug, and
then merged those inversely weighted by distance! to arrive at what
they call a Prototype Ranked List (PRL) that corresponds to a con-
sensus signature across different conditions for a given drug—using a

method called Mode of Action by Network Analysis (MANTRA).

The microarrays of the Connectivity Map (HG-U133A) and the GDSC
(HG-U219) only had 83 overlapping probe set identifiers, so I mapped
the probe sets in the PRLs to HGNC symbols. From the 250 most up-
and downregulated genes in the PRLs I took those that are uniquely
present in the respective subset, leaving approximately 100 genes per
drug signature. I performed a two-tailed GSVA (details section 2.2.2)
in the basal expression of the GDSC cell lines and thus obtained a drug-
responsive signature expression score for each drug that has a PRL and
each cell line in the GDSC panel. The final enrichment score was com-
posed of the two individual enrichment scores of of both parts of the
list, using:

ES = ES" — ES#""

In comparison to GSVA, GSEA scores and signature-scaled GSEA
scores are bimodally distributed around zero (cf. section 2.1.2). One
could argue that with the up- and downregulated parts of the signature,
a combination of the two would yield a unimodally distributed score
again and thus GSEA scores can be used in conjunction with tests
that assume a normal distribution of scores. This is not true because
scores that are above zero with one signature can be either above or
below zero in the other signature. In practice, combining GSEA scores
yields a trimodal distribution (figure 40, left panel). In contrast, GSVA
scores are normally distributed for each individual score as well as for
the combined score (figure 40, right panel), which is why I chose GSVA
over GSEA also in this context.

so different conditions are weighted equally and over-representation of one condition,
like the experiments performed in the MCF-7 cell line, do not bias the data set
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Figure 40: Distributions of GSEA (left panel) and GSVA (right panel) scores
for up- and downregulated genes as well as the combined score of
both. GSEA: Combining up- and downregulated score yields a
distribution around zero (if ES*P and ES“°%" have the same sign)
or more extreme tails if they have opposite signs (e.g. an ES*P of
—1 and ES%%" of 1 would yield a combined score of —2, like the
peak at that position in the left panel; there are also scores dis-
tributed around 2, but their peak is barely visible). GSVA: Both
the individual and the combined score are unimodally distrib-
uted and resembling a normal distribution, making them more
amenable to statistical testing.
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Figure 41: Volcano plot of associations between expression of drug signatures
(second part of label) and drug response (first part) for cell lines
of all tissues. Effect size is standard deviations of the score on
the horizontal axis, FDR-adjusted p-values on the vertical axis.

5.1.2 Pan-cancer associations

I calculated associations as described in section 2.1.3. Results of as-
sociations between the expression of a drug-response signature (the
sensitiser) and drug sensitivity to a second drug (the treatment drug)
are shown as volcano plot in figure 41 (associations in appendix sec-
tion C.1). The top hits mostly include the drugs NPK76—I1—72—1 (an
experimental PLK3 inhibitor), Trametinib (a MEK inhibitor) Afatinib
(an EGFR inhibitor), and Bleomycin/Gemcitabine (cytotoxic drugs).
The general-purpose drugs in the Connectivity Map that induce gene
expression changes correlated with increased sensitivity in those are for
instance cAMP, chlorogenic acid (antioxidant and involved in the lignin
biosynthesis), bromocriptine (a dopamine promoter), or 1,4—chrysenequi-
none (a DNA-binding metallo-intercalator). It is not straightforward to
propose a possible mechanism in which each of the two drugs interact.
Furthermore, the concentration of all drugs in the Connectivity Map is
10 uM, which is much higher than the actual bodily concentration in
most cases. I have no indication that the associations I found should
indeed be causal and act synergistically or antagonistically in vivo. It
would be much more interesting to look at combinations of two cancer
drugs or at least cancer-related drugs. In that regard, the most inter-
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Figure 42: Volcano plot of associations between expression of drug signa-
tures and drug response for individual cancer types. Effect size
is standard deviations of the score on the horizontal axis, FDR-
adjusted p-values on the vertical axis.

esting associations is Trametinib with dexamethasone, as the latter is
administered with chemotherapy already.

5.1.3 Tissue-specific associations

In addition to the potential issues outlined above, tissue-specific asso-
ciations are a lot less stable due to lower sample numbers. In my case,
they also (figure 42 and associations in appendix section C.1) yield
all the strongest hits with Liver Hepatocellular Carcinoma (LIHC), for
which there is no reason to assume that a priori. While these associ-
ations could hint at possible synergistic or antagonistic combinations,
I can not easily make sense of them. One of the strongest associations,
for instance, is a drug targeted at BRAF (PLX4720), a mutation that
does usually not occur in liver cancer. After discussions with our col-
laborators at the Sanger, we decided that these combinations are too
far from available biological knowledge to test them further.
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5.2 A PAN-CANCER VIEW OF DRUG SENSITISATION USING LINCS
5.2.1 Data quality of the LINCS

The fact that the paper about the LINCS data has not yet been pub-
lished, combined with the concerns raised about data quality makes it
necessary to point out that in fact we do not yet know its use and limits
of applicability. While a comprehensive evaluation of the data is bey-
ond the score of this thesis, it is important to perform quality control
measurements to make sure the changes in gene expression reported via
z-scores are indeed biologically meaningful. I did this in the following
ways: (1) generate the same signatures as in chapter 3 and see how
well they agree on drug associations, (2) for each drug perturbation I
look at here quantify how well its signature is able to recover the same
perturbation compared to other perturbations. Together, they provide
evidence that the data is noisy but usable for the purpose of signature
matching.

In terms of oncogene addiction associations, I find very similar results
to the ones obtained in section 4.3.2. The most significant association is
the p53 pathway with Nutlin-3a, followed by MAPK activity and MEK
(and related) inhibitors. However, even with many more experiments
used to generate the signature on either the 978 landmark genes or
the projected set, the associations I obtain are a lot weaker (p < 107>
instead of p < 10720) for the strongest and all following associations.

In terms of how well signatures can recover the same drug that was
used to generate them, I scored all input experiments with with the
signature I obtained and quantified the area under the Receiver Oper-
ator (ROC) curve. I discarded all drugs that did not yield an AUC
of > 0.7. This threshold is not very stringent and might still include
drugs that have a relatively weak signature. However, we will only
know whether this was a good cutoff once the proposed experiments in
the later sections have been validated.

5.2.2  Creating drug signatures and scoring GDSC' cell lines

What would be far more interesting is to investigate how drugs spe-
cifically designed or used in cancer interact in terms of synergies or
antagonism. With the new LINCS Connectivity Map, that has become
possible. There is a total of 150 drugs that are both in the GDSC
and the LINCS, enabling me to do a comprehensive characterisation of
signature matching. I derive models for each drug separately, with a
linear model of LINCS-provided projected z-scores mapped to HGNC
symbols in experiments where the drug was used vs. all others. I se-
lected the top N genes as the signature (from 0.01 up to 10% FDR),
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and chose N to maximise the area under the precision-recall curve of
the current vs. all other perturbations. I kept all drug signatures that
have an AUC of over 0.7 recovering the experiments where the same
drug as I used and discard the rest. For the pan-cancer cohort, this
leaves 123 out of 150 signatures.

Analogous to the model of pathway-responsive genes (chapter 3, im-
plementation in section 3.2.2), I calculated the expression level of a
drug-responsive signature using the linear transformation:

S=ExZ

Where E the basal gene expression values of the GDSC cell lines with
cell lines in rows and genes in columns, Z are the z-scores of the fitted
model with genes in rows and drugs in columns, and S the resulting
expression of drug-response signatures of the GDSC cell lines with cell
lines in rows and drugs in columns. I scaled S for each drug to have
mean 0 and standard deviation 1.

5.2.3 Naive associations with drug response

For the pan-cancer drug associations, I check for the correlation between
drug sensitivity and signature expression using the following linear
model:

D; ~T+S; Vi € GDSCdrugs Vj € LINCS signatures

Where S; is the expression of the signature in response to drug j
across all cell lines, and D; is the sensitivity towards drug i across all
cell lines. T corresponds to the tissue of each cell line and is used to
regress out the difference in drug response between tissues. I compute
those associations for all sensitisers (j € LINCS) and treatments (i €
GDSC), adjusting the resulting p-values by the false discovery method.
However, note that because all signature scores are computed on the
GDSC panel the LINCS signatures are used to provide scores for all
GDSC cell lines. Hence, the cell lines indexed for building the model
are all of the GDSC:

1
D{ Te S]C-
c 2
pp o Te . S;
D} Te TSP

An overview of significant hits is shown in figure 43 (associations
in appendix section C.2). The strongest potentially synergistic hit I
obtain is Trametinib (GSK1120212) to act as a sensitiser for QS11
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Figure 43: Matrix of naive drug sensitisation associations. Predicted syner-

gies in green, antagonisms in red. Effect size corresponds to the
regression slope and is shown if FDR < 0.2 and marked with *
if FDR < 0.05. Selection of drugs on both axes chosen to show
the subset with most synergies. The most significant synergistic
hit is GSK1120212 (Trametinib; a MEK inhibitor) with QS-11 (a
Wt agonist) with FDR < 107°.

effect

-1.0

0.5
0.0
-0.5

L



5.2 A PAN-CANCER VIEW OF DRUG SENSITISATION USING LINCS

2.5 subsets

[© BRCA
[@ COREAD
[© HNsC
@ LuAD
@ Lusc
@ MESO
@ N8

@ ov

[© scLe
[@ SsTAD

0.0-

-2.5-

Observed IC50 to GSK1120212

-5.0-

-7.5-

i
-2 -1 0 1 2
Expression of responsive signature to QS-11

Figure 44: Linear fit behind the associations between Trametinib and QS-
11. There is a strong linear correlation between expression of the
QS-11-responsive signature and the drug sensitivity to Tramet-
inib across all cancer types (figure 43), as well as a significant
correlation for the cancer types shown in this figure FDR < 0.05.

(FDR < 107°). The most significant hit overall is Trametinib that is
antagonistic with itself (FDR < 10~7; not shown in plot because it
is focussed on the most synergistic examples). While the latter can
not be true according to the definition of synergy and antagonism, the
former provides a workable hypothesis and a strong fit across multiple
tissues (figure 44). I could, however, not find any literature evidence
to support it.

5.2.4 Pathway correlation as a major source for false positives

Setting aside the issue on whether an apparent lack of literature sup-
port can be a false positive or a new finding, an antagonistic interaction
of a compound with itself goes against the definition of synergy (details
section 5.3.2). This provides support for the hypothesis that the syner-
gistic interaction between a MEK1/2 inhibitor and a Wnt agonist might
be a false positive as well. So what mechanism could explain a strong
association under the assumption that the effect is indeed a false pos-
itive? One indication is that Wnt activation is known to cross-activate
the MAP kinase pathway (Smit et al., 2004).

From my results above, it seems that MEK inhibitors in general
produce good signatures, or otherwise I would not expect as many
MEK inhibitors as I see in my associations (GSK1120212, CI-1040, PD-
0325901 in figure 43). A possible explanation is that those two effects
together produce a QS-11 signature that is correlated with MEK or
MAPK activation. MEK inhibitors will correspond to shutting off MEK
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Figure 45: Potential reason for the association between the QS11-responsive
signature and the MEK inhibitor Trametinib (GSK1120212):
QS11 activates Wnt, which cross-activates MAPK. However, the
gene expression signature of MAPK is stronger and thus the
primary readout. Expression of this signature is thus correlated
with MAPK activation, which is in turn correlated with increased
sensitivity to MEK inhibitors.
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(and the MAPK pathway), potentially reducing the associations to a
correlation between pathway activation and inactivation that is strong
statistically, but without real biological significance (schema outlined
in figure 45).

One way to test the above hypothesis is to introduce as a covariate
in the regression the expression score of the signature of the treatment
drug, and calculate the associations as everything that is left after
correcting for the effect on gene expression that it would have (using
the expression score of Trametinib/GSK1120212 and calculating the
association strength of the QS-11 signature and Trametinib response
on top of that, as indicated with the blue box in figure 45). This, in
more general terms, would correct for pathway cross-talk between the
sensitiser and the treatment drug, but also for two-drug pairs that have
the same target or are indeed the same drug. If the above association
stays significant despite the added covariate, I can reject the model
proposed in figure 45. Otherwise, this would be a valid explanation of
the effect I see.

5.2.5 Building an improved model

As I am only looking at the drugs that are present in both the GDSC
and LINCS data sets, introducing the signature of the first drug as a
covariate is straightforward:

Di~T+S5;+5; Vi € GDSCdrugs Vj € LINCS signatures

Where the addition of S; indicates the conditioning on the drug-
responsive signature of drug i. Following the model fit, I discard all
coefficients of tissue or covariate signature, only looking at the results
between D; and S;. Here again, the cell line ¢ indexes GDSC cell lines
and their expression of the LINCS-derived signatures:

c1

Dgl T s? S];

Di 2 TCz + Siz + S]Z
C ~ C

Df? Tes S 553

This takes the significance of the Trametinib-QS11 pair away, as
shown in the resulting association matrix in figure 46 (associations in
appendix section C.2). Top hits now are Trametinib (GSK1120212)
with PD-0332991 (a CDK4/6 inhibitor), FK866 (NAMPT inhibitor)
with Sorafenib (a Raf inhibitor) and NPK76-1I-72-1 (NAMPT inhib-
itor). The strongest antagonistic hit is Thapsigargin (SERCA inhib-
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Figure 46: Matrix of associations including the treatment drug as covariate

itor) with BMS-754807 (IGF inhibitor). This approach also no longer
yields associations of a drug with itself.

When looking for literature evidence to support some of the stronger
hits in this matrix, I now do find some (figure 47):

« CDK inhibitors may act as sensitisers for Trametinib (GSK1120212)
in multiple tissues (top). This has been found in a mouse model
of melanoma (Kwong et al., 2012), my analysis suggests stronger
effects in the tissues listed.

o Combination of Raf (SB590885) and MEK inhibitors in BRCA
(middle). A synergistic effect has been shown in melanoma (Kil-
lock, 2014).

o Various drugs may act as sensitisers for Temozolomide (DNA al-
kylating agent) in COREAD (bottom). This has been shown
for Mitomycin C and Rucaparib (PF-01367338, AG014699) in
metastatic melanoma (Plummer, C. Jones, et al., 2008; Plum-
mer, Lorigan, et al., 2013). Polo-like kinase 1 inhibition (target
of GW843682X) has been shown to cause decreased proliferation
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Figure 47:

25-

0.0- subsets

© BLCA
[© COREAD
® GBM

[@ HNSC
© NB

© PAAD

Observed IC50 to GSK1120212

-5.0-

i
-1 0 1 2 3
Expression of responsive signature to PD-0332991

subsets

IO CI-1040

@ GsK1120212
I© PD-0325901

Observed IC50 to MEK inhibitor

-5.0-

- 0 1 2
Expression of responsive signature to SB590885

o
|

subsets

[© AG-014699
@ Gws43682X
©® Mitomycin C

Observed IC50 to drug
o

0 2
Expression of responsive signature to drug

Linear fits behind the associations of PD-0332991 (a CDK4/6
inhibitor) and Trametinib (GSK1120212, a MEK inhibitor) in
multiple tissues (top), the Raf inhibitor SB590885 and multiple
MEK inhibitors in breast cancer (middle), and Temozolomide
and various drugs (bottom). All associations FDR<0.05.
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Figure 48: Overview of number of experiments available

by cell cycle arrest, leading to cell death in glioblastoma (Pezuk
et al., 2013).

5.3 TISSUE-SPECIFIC SYNERGISTIC COMPOUNDS
5.3.1 Consensus models for breast cancer cell lines

While pan-cancer associations can uncover far-reaching implications
of treatment with different drugs to make inferences about the effect
of their combination, experimental follow-up on those must be more
restricted in order to suggest a feasible setup with clear hypotheses.
This is where tissue- or cancer-specific models come in: using signature
matching, I derived hypotheses of potential synergies or antagonisms
that can actually be tested in one or a few cell lines. Compared to
pan-cancer associations, I would expect them to be more likely to be
true for this particular cell line or small set of cell lines.

However, tissue-specific models of drug synergies are tricky. First,
there is fewer cell lines to define the signature. A mutation that changes
the gene expression response upon drug treatment is likely not going
to have a large effect in the pan-cancer context because of the overall
number of cell lines available, but if there is one in a certain tissue for
which I derive a signature this may or may not change the outcome.
Second, there are fewer cell lines with drug sensitivity data and thus
the associations are much closer to the significance threshold.

In addition, there is a lot of choices to make about the model: Which
tissue or which cell line to choose? Limit the drugs to a set where
the tissue is sensitive in? How many cell lines are needed to derive
meaningful signatures? Are the landmarks or projected genes better
to make those inferences? Use a covariate to correct for pathway cross-
talk or does it take away too much statistical power? These are all
questions that could be answered in iterative cycle of predictions and
experimental readout. Unfortunately, I can not do this.

I decided to focus on breast cancer because the number of available
perturbations with cancer-relevant drugs far exceeded any other tissues
(figure 48). But instead of taking the top-performing combinations



Table 11: Selected drug combinations for breast cancer cell lines
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Sensitiser (24+72 hours)

Treatment (72 hours)

2*Combined score

Drug Target Drug Target
WZ3105 DDRI1 RTK (7)  PD-0325901 MEK1/2 -3.14
AUY922 HSP90 AZD7762 Chk -2.85
AT-7519 CDK PD-0325901 MEK1/2 -2.66
AUY922 HSP90 ZM-447439 AURK -2.64
PAC-1 Apoptosis inducer  AZD7762 Chk -2.22
WZ3105 DDR1 RTK (?) Trametinib MEK1/2 -1.70
VX-680 AURK AZD7762 Chk -1.66
AUY922 HSP90 PD-0325901 MEK1/2 -1.65
AUY922 HSP90 BX-795 PDK-1 -1.56
AUY922 HSP90 Trametinib MEK1/2 -1.48
WZ3105 DDRI1 RTK (?7) BX-795 PDK-1 -1.44
PAC-1 Apoptosis inducer ZM-447439 AURK -1.18
VX-680 AURK Trametinib MEK1/2 -1.06
PAC-1 Apoptosis inducer BX-795 PDK-1 -1.01
AUY922 HSP90 VX-680 AURK -0.99
WZ3105 DDRI1 RTK (?7) AZD7762 Chk -0.88
VX-680 AURK PD-0325901 MEK1/2 -0.82
PD-0325901 MEK1/2 VX-680 AURK -0.81
AT-7519 CDK Trametinib MEK1/2 -0.72
PD-0325901 MEK1/2 AT-7519 CDK -0.64
ZM-447439 AURK PD-0325901 MEK1/2 -0.56
PAC-1 Apoptosis inducer VX-680 AURK -0.51
PD-0325901 MEK1/2 W7Z3105 DDR1 RTK (?) -0.50

from individual predictions, I would instead look at the ones that are
most consistently predicted to be synergistic. I built models (analogous
to section 5.2.2) for the individual cell lines MFC-7, SKBR-3, BT20,
MDA-MD-231, HS-578T, MCF-10A, and the combined signature for
breast cancer-related cell lines, for all projections, with and without
covariate. I assigned a combined score by summing the logarithm of
the adjusted p-value for each 2-drug combination across all different
conditions. I expected that real synergistic combinations would sys-
tematically show up as more synergistic than neutral or antagonistic
combinations.

I used a linear optimisation strategy (Integer Linear Programming,
ILP) to select up to 25 combinations of 10 drugs that would max-
imise the overall synergistic significance while minimising antagonistic
significance. I decided to exclude combinations of MEK and EGFR
inhibition because that is already known. The result of this selection
is listed in table 11.
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5.3.2 Defining synergy for drug combinations

Models of synergy

Before I go on and try some of the predicted combinations, I first
need to decide on how I expect two drugs to act in combination if
there is no interaction effect, and then to quantify the interaction effect
if there is one. Fortunately, there are common methods available to
calculate synergy, the best-known of which are Highest Single Agent,
Bliss Independence and Loewe Additivity.

Highest Single Agent (Laska, Meisner, and Siegel, 1994) is not really
a synergy method at all. As the name suggests, this method takes the
best-performing single agent at a given concentration and uses this as a
baseline upon which to define synergy if a second drug improves upon
the single treatment or antagonism if the combination has a weaker
effect than any single agent. This, however, labels all additive effects
as well as the interaction between a drug and itself as synergistic.

The Bliss Independence model (Greco, Bravo, and Parsons, 1995)
makes a more sensible assumption: if both drugs don’t interact, they
exert an effect independently of each other. Thus, if one drug kills off
half of the cells in the well, the other can be seen as acting only on the
remaining half. Synergy and antagonism are defined as an effect above
and below that, respectively. This model, however, may still label a
drug to act synergistically with itself (Zhao et al., 2014): if you consider
the single-agent dose response curve of AT-7519 in figure 50 and apply
the drug at its ICsp, adding the same amount of the same drug again
would already put it above the ICy5 (use the red dots for suggested
combination dilutions as a guide). This is more likely to happen the
steeper the dose-response curves are.

The Loewe Additivity model (Loewe, 1926; Greco, Bravo, and Par-
sons, 1995) assumes the null interaction to be as if one drug is a dilution
of the other. If we consider this assumption stringently, it means that
the model should be used if two drugs share the same mechanism of
action. Nevertheless, it is not prone to errors as the ones above and was
the model of choice for the DREAM drug synergy prediction challenge.?

A model based on Loewe additivity

Given that we know which concentration x of a given drug we treat
our cells with and which relative (to the untreated control) viability y
we observe, we can calculate the Hill parameters for the minimal viab-
ility E™" (at high drug concentration), the maximal viability E™** (at
very low drug concentration), the concentration of the half maximum
effect m and the slope of the sigmoid A. Note that E™" and E™* are

2 https://www.synapse.org/#!Synapse:syn4231880/wiki/235645
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usually for the minimum and maximum effect instead of relative viab-
ility. I can use them for viability here because both range between 0
and 1, the only difference is that my curve is that in this case I am
modelling a sigmoid decrease instead of increase, so the only different is
that the slope parameter has a different sign. The relationship (Yadav,
Gopalacharyulu, et al., 2015) between my drug response parameters is:

y— Emz’n -2
<= ()

Given enough data points we can calculate the best fit for our para-
meters in the above formula. I make an additional assumption here,
which is that a drug that is infinitely diluted will show no inhibition of
cell growth (or full viability) by setting the parameter E™** to 1 instead
of optimising it between 0 and 1.

Using two drugs and denoting the combination treatment with x;and
the corresponding single agent treatment with ¥;, we get the combin-
ation index CI that is 1 under Loewe’s additivity assumption, smaller
than 1 for synergistic combinations, and larger than 1 for antagonistic
combinations:

112 =cr
X1 X2
If two drugs act in an additive manner, the combination index CI

is 1. If it is smaller than 1 the drugs act synergistically, or if it is lar-
ger than 1 antagonistically. To calculate our expected response Yrewe
given treatment with two drugs at concentration x; and xp, we set
the combination index to 1 and solve for yrgewe numerically (Yadav,
Wennerberg, et al., 2015):

X1 X2

in\ —A in\ —A
m yLoewe_E'lmn 1 "y yLoewe_EEmn 2
1 E{nax —YLoewe E:rznax —YLoewe

The way I do this is to use the bisect function of SciPy between 0 and
1 — 107>, where the the returned value of the function is smaller than
0 for the input close to 1 and greater than O for the input 0. Having
those two different signs, the solver divides the interval between the two
input values iteratively until it reaches a value for yrewethat makes the
function approximate 0 up to a default tolerance.

I calculate the expected viability yrpewe for the whole matrix of same
drug concentration as was used in the combination screening. This
way, I get a drug response surface that corresponds to a drug interac-
tion that is neither synergistic nor antagonistic. The volume between
the calculated and measured surface then corresponds to an observed
interaction effect: If we see fewer cells survive than we would expect
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under the assumption of an additive effect we found a synergistic com-
bination, or an antagonistic one if vice versa.

max

X

V=
X

min

max

1
/ 4 Eexpected _ Eobserveddxldx2
xmm

1

In practice, I integrate the volume below each of the surfaces separ-
ately using the 2D trapezoidal rule by first defining the synergy score

s at any given point as

S _ Eexpected . Eobserved
mn —

Then calculating the volume

1
V= 1 Yo ) sijtsivnjtsijin+sii1j1AnAx

jEXZ i€xq

Subtract the measured from the calculated volume, and normalize
the volume I obtain by the area of the matrices

S = ZZAxlez

X1 X2

And (optionally) obtain the overall synergy score S by dividing the
volume by the area

|4
S—Z.

5.3.3 Single-agent drug response curves

Starting from the combinations listed in table 11, our collaborators in
Hamburg agreed to screen their efficacy in the MFC-7 cell line. This
first requires single-agents measurements to be able to fit the Hill para-
meters for each drug in this cell line, as we would expect them not to be
identical with the GDSC due to a different experimental setup. This
was done in 384 well plate, seeding cells and letting them attach for 24
hours, then treating them with a drug for 72 (if it was the treatment
drug) or 96 hours (if it was the sensitiser), and measuring the number
of surviving cells compared to untreated wells using Promega CellTiter
Glo as a readout.

Starting from the raw measurement intensity, I calculated the frac-
tion of surviving cells (blue dots) in each of the treated wells for each
of the drugs for both 72 (49) and 96 hour treatment (figure 50). I
used the Hill equation (first formula in section 5.3.2 and blue line in
figures) to fit a dose-response curve to each drug, with the condition
that the maximum viability (E,; in the above formulas) is 1, i.e. the
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Figure 49: Screening results and fit of drug-response curves for 72 hours of
treatment. Blue dots are measured fraction of surviving cells at
a given concentration with the blue line as fit. Red dots are the
suggested dilutions for this drug in a combination. ICsg, Eiy,
Eax, steepness of slope and root mean square error (RMSE) of
fit as indicated. Starting concentration and dilutions of suggested

concentration for combination as indicated.
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Figure 50: Screening results and fit of drug-response curves for 96 hours of
treatment. Legend as in figure 49.



5.3 TISSUE-SPECIFIC SYNERGISTIC COMPOUNDS

Figure 51: Suggested layout of a 384 well plate to screen six different com-
binations and have a single-agent control for each on the same
plate. Red, yellow, and blue squares correspond to combination
dilutions, with darker shades indicating single-agent dilutions as
control. Pink indicates growth control without treatment. No
measurements on wells on edges and corners.

drug should not have an effect on the viability of the cell given in an
infinite dilution. Based on this, I suggested dilutions to use in the com-
bination screening (red dots in figures). Those were designed to start
at multiples of 10 uM above the ICsy and have a total of 6 dilutions
reach below the ICyg, but not force stronger dilutions and 1 in 4. The
combinations should then be screened in 6x6 dilutions with a total of
4 combinations including single-agent control on the same plate (figure
51).

5.3.4 Synergy of drug combinations

Our collaborators screened 2D dilutions of two different drugs on a
11x11 grid starting at a concentration of 1 or 10 uM and dilution 2-
fold or 3-fold. This takes up more space on the plate than our proposed
layout, but it should still capture large parts of the single agent drug
response curves for both drugs for all the suggested combinations in
table 11. The protocol was to seed cells and let them attach for 24 hours,
then treating with the sensitiser, then treating with the treatment drug
after another 24 hours, and after 72 more hours measuring the number
of surviving cells compared to untreated wells using Promega CellTiter
Glo as a readout.

In figures 52-54 (and appendix section C.3), I show representative
examples of the results of the screening experiment (left) vs. the calcu-
lated viability if the drugs did not interact (middle) and their difference
(right). There are multiple aspects to these plots. If the screening con-
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5.4 DISCUSSION

centration using the extended grid did indeed capture the dose-response
curve of the single-agent dilutions, the middle panel with the calculated
combination efficacy under the null hypothesis (Loewe additivity—no in-
teraction, efficacy of both drugs combined is assuming one drug is a
dilution of the other) should show the whole range viability, from bright
yellow (all cells are killed) to dark violet (all cells survive). This is true
for some of the combinations (figures 53-54) but not others (figure 52).

Another aspect is that even though we do not have single-agent di-
lutions as part of this matrix, the dose response curve of one drug
with the lowest dilution of the other drug should roughly correspond
to the single-agent dose response curve. This again is true in some
cases (WZ3105 in figure 54), but not others (AUY922 in figure 53).

Finally, my predictions are about synergistic combinations so I would
expect the combination of two drugs at various dilutions to kill more
cells than the expected null model of interaction. This will of course
not always happen, but it should happen more often than expected by
random chance. Also for this difference, I find some examples where
this is the case (figure 52) but not others where a drug essentially
seems to stop working under a certain concentration that does not fit
the single-agent dose response curve (figure 53). Interestingly, for some
cases (figure 54), I observe that the combination response is driven by
the opposite drug than expected from the single-agent curves, leading
to strongly synergistic and antagonistic corners of the dilution. Unfor-
tunately, I can at this point not determine if this is a real effect or an
artefact due to experimental error.

5.4 DISCUSSION
5.4.1 Original Connectivity Map

Using the original Connectivity Map for predicting a drug that could
sensitise cell lines to another drug has a couple of drawbacks: First,
most of the compounds used are not cancer specific. They do most
likely not target a specific kinase but rather a high-level biological pro-
cess or set of processes. This is not an issue by itself by our prior belief
about the potential in treating cancer is lower than if the drug was
already designed to treat a specific aspect or type of cancer. Second,
gene expression changes are derived from treatment with a high drug
concentration, almost exclusively 10 uM. This is a concentration range
where a drug that apart from its primary effect has secondary targets
will most likely hit them as well, even if the physiological concentra-
tion upon drug treatment would never reach this level. In this case,
we would observe gene expression changes that are due to both the
primary effect but also an unknown number and strength of secondary
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effects. Third, most of the perturbations are done only in MCF-7 or a
low number of cell lines. The usual time is either 6 or 24 hours.

What speaks for the original Connectivity Map is that with MAN-
TRA 22,000 genes were measured and the compound-level signatures
have been merged using informative distances (that is, weighted by the
gene expression distance between several experiments, to for instance
not have an overly strong contribution of the MCF-7 signature if there
were three experiments using MCF-7 and one in PC-3).

5.4.2 Pan-cancer view of the LINCS

The LINCS Connectivity Map provides us with an opportunity to in-
vestigate the possible effect of combining two cancer drugs, with a total
of 150 drugs that both have drug sensitivity estimates in the GDSC and
drug response signatures in the LINCS. On top of that, it enabled me
to use the drug response signature in combination with the sensitivity
estimate to regress out overlapping expression changes between the two.
This would not have been possible with the original Connectivity Map,
but it would also not have been possible using Gene Set Enrichment
Analysis. My analysis has shown one potential approach to effectively
remove the effect of overlapping signatures or pathway cross-talk more
generally. The available literature support for those models that I could
not find for the naive models are evidence of that.

Of course there are some open questions: These are preliminary
results, examples are shown where a quick search turned up addi-
tional supporting evidence. There are some parameters in the method
that should be optimised (LINCS projection, signature creation cutoff).
Right now, I only use GDSC drugs in LINCS. There may be a reason
to include others as well.

5.4.3 Tissue-specific models and validation

The LINCS Connectivity Map also provides us with an opportunity
of analysing gene expression response upon drug treatment in a tissue-
specific manner while not limiting the set to a single cell line as I would
have needed to do in case of the first Connectivity Map. There is five
breast cancer and one non-cancerous breast line in the LINCS, with
a total of 19,000 perturbations. However, there is no way of telling
whether a common signature, or one of the non-cancerous cell line,
and which projection etc. would have been the best choice to predict
possible drug combinations. Given this limitation, selecting the most
consistently synergistically predicted combinations made sense.
Unfortunately, the actual experimental setup seems a lot more error-
prone than anticipated. While I suggested the screening concentration



5.4 DISCUSSION

based on single-agent response curves to maximise the information we
could obtain by using a relatively small grid and have simultaneously
having the single-agent dilutions as a control, the actual setup that was
used for screening separated combinations from single-agent control
again. This is not a problem if the assay is stable enough to yield
comparable Hill parameters, but this does not seem to be the case: in
the combination screening, the likely ICsy that I can best estimate along
a dilution series of a drug by looking at the minimal concentration of
the other does often not fit well to the previously estimated single-agent
curves. The only way I see to fix this is to assess stability of the assay
and influencing factors of the Hill parameters first in order to minimise
the batch effect. We might still get another batch of experimental
results that takes this into account. This will, however, be past the
submission date of this thesis.
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Signalling pathways have long been studied in the context of cancer
as well as other diseases. Because direct measurements of those are
not widely available, significant effort has been devoted to extracting
predictive and reliable biomarkers reflecting their status from gene ex-
pression data. This has either been done by mapping the expression
level of pathway components, or by defining signature genes that dif-
ferentiate between two conditions. In this thesis, I have shown the
utility and robustness of gene expression signatures for inferring sig-
nalling activity as well as potential drug combinations. I started with
characterising the GDSC cancer cell line panel using gene sets of Gene
Ontology categories and Reactome pathways. I showed that one needs
to be cautious when interpreting the top associations with drug re-
sponse, as the process depicted will often likely not be the process that
causes sensitivity or resistance to a given drug. As a way to solve this,
I showed the advantage of pre-selecting interesting gene sets that are
changing upon pathway stimulation using the SPEED platform (Parikh
et al., 2010).

I assembled a comprehensive and robust set of consensus gene expres-
sion signatures derived from pathway perturbations, which enabled me
to detect pathway-specific footprints of signalling activity. I provided
the first large-scale comparison between these signatures and state of
the art pathway methods in both patient data and pharmacogenomic
drug screenings (The Cancer Genome Atlas and Sanger’s Genomics of
Drug Sensitivity in Cancer, respectively). I found that consensus signa-
tures of perturbations better recover many well-known driver mutations
in terms of their expected impact on pathway activity, provide more as-
sociations with drug response than driver mutations, and more clearly
distinguish between oncogenic and tumour-suppressive pathways for
patient survival. Furthermore, I showed that my signatures can be
used in combinations with driver mutations to yield better biomarkers
for drug indications than mutations alone.

I showed that the same signatures, computed per drug in the LINCS
Connectivity Map can be used to predict synergistic and antagonistic
drug combinations using signature matching in conjunction with drug
sensitivity data. I developed a novel way of computing those associ-
ations while taking into account possible pathway cross-talk between
the two drugs. While the experimental validation remains to be con-
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firmed, literature evidence strongly supported the validity of this ap-
proach.

On the technical side, the signatures I have worked with were largely
based z-score coefficients of linear models and not gene sets and GSEA.
While GSEA has been applied to virtually every possible biological
context and we know very well how it behaves (in terms of distribu-
tion of scores, appropriate null models, continuous unimodal scores
in GSVA, leading edge analysis, etc.). However, the overall knowledge
and possibilities of linear models reach far beyond what is possible with
GSEA. Adding a covariate to signature matching is just one example
of that. It is my impression that those kinds of models will expand
again from ANOVAs, Genome Wide Association Studies (GWAS) and
eQTLs (genomic variants with impact on gene expression, or expres-
sion quantitative trait loci) more into generally applicable analyses of
gene expression, because it enables us to apply many more techniques
and tools to solve problems such as confounding variables, batch cor-
rection, latent variable extraction, etc. A good example of a tool that
performs theses tasks is PEER (Stegle et al., 2012), used to regress out
known and unknown covariates for genomic associations, while finding
correlated latent variables to explain phenotypes.

On the biological side, I expect the signatures I derived (both for
pathways and for individual drugs) to in the future be used as tools
to interrogate the functional impact of mutations, as well as inference
of signalling activity from gene expression for other purposes. As I
addressed the issues of post-translational control that common pathway
methods do not take into account as well as the context-specificity
of single-condition signatures, I believe that those signatures (again,
both for pathways and individual drugs) can in the future be used in
the pre-clinical as well as clinical setting either as biomarkers for drug
indication or patient survival, but also as tools to interrogate the basic
biology that drives those processes.
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APPENDIX

A ASSOCIATIONS FOR BASELINE METHODS (CHAPTER 2)
A.1  Drug response with unbiased gene sets

Associations for mutations

Table A1l: Mutations vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
Nutlin-3a TP53 452 1.426 15.118 2.6e-44 1.8e-39
Dabrafenib BRAF 66 -3.129 -12.613 8.5e-33 3e-28
PLX4720 (rescreen) BRAF 75 -1.648 -10.349 2e-23 4.6e-19
PLX4720 BRAF 66 -1.667 -8.801 1.3e-17 2.2e-13
SB590885 BRAF 62 -1.374 -7.811 2.4e-14  3.4e-10
SGC0946 ADCY1 1 -3.357 -6.285 5.8e-10 6.8e-06
VNLG/124 TET2 15 -1.189 -5.996 3.3e-09 3e-05
GSK690693 PTEN 78 -1.125 -5.985 3.5e-09 3e-05
AV-951 FIP1L1 2 -2.581 -5.913 5.3e-09 4e-05
PD-0325901 NRAS 45 -1.436 -5.908 5.7e-09 4e-05
RDEA119 (rescreen) KRAS 96 -1.062 -5.876 6.7e-09 4.2e-05
RDEA119 NRAS 45 -1.386 -5.761 1.3e-08 7.6e-05
ABT-869 U2AF1 5 -2.116 -5.734 1.5e-08 7.8e-05
VX-1le BRAF 72 -1.207 -5.664 2.2e-08 0.00011
(5Z2)-7-Oxozeaenol BRAF 73 -1.105 -5.558 3.9e-08 0.00018
AR-42 TBX3 3 4.719 5.518 4.9e-08 0.00021
10X2 FIP1L1 2 -2.755 -5.470 6.3e-08 0.00026
VX-702 NTN4 1 -5.037 -5.464 6.7e-08 0.00026
PD-173074 RUNX1 2 -3.873 -5.427 8.2e-08 0.0003
AC220 U2AF1 5 -2.117 -5.385 9.9e-08 0.00034
LAQS824 PIK3R1 14 1.636 5.275 1.8e-07 0.00059
NVP-BHG712 BRAF 72 -1.156 -5.266 1.9e-07 0.00059
Gefitinib EGFR 10 -1.703 -5.206 2.6e-07 0.00079
PD-0325901 KRAS 86 -1.081 -5.116 4.2e-07 0.0012
ABT-888 MEF2C 1 -3.418 -5.086 4.8e-07 0.0013
A-770041 DICER1 1 -8.384 -5.060 8e-07 0.0021
A-770041 APAF1 1 -8.384 -5.060 8e-07 0.0021
T0901317 MET 8 -1.442 -4.937 le-06 0.0025
LAQS824 FIP1L1 1 5.457 4.875 1.4e-06 0.0033
OSI-930 FIP1L1 2 -2.938 -4.815 1.8e-06 0.0042
‘WH-4-023 DICER1 1 -8.982 -4.843 2.2e-06 0.0048
‘WH-4-023 APAF1 1 -8.982 -4.843 2.2e-06 0.0048
FR-180204 BRAF 72 -0.619 -4.760 2.4e-06 0.0048
Cisplatin PRPF8 1 -5.287 -4.763 2.4e-06 0.0048
AZD-0530 DICER1 1 -5.454 -4.774 3e-06 0.0058
AZD-0530 APAF1 1 -5.454 -4.774 3e-06 0.0058
PD-0332991 RB1 61 1.093 4.680 3.5e-06 0.0067
ABT-869 MYCN 1 -3.842 -4.666 3.7e-06 0.0068
Obatoclax Mesylate DLG1 4 3.924 4.627 4.5e-06 0.008
PLX4720 NRAS 46 0.875 4.566 6e-06 0.01
Trametinib NRAS 46 -1.474 -4.564 6e-06 0.01
(52)-7-Oxozeaenol TP53 491 0.491 4.537 6.7e-06 0.011
SGC0946 GNAS 3 -1.412 -4.481 8.7e-06 0.014
RDEA119 KRAS 85 -0.938 -4.454 le-05 0.015
PXD101, Belinostat TBX3 3 4.368 4.452 le-05 0.015
Cetuximab TIP2 4 -2.280 -4.443 le-05 0.016
AC220 EIF4A2 1 -3.827 -4.425 1.1e-05 0.016
FTI-277 ARID2 16 -0.874 -4.436 1.1e-05 0.016
XL-880 NRAS 46 0.911 4.418 1.2e-05 0.016
Dasatinib DICER1 1 -8.850 -4.442 1.3e-05 0.018
A-770041 SETDB1 2 -5.367 -4.438 1.3e-05 0.018
Bleomycin (50 uM) SMARCA4 40 -1.316 -4.398 1.3e-05 0.018
Dasatinib APAF1 1 -8.850 -4.442 1.3e-05 0.018

165



166 APPENDIX
KIN001-260 WNK1 9 -1.422 -4.373
Lapatinib MET 1 -4.538 -4.417
Dabrafenib TP53 467 0.618 4.366
ATRA CDKN1B 2 -3.470 -4.362
Lapatinib PLCG1 1 -4.538 -4.417
Nutlin-3a CTNNB1 16 -1.344 -4.348
YM155 HGF 3 5.891 4.331
‘WH-4-023 MAP3K1 2 -5.733 -4.353
XL-184 U2AF1 5 -2.336 -4.305
GW-2580 ADCY1 1 -2.953 -4.303
CP724714 MET 8 -1.472 -4.274
Tamoxifen FIP1L1 2 -2.129 -4.272
KIN001-270 WNK1 9 -1.093 -4.267
CI-1040 KRAS 90 -0.777 -4.252
GSK690693 PIK3CA 76 -0.799 -4.229
PLX4720 (rescreen) NRAS 48 0.704 4.209
Dabrafenib STK4 1 -6.559 -4.166
A-770041 MAP3K1 2 -4.973 -4.198
SGC0946 SYK 2 -1.624 -4.153
FH535 IRF2 1 4.989 4.124
TL-1-85 NRAS 47 0.833 4.113
NG-25 NRAS 47 0.907 4.098
Dasatinib SETDB1 2 -5.988 -4.139
Vorinostat FKBP5 1 4.078 4.100
Obatoclax Mesylate IRF2 1 6.640 4.091
UNC1215 STK4 1 -1.955 -4.080
Trametinib KRAS 92 -1.147 -4.075
GSK690693 MLLT4 16 -1.620 -4.074

1.4e-05
1.5e-05

1.5e-05
1.5e-05
1.5e-05
1.6e-05
1.7e-05

1.9e-05
1.9e-05
1.9e-05
2.2e-05
2.2e-05

2.3e-05
2.4e-05
2.7e-05
2.9e-05
3.5e-05

3.7e-05
3.7e-05
4.2e-05
4.4e-05
4.7e-05

4.7e-05
4.7e-05
4.8e-05
5e-05

5.1e-05
5.1e-05

0.018
0.018

0.018
0.018
0.018
0.019
0.02

0.021
0.021
0.021
0.024
0.024

0.024
0.025
0.027
0.029
0.035

0.036
0.036
0.04

0.041
0.043

0.043
0.043
0.043
0.044
0.044
0.044

Associations for Gene Ontology

Table A2: Gene Ontology vs. drugs (pan-cancer)

Drug Pathway Size Effect ‘Wald stat. P-value FDR

Trametinib GO:0030056 hemidesmosome 713 -1.952 -8.504 1.2e-16 1.9e-10
Nutlin-3a G0:0003283 atrial septum development 676 -1.330 -8.336 4.7e-16 3.1e-10
RDEA119 (rescreen) G0O:0030056 hemidesmosome 698 -1.318 -8.299 5.8e-16 3.1e-10
Nutlin-3a GO0:0071494 cellular response to UV-C 676 -0.976 -7.967 7.4e-15 3e-09

Nutlin-3a GO:0008625 extrinsic apoptotic signal... 676 -2.038 -7.936 9.2e-15 3e-09

Trametinib G0O:0001948 glycoprotein binding 713 -3.833 -7.819 2e-14 5.4e-09
NPK76-11-72-1 GO0:0003723 RNA binding 733 -2.534 -7.757 3.1le-14 7.1e-09
WZ3105 G0O:0042908 xenobiotic transport 734 1.223 7.611 8.8e-14 1.8e-08
Nutlin-3a GO:0006927 transformed cell apoptotic... 676 -1.018 -7.543 1.6e-13 2.8e-08
Trametinib GO:0002020 protease binding 713 -3.570 -7.450 2.8e-13 4.2e-08
CCT018159 GO:0006144 purine nucleobase metaboli... 715 -1.378 -7.439 3e-13 4.2e-08
Nutlin-3a GO:0003181 atrioventricular valve mor... 676 -1.272 -7.443 3.2e-13 4.2e-08
GSK-650394 GO:0002181 cytoplasmic translation 680 -1.290 -7.426 3.5e-13 4.4e-08
Trametinib GO:0032587 ruffle membrane 713 -4.024 -7.396 4.1e-13 4.7e-08
CCT018159 GO0:0009168 purine ribonucleoside mono... 715 -0.954 -7.359 5.3e-13 5.7e-08
DMOG GO:0035879 plasma membrane lactate tr... 692 -1.317 -7.287 9.1e-13 9.1e-08
NPK76-1I-72-1 G0O:0030529 ribonucleoprotein complex 733 -1.975 -7.266 9.9e-13 9.4e-08
Bleomycin (50 uM) G0O:0048870 cell motility 746 -2.329 -7.254 1.1e-12 9.4e-08
Trametinib GO:0000188 inactivation of MAPK activity 713 -2.785 -7.227 1.3e-12 le-07

EHT 1864 GO:0005759 mitochondrial matrix 737 -1.319 -7.227 1.3e-12 le-07

GSK-650394 GO:0006413 translational initiation 680 -1.704 -7.239 1.3e-12 le-07

Trametinib GO:0048870 cell motility 713 -2.564 -7.205 1.5e-12 1.1e-07
NPK76-1I-72-1 GO:0005732 small nucleolar ribonucleo... 733 -1.023 -7.204 1.5e-12 1.1e-07
EHT 1864 GO:0042645 mitochondrial nucleoid 737 -0.795 -7.174 1.8e-12 1.2e-07
RDEA119 GO:0030056 hemidesmosome 668 -1.328 -7.188 1.8e-12 1.2e-07
Trametinib G0O:0005925 focal adhesion 713 -3.643 -7.103 3.1e-12 1.9e-07
RDEA119 (rescreen) G0:0001948 glycoprotein binding 698 -2.398 -7.081 3.6e-12 2.1e-07
RDEA119 (rescreen) G0:0002020 protease binding 698 -2.349 -7.080 3.7e-12 2.1e-07
Afatinib (rescreen) GO:0070830 bicellular tight junction ... 727 -2.246 -7.061 4e-12 2.2e-07
NPK76-11-72-1 GO0O:0006396 RNA processing 733 -1.853 -7.060 4e-12 2.2e-07
Afatinib GO:0086073 bundle of His cell-Purkinj... 675 -1.199 -7.053 4.5e-12 2.3e-07
Afatinib GO:0086083 cell adhesive protein bind... 675 -1.199 -7.053 4.5e-12 2.3e-07
Trametinib G0:0031581 hemidesmosome assembly 713 -1.851 -7.021 5.3e-12 2.6e-07
YK 4-279 GO0:0001731 formation of translation p... 627 -1.108 -7.028 5.7e-12 2.7e-07
Afatinib GO:0070830 bicellular tight junction ... 675 -2.095 -6.988 Te-12 3.2e-07
Trametinib GO:0051045 negative regulation of mem... 713 -1.739 -6.977 7.1le-12 3.2e-07
NPK76-1I-72-1 GO:0071013 catalytic step 2 spliceosome 733 -1.421 -6.949 8.4e-12 3.6e-07
YK 4-279 GO:0005852 eukaryotic translation ini... 627 -1.026 -6.964 8.8e-12 3.7e-07
GSK-650394 G0O:0019083 viral transcription 680 -1.521 -6.895 1.3e-11 5.3e-07
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Afatinib (rescreen)
Afatinib (rescreen)
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CCT018159
Vismodegib
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GO:0006446 regulation of translationa... 627 -1.343 -6.893 1.4e-11 5.6e-07
G0:0016032 viral process 746 -3.292 -6.860 1.5e-11 5.8e-07
GO:0048870 cell motility 698 -1.683 -6.858 1.6e-11 6.1e-07
G0:0033627 cell adhesion mediated by ... 713 -1.791 -6.831 1.9e-11 Te-07
G0:0003723 RNA binding 685 -4.326 -6.823 2e-11 7.3e-07
G0O:0005925 focal adhesion 698 -2.434 -6.824 2e-11 7.3e-07
GO:0006855 drug transmembrane transport 734 1.694 6.811 2.1e-11 7.3e-07
GO:0003723 RNA binding 696 -3.125 -6.806 2.2e-11 7.5e-07
G0:0019083 viral transcription 696 -1.765 -6.812 2.2e-11 7.4e-07
G0O:0006413 translational initiation 680 -1.040 -6.802 2.3e-11 7.6e-07
G0:0071438 invadopodium membrane 713 -1.554 -6.790 2.4e-11 7.7e-07
GO:0006805 xenobiotic metabolic process 706 4.456 6.796 2.4e-11 7.6e-07
GO:0006189 ’de novo’ IMP biosynthetic... 685 -1.517 -6.789 2.5e-11 7.8e-07
GO:0005840 ribosome 680 -1.754 -6.757 3.1e-11 9.2e-07
GO0:0005852 eukaryotic translation ini... 728 -0.596 -6.749 3.1le-11 9.2e-07
G0:0042127 regulation of cell prolife... 698 -2.920 -6.757 3.1le-11 9.2e-07
GO:0006446 regulation of translationa... 680 -1.039 -6.745 3.4e-11 9.6e-07
G0:0016282 eukaryotic 43S preinitiati... 627 -0.980 -6.755 3.4e-11 9.6e-07
G0O:0097296 activation of cysteine-typ... 698 -1.254 -6.719 3.9e-11 1.1e-06
G0:0001825 blastocyst formation 680 -1.743 -6.718 4e-11 1.1e-06
G0O:0019058 viral life cycle 696 -2.239 -6.707 4.2e-11 1.1e-06
GO:0000027 ribosomal large subunit as... 728 -0.622 -6.689 4.6e-11 1.2e-06
GO:0000166 nucleotide binding 733 -2.512 -6.677 5e-11 1.3e-06
G0:0005923 bicellular tight junction 675 -2.865 -6.684 5e-11 1.3e-06
G0:0033290 eukaryotic 48S preinitiati... 680 -0.759 -6.684 5e-11 1.3e-06
GO:0006412 translation 680 -1.227 -6.682 5.1e-11 1.3e-06
G0:0002161 aminoacyl-tRNA editing act... 737 -0.591 -6.662 5.4e-11 1.3e-06
G0O:0000184 nuclear-transcribed mRNA c... 680 -1.578 -6.670 5.5e-11 1.3e-06
G0O:0006164 purine nucleotide biosynth... 715 -0.891 -6.655 5.8e-11 1.4e-06
G0:0003014 renal system process 677 0.934 6.647 6.4e-11 1.5e-06
G0O:0033290 eukaryotic 48S preinitiati... 728 -0.569 -6.636 6.5e-11 1.5e-06
GO:0000463 maturation of LSU-rRNA fro... 689 -1.042 -6.638 6.7e-11 1.5e-06
GO0:0033290 eukaryotic 48S preinitiati... 627 -0.950 -6.641 Te-11 1.6e-06
GO:0098639 collagen binding involved ... 713 -1.500 -6.611 7.Te-11 1.7e-06
GO:0051045 negative regulation of mem... 668 -1.290 -6.616 7.8e-11 1.7e-06
GO:0008380 RNA splicing 733 -1.572 -6.603 7.9e-11 1.7e-06
G0O:0009451 RNA modification 677 -0.600 -6.601 8.5e-11 1.8e-06
GO:0005852 eukaryotic translation ini... 680 -0.772 -6.597 8.7e-11 1.8e-06
G0O:2000772 regulation of cellular sen... 746 -1.660 -6.583 8.9e-11 1.8e-06

GO:0006412 translation 680 -1.873 -6.590 9.1e-11 1.9e-06
G0O:0006338 chromatin remodeling 733 -2.214 -6.572 9.7e-11 1.9e-06
G0O:0048515 spermatid differentiation 676 -0.914 -6.578 9.9e-11 2e-06
G0O:0005925 focal adhesion 746 -3.044 -6.558 le-10 2.1e-06
GO:0003743 translation initiation fac... 680 -1.107 -6.556 1.1e-10 2.1e-06
GO:0097296 activation of cysteine-typ... 668 -1.424 -6.555 1.1e-10 2.1e-06
GO:0006415 translational termination 680 -1.303 -6.558 1.1e-10 2.1e-06
G0O:0019058 viral life cycle 680 -1.867 -6.560 1.1e-10 2.1e-06
G0:0042645 mitochondrial nucleoid 677 -0.637 -6.553 1.2e-10 2.1e-06
G0O:0006397 mRNA processing 733 -1.791 -6.535 1.2e-10 2.2e-06
G0:0005840 ribosome 680 -1.099 -6.536 1.3e-10 2.3e-06
G0:2001238 positive regulation of ext... 668 -1.843 -6.518 1.5e-10 2.6e-06
G0O:0005925 focal adhesion 668 -2.649 -6.516 1.5e-10 2.6e-06
G0O:0030057 desmosome 675 -1.735 -6.511 1.5e-10 2.6e-06
G0O:0001649 osteoblast differentiation 727 -3.093 -6.493 1.6e-10 2.8e-06
G0O:0060056 mammary gland involution 731 0.513 6.487 1.7e-10 2.8e-06
GO:0048008 platelet-derived growth fa... 713 -2.273 -6.473 1.8e-10 2.9e-06
GO:0003735 structural constituent of ... 680 -1.588 -6.480 1.8e-10 2.9e-06
G0:2001238 positive regulation of ext... 713 -2.344 -6.477 1.8e-10 2.9e-06
GO:0006412 translation 627 -1.493 -6.494 1.8e-10 2.9e-06
GO:0001731 formation of translation p... 680 -0.814 -6.485 1.8e-10 2.9e-06
G0:0030529 ribonucleoprotein complex 696 -2.454 -6.481 1.8e-10 2.9e-06
G0:0033588 Elongator holoenzyme complex 746 -1.170 -6.468 1.8e-10 2.9e-06
GO:0050792 regulation of viral process 733 0.497 6.468 1.9e-10 2.9e-06
G0O:0048553 negative regulation of met... 713 -1.514 -6.463 2e-10 3.1e-06
G0O:0000398 mRNA splicing, via spliceo... 733 -1.444 -6.457 2e-10 3.1e-06
GO0:0006544 glycine metabolic process 676 -0.690 -6.463 2e-10 3.1e-06
GO0:0033209 tumor necrosis factor-medi... 746 -2.777 -6.452 2e-10 3.1e-06
G0:0071438 invadopodium membrane 698 -1.028 -6.443 2.2e-10 3.3e-06
GO:0086073 bundle of His cell-Purkinj... 727 -1.160 -6.438 2.2e-10 3.3e-06
GO:0086083 cell adhesive protein bind... 727 -1.160 -6.438 2.2e-10 3.3e-06
GO:0097296 activation of cysteine-typ... 713 -1.748 -6.442 2.2e-10 3.3e-06
GO:0042127 regulation of cell prolife... 713 -4.053 -6.432 2.4e-10 3.4e-06
G0:0055086 nucleobase-containing smal... 715 -1.321 -6.417 2.6e-10 3.7e-06
G0O:0006144 purine nucleobase metaboli... 676 -0.945 -6.409 2.8e-10 4e-06
GO:0003729 mRNA binding 733 -1.845 -6.395 2.9e-10 4.1e-06

NPK76-11-72-1
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Bleomycin (50 uM) GO:0006446 regulation of translationa... 746 -1.669 -6.397 2.9e-10 4e-06
T0901317 GO0:0001731 formation of translation p... 728 -0.607 -6.392 3e-10 4.1e-06
Nutlin-3a GO0:0060411 cardiac septum morphogenesis 676 -1.149 -6.389 3.2e-10 4.3e-06
RDEA119 GO:0070527 platelet aggregation 668 -1.963 -6.390 3.2e-10 4.3e-06
Bleomycin (50 uM) G0:0010332 response to gamma radiation 746 -2.322 -6.377 3.2e-10 4.3e-06
Gemcitabine GO:0019058 viral life cycle 685 -2.959 -6.386 3.2e-10 4.3e-06
Etoposide GO:0006413 translational initiation 696 -1.775 -6.382 3.3e-10 4.3e-06
RDEA119 G0O:0031581 hemidesmosome assembly 668 -1.346 -6.385 3.3e-10 4.3e-06
Lenalidomide G0O:0007005 mitochondrion organization 677 -1.030 -6.380 3.4e-10 4.3e-06
Nutlin-3a G0:0032471 negative regulation of end... 676 -1.005 -6.381 3.4e-10 4.3e-06
RDEA119 (rescreen) GO:0032587 ruffile membrane 698 -2.412 -6.377 3.4e-10 4.3e-06
Trametinib GO:0070527 platelet aggregation 713 -2.525 -6.369 3.5e-10 4.4e-06
YK 4-279 GO:0003743 translation initiation fac... 627 -1.368 -6.381 3.5e-10 4.5e-06
Etoposide G0O:0005840 ribosome 696 -1.940 -6.367 3.6e-10 4.5e-06
PF-562271 G0:0002181 cytoplasmic translation 680 -0.726 -6.367 3.7e-10 4.6e-06
NPK76-1I-72-1 GO:0015030 Cajal body 733 -1.339 -6.357 3.7e-10 4.6e-06
Gemcitabine G0O:0019083 viral transcription 685 -2.288 -6.363 3.7e-10 4.6e-06
Afatinib (rescreen) GO0:0030057 desmosome 727 -1.785  -6.346 4e-10 4.9e-06
RDEA119 (rescreen) GO:0051045 negative regulation of mem... 698 -1.101 -6.340 4.2e-10 5.1e-06
NPK76-11-72-1 GO0:0005840 ribosome 733 -1.363 -6.331 4.3e-10 5.1e-06
PF-562271 G0:0016282 eukaryotic 43S preinitiati... 680 -0.735 -6.339 4.3e-10 5.1e-06
Nutlin-3a GO:0045869 negative regulation of sin... 676 -0.827 -6.339 4.4e-10 5.1e-06
Epothilone B G0:0019083 viral transcription 689 -1.583 -6.324 4.7e-10 5.5e-06
YK 4-279 G0:0019083 viral transcription 627 -1.136 -6.333 4.7e-10 5.5e-06
PF-562271 GO:0006614 SRP-dependent cotranslatio... 680 -0.956 -6.318 4.9e-10 5.7e-06
Bleomycin (50 uM) GO:0090090 negative regulation of can... 746 -3.257 -6.305 5e-10 5.8e-06
PF-562271 GO:0071541 eukaryotic translation ini... 680 -0.659 -6.312 5.1e-10 5.8e-06
GSK-650394 G0O:0006414 translational elongation 680 -1.321 -6.306 5.3e-10 6e-06
JNK-9L GO:0002181 cytoplasmic translation 695 -0.729 -6.299 5.4e-10 6.1e-06
PF-562271 G0O:0019083 viral transcription 680 -0.907 -6.304 5.4e-10 6e-06
Trametinib GO:0008305 integrin complex 713 -2.408 -6.294 5.5e-10 6.1e-06
RDEA119 (rescreen) GO0:0048553 negative regulation of met... 698 -1.019 -6.295 5.6e-10 6.1e-06
NPK76-1I-72-1 GO:0000027 ribosomal large subunit as... 733 -1.002 -6.290 5.6e-10 6.1e-06
Nutlin-3a GO:0000780 condensed nuclear chromoso... 676 0.878 6.293 5.7e-10 6.2e-06
YK 4-279 GO:0009168 purine ribonucleoside mono... 627 -1.058 -6.300 5.8e-10 6.2e-06
YK 4-279 GO:0071541 eukaryotic translation ini... 627 -0.836 -6.297 5.9e-10 6.3e-06
Associations for Reactome
Table A3: Reactome vs. drugs (pan-cancer)
Drug Pathway Size Effect Wald stat. P-value FDR
‘WZ3105 Abacavir transmembrane transport 734 1.268 8.505 1.1e-16 2.2e-11
RDEA119 (rescreen) Dissolution of Fibrin Clot 698 -1.570 -8.501 1.2e-16 2.2e-11
Trametinib Dissolution of Fibrin Clot 713 -2.277 -8.428 2.1e-16 2.5e-11
Trametinib Laminin interactions 713 -2.534 -8.138 1.9e-15 1.5e-10
RDEA119 Dissolution of Fibrin Clot 668 -1.710 -8.143 2e-15 1.5e-10
CCTO018159 Purine metabolism 715 -1.343 -7.503 1.9e-13 1.1e-08
RDEA119 (rescreen) Laminin interactions 698 -1.639 -7.494 2.1e-13 1.1e-08
Trametinib Type I hemidesmosome assembly 713 -1.785 -7.302 7.9e-13 3.6e-08
Etoposide Influenza Life Cycle 696 -2.076 -7.234 1.3e-12 5.2e-08
Etoposide Influenza Infection 696 -2.120 -7.219 1.4e-12 5.2e-08
Etoposide Influenza Viral RNA Transcription and... 696 -1.999 -7.111 3e-12 9.9e-08
GSK-650394 Cap-dependent Translation Initiation 680 -1.477 -6.997 6.5e-12 1.8e-07
GSK-650394 Eukaryotic Translation Initiation 680 -1.477 -6.997 6.5e-12 1.8e-07
GSK-650394 Influenza Viral RNA Transcription and... 680 -1.672 -6.971 7.8e-12 2e-07
RDEA119 Laminin interactions 668 -1.728 -6.921 1.1e-11 2.6e-07
GSK-650394 Activation of the mRNA upon binding o... 680 -1.493 -6.911 1.2e-11 2.6e-07
Trametinib Degradation of the extracellular matrix 713 -3.332 -6.896 1.2e-11 2.6e-07
Gemcitabine Influenza Infection 685 -2.808 -6.892 1.3e-11 2.6e-07
EHT 1864 Mitochondrial tRNA aminoacylation 737 -0.737 -6.850 1.6e-11 3.1e-07
GSK-650394 Influenza Life Cycle 680 -1.683 -6.854 1.7e-11 3.1e-07
Gemcitabine Influenza Life Cycle 685 -2.713 -6.805 2.3e-11 4e-07
RDEA119 (rescreen) Degradation of the extracellular matrix 698 -2.253 -6.790 2.5e-11 4.1e-07
PF-562271 Influenza Life Cycle 680 -1.079 -6.783 2.6e-11 4.1e-07
PF-562271 Translation 680 -1.090 -6.781 2.7e-11 4.1e-07
GSK-650394 Influenza Infection 680 -1.703 -6.775 2.8e-11 4.1e-07
GSK-650394 GTP hydrolysis and joining of the 60S... 680 -1.374 -6.753 3.2e-11 4.1e-07
Bleomycin (50 uM) Insulin-like Growth Factor-2 mRNA Bin... 746 -1.399 -6.745 3.2e-11 4.1e-07
GSK-650394 Ribosomal scanning and start codon re... 680 -1.461 -6.748 3.3e-11 4.1e-07
GSK-650394 Translation 680 -1.675 -6.751 3.3e-11 4.1e-07
RDEA119 (rescreen) Type I hemidesmosome assembly 698 -1.144 -6.743 3.4e-11 4.1e-07
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Lenalidomide Viral Messenger RNA Synthesis 677 -0.589 -6.104 1.8e-09 6.1e-06
Lenalidomide Glucose transport 677 -0.704 -6.098 1.9e-09 6.3e-06
Nutlin-3a Mitochondrial iron-sulfur cluster bio... 676 -0.911 -6.090 1.9e-09 6.4e-06
Epothilone B Cap-dependent Translation Initiation 689 -1.463 -6.093 1.9e-09 6.3e-06
Epothilone B Eukaryotic Translation Initiation 689 -1.463 -6.093 1.9e-09 6.3e-06
Epothilone B Activation of the mRNA upon binding o... 689 -1.496 -6.084 2e-09 6.5e-06
CCT018159 Metabolism of nucleotides 715 -1.198 -6.081 2e-09 6.5e-06
Etoposide Ribosomal scanning and start codon re... 696 -1.548 -6.060 2.3e-09 7.3e-06
YM155 Biological oxidations 706 4.013 6.058 2.3e-09 7.3e-06
YK 4-279 Cap-dependent Translation Initiation 627 -1.034 -6.052 2.5e-09 7.9e-06
YK 4-279 Eukaryotic Translation Initiation 627 -1.034 -6.052 2.5e-09 7.9e-06
Bleomycin (50 uM) Interleukin-6 signaling 746 -1.361 -6.032 2.6e-09 8e-06
Lenalidomide Transport of Mature mRNAs Derived fro... 677 -0.555 -6.042 2.6e-09 8e-06
RDEA119 (rescreen) Ligand-dependent caspase activation 698 -1.113 -6.033 2.7e-09 8.2e-06
Obatoclax Mesylate Influenza Life Cycle 684 -1.553 -6.024 2.8e-09 8.4e-06
PF-562271 Viral mRNA Translation 680 -0.757 -6.029 2.8e-09 8.4e-06
Epothilone B Formation of the ternary complex, and... 689 -1.430 -6.022 2.9e-09 8.4e-06
XMD13-2 Nonsense Mediated Decay (NMD) enhance... 733 -0.891 -6.015 2.9e-09 8.4e-06
XMD13-2 Nonsense-Mediated Decay (NMD) 733 -0.891 -6.015 2.9e-09 8.4e-06
Lenalidomide Transport of Ribonucleoproteins into ... 677 -0.528 -6.022 2.9e-09 8.4e-06
T0901317 L13a-mediated translational silencing... 728 -0.600 -6.008 3e-09 8.4e-06
RDEA119 Ligand-dependent caspase activation 668 -1.293 -6.017 3e-09 8.4e-06
PF-562271 Nonsense Mediated Decay (NMD) enhance... 680 -0.874 -6.017 3e-09 8.4e-06
PF-562271 Nonsense-Mediated Decay (NMD) 680 -0.874 -6.017 3e-09 8.4e-06
PF-562271 Peptide chain elongation 680 -0.730 -6.017 3e-09 8.4e-06
T0901317 3’ -UTR-mediated translational regula... 728 -0.600 -6.008 3e-09 8.4e-06
Lenalidomide Metabolism of nucleotides 677 -0.843 -6.008 3.1e-09 8.6e-06
Epothilone B Translation initiation complex formation 689 -1.465 -6.008 3.1e-09 8.6e-06
Etoposide Translation 696 -1.757 -6.001 3.2e-09 8.6e-06
Lenalidomide Transport of Mature mRNA Derived from... 677 -0.553 -6.005 3.2e-09 8.6e-06
T0901317 GTP hydrolysis and joining of the 60S... 728 -0.606 -5.992 3.3e-09 8.6e-06
Gemcitabine Nonsense Mediated Decay (NMD) enhance... 685 -2.172 -5.997 3.3e-09 8.6e-06
Tubastatin A Nonsense Mediated Decay (NMD) enhance... 731 -0.862 -5.993 3.3e-09 8.6e-06
Gemcitabine Nonsense-Mediated Decay (NMD) 685 -2.172 -5.997 3.3e-09 8.6e-06
Tubastatin A Nonsense-Mediated Decay (NMD) 731 -0.862 -5.993 3.3e-09 8.6e-06
YK 4-279 Synthesis of diphthamide-EEF2 627 -0.756 -6.001 3.4e-09 8.7e-06
Epothilone B tRNA Aminoacylation 689 -1.482 -5.993 3.4e-09 8.7e-06
PF-562271 Eukaryotic Translation Elongation 680 -0.737 -5.995 3.4e-09 8.7e-06
Lenalidomide Export of Viral Ribonucleoproteins fr... 677 -0.525 -5.993 3.4e-09 8.7e-06
Lenalidomide Transport of the SLBP independent Mat... 677 -0.537 -5.990 3.5e-09 8.8e-06
Etoposide GTP hydrolysis and joining of the 60S... 696 -1.437 -5.984 3.6e-09 8.9e-06
Lenalidomide Transport of the SLBP Dependant Matur... 677 -0.536 -5.985 3.6e-09 8.9e-06
Obatoclax Mesylate Influenza Viral RNA Transcription and... 684 -1.507 -5.975 3.8e-09 9.1e-06
Gemcitabine Cap-dependent Translation Initiation 685 -2.065 -5.976 3.8e-09 9.1e-06
Gemcitabine Eukaryotic Translation Initiation 685 -2.065 -5.976 3.8e-09 9.1e-06

A.2 SPEED platform

Table A4: Optimised SPEED scores vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
RDEA119 MAPK_ PI3K 668 -0.326 -6.321 4.9e-10 1.1e-06
Trametinib MAPK_ PI3K 713 -0.409 -6.244 7.5e-10 1.1e-06
RDEA119 (rescreen) MAPK_ PI3K 698 -0.262 -5.856 7.4e-09 7.2e-06
Bleomycin (50 uM) VEGF 746 -0.256 -5.249 2e-07 0.00012
PD-0325901 MAPK_ PI3K 669 -0.276 -5.249 2.1e-07 0.00012
Afatinib (rescreen) PI3K_ only 727 -0.206 -4.737 2.6e-06 0.0013
MLN4924 Wnt 553 -0.173 -4.719 3e-06 0.0013
XAV 939 TNFa 730 -0.117 -4.632 4.3e-06 0.0016
Axitinib Wnt 673 -0.116 -4.491 8.4e-06 0.0027
Afatinib PI3K_only 675 -0.179 -4.443 le-05 0.003
Gefitinib PI3K_ only 673 -0.130 -4.379 1.4e-05 0.0037
QSs11 Wnt 689 -0.135 -4.354 1.5e-05 0.0038
Etoposide Wnt 696 -0.186 -4.327 1.7e-05 0.0039
Elesclomol VEGF 675 -0.204 -4.279 2.2e-05 0.0045
Bleomycin TNFa 682 -0.304 -4.257 2.4e-05 0.0046
GSK-650394 Wnt 680 -0.156 -4.226 2.7e-05 0.005
AG-014699 TGFB 736 -0.096 -4.209 2.9e-05 0.005
Bleomycin (50 uM) TNFa 746 -0.223 -4.156 3.6e-05 0.0059
CP724714 H202 734 0.128 4.099 4.6e-05 0.0065
Cisplatin Wnt 677 -0.108 -4.103 4.6e-05 0.0065

Thapsigargin ‘Wnt 680 -0.186 -4.097 4.7e-05 0.0065
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-0.113
-0.112
-0.170
-0.218

-0.130
-0.089
-0.134
-0.128
-0.172

0.180
-0.095
0.131
-0.110
-0.199

-0.139

-0.139

-0.144
-0.176
-0.147

-0.171
0.137

-0.150
-0.211
-0.147

-0.177
-0.113
-0.085
-0.188
-0.179

-0.179
-0.073
-0.105
-0.119
-0.127

-0.133

-0.152

-0.111
0.171
-0.142

-0.062
-0.137
-0.123
-0.125
-0.110

0.110

-0.102
-0.100
-0.068
-0.059

-0.145
-0.079

-4.078
-4.041
-4.005
-4.003

-3.984
-3.984
-3.958
3.953

-3.954

3.945

-3.884
-3.899
-3.864
-3.878

-3.842
3.802

-3.779
-3.783
-3.769

-3.737
-3.731
-3.735
-3.699
-3.686

-3.661
-3.661
-3.657
-3.641
-3.637

3.607
-3.594
3.589
-3.572
-3.559

-3.560

-3.560

-3.545
-3.534
-3.540

-3.525
3.504

-3.501
-3.471
-3.470

-3.465
-3.449
-3.430
-3.421
-3.423

-3.423
-3.420
-3.405
-3.387
-3.359

-3.354

-3.371

-3.346
3.328
-3.311

-3.309
-3.295
-3.247
-3.240
-3.215

3.186

-3.197
-3.191
-3.196
-3.180

-3.177
-3.175

5.1e-05
5.9e-05
6.9e-05
7e-05

7.5e-05
7.6e-05
8.4e-05
8.6e-05
8.6e-05

8.8e-05

0.00011
0.00011
0.00012
0.00012

0.00013
0.00016
0.00017
0.00017
0.00018

0.0002

0.00021
0.00021
0.00023
0.00025

0.00027
0.00027
0.00028
0.00029
0.0003

0.00033
0.00035
0.00036
0.00038
0.0004

0.0004

0.0004

0.00042
0.00043
0.00043

0.00045
0.00049
0.00049
0.00055
0.00055

0.00056
0.0006

0.00064
0.00066
0.00066

0.00066
0.00066
0.0007

0.00075
0.00083

0.00084

0.00086

0.00087
0.00092
0.00098

0.00098
0.001
0.0012
0.0013
0.0014

0.0015
0.0015
0.0015
0.0015
0.0015

0.0016
0.0016

0.0067
0.0075
0.0081
0.0081

0.0082
0.0082
0.0083
0.0083
0.0083

0.0083
0.0099
0.0097
0.01

0.0099

0.011
0.012
0.013
0.013
0.013

0.014
0.014
0.014
0.016
0.016

0.017
0.017
0.017
0.017
0.017

0.019
0.02
0.02
0.02
0.02

0.02

0.02

0.021
0.021
0.021

0.022
0.023
0.023
0.025
0.025

0.025
0.026
0.027
0.027
0.027

0.027
0.027
0.028
0.029
0.032

0.032

0.032

0.032
0.034
0.035

0.035
0.037
0.043
0.044
0.047

0.049
0.049
0.049
0.049
0.049

0.049
0.049
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B ASSOCIATIONS FOR EVALUATING SIGNATURES (CHAPTER 4)

B.1 Pathway scores and mutations

Table B1: Gene Ontology vs. mutations (pan-cancer)

Mutation Pathway Size Effect Wald stat. P-value FDR
TP53 NFkB 1339 0.086 7.784 9.1e-15 4.6e-11
BRAF Trail 313 0.202 7.379 2e-13 5e-10
BRAF MAPK 313 0.051 7.199 7.3e-13 1.2e-09
BRAF JAK-STAT 313 0.112 6.960 4e-12 5.1e-09
NRAS JAK-STAT 56 -0.235 -6.371 2.1e-10 1.8e-07
CDH1 NFkB 170 -0.163 -6.371 2.1e-10 1.8e-07
TP53 PI3K 1339 -0.049 -5.870 4.7e-09 3.5e-06
TP53 p53 1339 -0.050 -5.797 7.3e-09 4.7e-06
TP53 TNFa 1339 0.050 5.677 1.5e-08 8.4e-06
BRAF PI3K 313 0.081 5.640 1.8e-08 9.3e-06
BRAF EGFR 313 0.129 5.098 3.6e-07 0.00017
NRAS Trail 56 -0.311 -4.961 7.3e-07 0.00031
CASP8 TNFa 88 0.133 4.793 1.7e-06 0.00067
ZFHX3 TNFa 166 0.096 4.720 2.4e-06 0.00089
TP53 MAPK 1339 0.019 4.703 2.7e-06 0.0009
BRAF p53 313 0.069 4.678 3e-06 0.00096
CASP8 JAK-STAT 88 0.138 4.658 3.3e-06 0.00099
BCL11A NFkB 68 0.185 4.635 3.7e-06 0.001
BCL11A TNFa 68 0.143 4.558 5.3e-06 0.0014
ZFHX3 NFkB 166 0.118 4.531 6e-06 0.0015
NRAS PI3K 56 -0.148 -4.524 6.3e-06 0.0015
ARIDI1A p53 318 0.067 4.516 6.5e-06 0.0015
MLH3 NFkB 59 0.193 4.489 7.4e-06 0.0016
BCOR TNFa 97 0.117 4.438 9.4e-06 0.0019
AHNAK TNFa 195 0.084 4.433 9.5e-06 0.0019
EP300 p53 123 0.102 4.405 1.1e-05 0.0021
ARHGAP26 TNFa 41 0.178 4.409 1.1e-05 0.0021
ARFGEF2 p53 85 0.121 4.375 1.2e-05 0.0022
MLL2 NFkB 278 0.089 4.367 1.3e-05 0.0022
PIK3CA PI3K 667 0.045 4.361 1.3e-05 0.0022
SETD2 TNFa 161 0.090 4.363 1.3e-05 0.0022
NRAS MAPK 56 -0.070 -4.320 1.6e-05 0.0026
CASP8 MAPK 88 0.056 4.311 1.7e-05 0.0026
MLH3 TNFa 59 0.145 4.296 1.8e-05 0.0027
EP300 TNFa 123 0.101 4.279 1.9e-05 0.0028
GATA3 p53 136 0.094 4.258 2.1e-05 0.0029
ARFGEF1 TNFa 90 0.117 4.256 2.1e-05 0.0029
CDH1 p53 170 -0.084 -4.249 2.2e-05 0.003
AHNAK NFkB 195 0.102 4.236 2.3e-05 0.0031
CDH1 PI3K 170 0.081 4.225 2.4e-05 0.0031
ARFGEF2 TNFa 85 0.118 4.181 3e-05 0.0037
MLL2 TNFa 278 0.067 4.170 3.1e-05 0.0038
ARHGAP26 NFkB 41 0.211 4.114 4e-05 0.0047
NOTCH1 MAPK 141 0.042 4.067 4.9e-05 0.0056
PTEN EGFR 284 -0.108 -4.064 4.9e-05 0.0056
PBRM1 p53 206 0.073 4.058 5e-05 0.0056
KRAS TGFb 309 0.041 4.047 5.3e-05 0.0056
SHMT1 TNFa 19 0.239 4.046 5.3e-05 0.0056
GATA3 Hypoxia 136 -0.049 -4.042 5.4e-05 0.0056
MMP2 NFkB 42 0.204 4.019 5.9e-05 0.0061
B2M TNFa 34 0.178 4.014 6.1e-05 0.0061
CHD3 TNFa 107 0.101 4.009 6.2e-05 0.0061
G3BP1 TNFa 36 0.171 3.981 Te-05 0.0067
MLL3 NFkB 296 0.079 3.976 7.1e-05 0.0067
ARFGEF1 p53 90 0.106 3.966 7.4e-05 0.0069
BAP1 p53 89 0.107 3.958 7.7e-05 0.007
CTNNB1 JAK-STAT 182 -0.082 -3.943 8.2e-05 0.0073
PLCG1 TNFa 61 0.129 3.900 9.8e-05 0.0086
IRS2 Hypoxia 24 -0.111 -3.882 0.00011 0.009
KALRN P53 152 0.081 3.869 0.00011 0.0091
MMP2 TNFa 42 0.155 3.871 0.00011 0.0091
ASHI1L NFkB 127 0.115 3.882 0.00011 0.009
PBRM1 TNFa 206 0.071 3.859 0.00012 0.0094

BCOR NFkB 97 0.129 3.824 0.00013 0.01
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CDH1

PTEN
EPHA2
MTOR
BRWD1
MLL2

NRAS
SF3A3
SETD2
SHMT1
VHL

ACSL6
ASHI1L
ZNF292
ELF1
PLCG1

PTEN
ASHIL
ZNF292
PIK3CA
TCF12

CHD6
ARFGEF1
CNOT4
FGFR1
MYH14

MTOR
NRAS
PGR
VHL
ARID1B

KEAP1

EP300

CTNNB1
ELF1
RASA1

SOS2
KRAS
VHL
WNK1
CTNNB1

KRAS
G3BP1
NFE2L2
FBXO11
SVEP1

NF1
TP53BP1
ARFGEF2
GATA3
MECOM

BPTF

PIK3CA

FGFR1
CASPS8
HLA-A

SVEP1
XRN1
CNOT4
PBRM1
SOS2

SPTAN1
GATA3
NR4A2
BRAF
NCK1

TAF1
ABL2
ERCC2
RBM10
FAF1

BAP1
DHX15
FBXW7
KDM5C

TNFa

p53
NFkB
TNFa
TNFa
p53

p53
Hypoxia
NFkB
NFkB
VEGF

TNFa
TNFa
TNFa
TNFa
NFkB

TNFa
p53
NFkB
Hypoxia
p53

TNFa
NFkB
NFkB
TGFb
TNFa

NFkB
EGFR
NFkB
p53
NFkB

VEGF

NFkB

PI3K
NFkB
TNFa

TNFa
TNFa
Hypoxia
MAPK
TGFb

PI3K
NFkB
NFkB
TNFa
MAPK

NFkB
TNFa
NFkB
JAK-STAT
TGFb

TNFa

p53

TNFa
EGFR
TNFa

TNFa
TGFb
TNFa
EGFR
NFkB

TNFa
MAPK
NFkB
TNFa
TNFa

TNFa
TNFa
NFkB
TNFa
TNFa

TGFb
NFkB
NFkB
TNFa

170

284

60
136
105
278

56
22
161
19
209

37
127
112

36

61

284
127
112
667

39

127
90
40
34
76

136
56
59

115

114

123

182
36
87

66
309
209

94
182

162
87
85

136
76

106

667

34
88
54

156
79
40

206
66

111
136

313
23

111
54
41
59
37

89
36
134
78

-0.078

0.059
0.160
0.084
0.096
0.059

-0.126
0.112
0.098
0.280
0.116

0.158
0.086
0.091
0.158
0.154

0.058
0.083
0.114
-0.022
0.147

0.084
0.126
0.187
-0.106
0.107

0.102
-0.207
0.154
0.064
0.110

-0.149

0.106

-0.066
0.194
0.099

0.113
0.054
0.035
0.044
-0.046

0.050
0.191
0.112
0.139
0.034

0.091
0.096
0.123
-0.082
-0.068

0.086

0.037

0.150
0.157
0.119

0.071
-0.066
0.138
0.104
0.137

0.084
-0.036
0.161
0.051
0.180

0.083
0.117
0.171
0.112
0.141

-0.061
0.182
0.095
0.097

-3.838

3.781
3.760
3.758
3.751
3.733

-3.732
3.732
3.726
3.726
3.705

3.714
3.698
3.703
3.676
3.655

3.651
3.642
3.646
-3.636
3.638

3.611
3.612
3.598
-3.590
3.585

3.576
-3.579
3.582
3.580
3.562

-3.558

3.548

-3.543
3.541
3.546

3.528
3.524
3.527
3.506
-3.498

3.481
3.481
3.461
3.448
3.447

3.446
3.437
3.428
-3.427
-3.404

3.403

3.396

3.393
3.390
3.380

3.382
-3.380
3.378
3.377
3.376

3.371
-3.361
3.357
3.353
3.337

3.337
3.322
3.319
3.321
3.314

-3.312
3.311
3.310
3.307

0.00013

0.00016
0.00017
0.00017
0.00018
0.00019

0.00019
0.00019
0.0002
0.0002
0.00021

0.00021
0.00022
0.00022
0.00024
0.00026

0.00026
0.00027
0.00027
0.00028
0.00028

0.00031
0.00031
0.00033
0.00033
0.00034

0.00035
0.00035
0.00035
0.00035
0.00037

0.00038

0.00039

0.0004
0.0004
0.0004

0.00042
0.00043
0.00043
0.00046
0.00048

0.0005

0.00051
0.00054
0.00057
0.00057

0.00058
0.0006

0.00061
0.00062
0.00067

0.00067
0.00069
0.0007
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0.01

0.012
0.013
0.013
0.013
0.014

0.014
0.014
0.014
0.014
0.014

0.014
0.014
0.014
0.016
0.017

0.017
0.017
0.017
0.017
0.017

0.018
0.018
0.019
0.019
0.019

0.019
0.019
0.019
0.019
0.02

0.02

0.021

0.021
0.021
0.021

0.021
0.021
0.021
0.023
0.023

0.024
0.024
0.026
0.026
0.026

0.026
0.027
0.028
0.028
0.03

0.03
0.03
0.03

0.00071 0.03
0.00073 0.03

0.00073 0.03
0.00073 0.03
0.00074 0.03
0.00074 0.03
0.00074 0.03

0.00076 0.031
0.00079 0.032
0.0008 0.032
0.00081 0.032
0.00085 0.033

0.00086 0.033
0.0009 0.035
0.00091 0.035
0.00091 0.035
0.00093 0.035

0.00093 0.035
0.00094 0.035
0.00094 0.035
0.00095 0.035

173



174

APPENDIX
STIP1 TNFa 29 0.158 3.304 0.00096 0.035
BAZ2B TGFb 128 -0.051 -3.304 0.00096 0.035
EPHA4 TNFa 61 0.110 3.303 0.00097 0.035
LNPEP MAPK 38 0.065 3.294 0.001 0.036
CHD6 NFkB 127 0.096 3.261 0.0011 0.038
EPHA4 NFkB 61 0.138 3.260 0.0011 0.038
FAT1 TNFa 239 0.056 3.262 0.0011 0.038
FBXO11 NFkB 41 0.168 3.272 0.0011 0.038
NF1 TNFa 162 0.068 3.273 0.0011 0.038
NRAS TNFa 56 -0.113 -3.267 0.0011 0.038
PIK3CA MAPK 667 -0.017 -3.277 0.0011 0.038
Table B2: Reactome vs. mutations (pan-cancer)
Mutation Pathway Size Effect Wald stat. P-value FDR
NFE2L2 p53 105 0.196 7.941 2.6e-15 1.3e-11
BRAF MAPK 313 0.097 7.525 6.6e-14 1.7e-10
BRAF JAK-STAT 313 0.098 7.281 4e-13 6.9e-10
KEAP1 p53 114 0.165 6.947 4.4e-12 5.6e-09
NRAS JAK-STAT 56 -0.210 -6.857 8.2e-12 8.2e-09
TP53 TGFb 1339 0.046 6.810 1.1e-11 8.2e-09
CDH1 TGFb 170 -0.106 -6.810 1.1e-11 8.2e-09
BRAF Trail 313 0.153 6.543 6.9e-11 4.4e-08
BRAF NFkB 313 0.089 6.381 2e-10 1.1e-07
PTEN MAPK 284 -0.084 -6.209 5.9e-10 3e-07
TP53 PI3K 1339 -0.031 -6.172 7.5e-10 3.5e-07
CTNNB1 TNFa 182 -0.112 -5.871 4.7e-09 2e-06
CASP8 JAK-STAT 88 0.140 5.683 1.4e-08 5.6e-06
CTNNB1 MAPK 182 -0.093 -5.615 2.1e-08 7.7e-06
BRAF VEGF 313 0.065 5.556 2.9e-08 le-05
GATA3 P53 136 0.120 5.485 4.4e-08 1.4e-05
STK11 Hypoxia 59 0.155 5.421 6.3e-08 1.9e-05
CDH1 p53 170 -0.106 -5.381 7.9e-08 2.2e-05
PIK3CA MAPK 667 -0.049 -5.265 1.5e-07 4e-05
NRAS NFkB 56  -0.164  -5.127 3.1e-07  7.5¢-05
VHL p53 209 -0.092 -5.130 3.1e-07 7.5e-05
PTEN TGFb 284 -0.061 -5.005 5.9e-07 0.00014
MLL2 p53 278 0.078 4.968 7.1e-07 0.00016
PTEN PI3K 284 -0.045 -4.948 7.8e-07 0.00017
BRAF PI3K 313 0.041 4.758 2e-06 0.00041
BRAF EGFR 313 0.044 4.735 2.3e-06 0.00045
STK11 P53 59 0.153 4.638 3.6e-06 0.00069
BRAF TGFb 313 0.054 4.604 4.3e-06 0.00078
ZFHX3 P53 166 0.091 4.550 5.5e-06 0.00097
CTNNB1 VEGF 182 -0.068 -4.505 6.8e-06 0.0011
NRAS Trail 56 -0.241 -4.506 6.8e-06 0.0011
EP300 JAK-STAT 123 0.092 4.385 1.2e-05 0.0019
TAF1 p53 111 0.105 4.325 1.6e-05 0.0024
BRAF TNFa 313 0.064 4.301 1.7e-05 0.0026
CDH1 Hypoxia 170 -0.072 -4.237 2.3e-05 0.0034
ASHIL TGFb 127 0.076 4.233 2.4e-05 0.0034
TSC1 p53 57 0.137 4.098 4.3e-05 0.0059
NRAS PI3K 56 -0.081 -4.092 4.4e-05 0.0059
VHL Trail 209 0.114 4.048 5.3e-05 0.0068
CNOT1 p53 116 0.096 4.044 5.4e-05 0.0068
ASHI1L Hypoxia 127 0.079 4.025 5.8e-05 0.0072
CNOT4 p53 40 0.159 3.990 6.7e-05 0.0079
EP300 NFkB 123 0.087 3.992 6.7e-05 0.0079
BCL11A Trail 68 0.194 3.986 6.9e-05 0.0079
TP53 EGFR 1339 -0.021 -3.962 7.6e-05 0.0086
BCL11A p53 68 0.121 3.922 8.9e-05 0.0099
CASP8 Trail 88 0.168 3.909 9.4e-05 0.01
KRAS Hypoxia 309 0.050 3.874 0.00011 0.012
NR4A2 TGFb 47 0.112 3.864 0.00011 0.012
MMP2 p53 42 0.150 3.843 0.00012 0.013
ASHIL p53 127 0.087 3.834 0.00013 0.013
PBRM1 NFkB 206 0.065 3.808 0.00014 0.013
PGR p53 59 0.126 3.814 0.00014 0.013
B2M JAK-STAT 34 0.150 3.817 0.00014 0.013
CASP8 VEGF 88 0.081 3.795 0.00015 0.014
NRAS TNFa 56 -0.128 -3.786 0.00016 0.014
TNPO1 p53 42 0.147 3.781 0.00016 0.014
FBXW7 p53 134 0.083 3.759 0.00017 0.015
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ERCC2 TGFb 41 0.117 3.742 0.00019 0.016
ARFGEF1 p53 90 0.100 3.727 0.0002 0.017
ANK3 TGFb 174 0.057 3.695 0.00022 0.018
MLL2 TGFb 278 0.046 3.701 0.00022 0.018
CASP8 NFkB 88 0.095 3.693 0.00022 0.018
MACF1 p53 257 0.060 3.679 0.00024 0.019
PIK3CA TGFb 667 -0.031 -3.677 0.00024 0.019
WHSC1 p53 69 0.111 3.627 0.00029 0.022
NRAS EGFR 56 -0.076 -3.620 0.0003 0.022
PIK3R1 MAPK 126 -0.072 -3.620 0.0003 0.022
CTCF MAPK 105 -0.078 -3.605 0.00032 0.023
CDH1 MAPK 170 -0.062 -3.585 0.00034 0.025
BAZ2B p53 128 0.081 3.572 0.00036 0.026
EPHA2 p53 60 0.116 3.547 0.00039 0.028
MLL p53 126 0.081 3.550 0.00039 0.028
NR4A2 p53 47 0.131 3.543 0.0004 0.028
NCOR2 p53 95 0.092 3.532 0.00042 0.028
PLXNA1 p53 95 0.092 3.510 0.00045 0.03

PBRM1 Trail 206 0.100 3.503 0.00047 0.031
VHL Hypoxia 209 0.054 3.495 0.00048 0.031
MGA p53 131 0.078 3.491 0.00049 0.031
TP53BP1 JAK-STAT 87 0.086 3.473 0.00052 0.033
HLA-A JAK-STAT 54 0.109 3.470 0.00053 0.033
NOTCH1 JAK-STAT 141 0.068 3.460 0.00055 0.034
SMAD4 Trail 108 0.134 3.450 0.00057 0.035
APC EGFR 154 -0.044 -3.439 0.00059 0.036
SHMT1 JAK-STAT 19 0.180 3.437 0.0006 0.036
VHL NFkB 209 0.058 3.434 0.0006 0.036
SHMT1 Trail 19 0.312 3.408 0.00066 0.039
KEAP1 NFkB 114 -0.077 -3.402 0.00068 0.039
EP300 Trail 123 0.124 3.392 0.0007 0.04

NF1 P53 162 0.068 3.390 0.00071 0.04

CBFB Hypoxia 32 0.131 3.378 0.00074 0.041
PTEN EGFR 284 -0.032 -3.369 0.00076 0.042
APC PI3K 154 -0.040 -3.330 0.00088 0.048
EIF1AX Trail 18 -0.312 -3.319 0.00091 0.049

Table B3: SPIA vs. mutations (pan-cancer)

Mutation Pathway Size Effect Wald stat. P-value FDR

BRAF EGFR 313 46.908 22.263 3.7e-103 1.4e-99
VHL NFkB 209 46.685 20.232 2e-86 3.7e-83
PIK3CA JAK-STAT 667 -3.238 -17.593 1.3e-66 1.6e-63
KRAS EGFR 309 36.387 16.722 1.4e-60 1.3e-57
VHL VEGF 209 14.834 16.365 3.5e-58 2.6e-55
BRAF JAK-STAT 313 4.177 16.338 5.4e-58 3.3e-55
VHL Trail 209 28.312 14.988 2.4e-49 1.3e-46
VHL PI3K 209 -4.569 -14.112 4.3e-44 2e-41

TP53 PI3K 1339 2.146 13.790 3.1e-42 1.3e-39
PTEN JAK-STAT 284 -3.656 -13.532 9.2e-41 3.4e-38
PBRM1 NFkB 206 31.457 13.146 1.3e-38 4.4e-36
VHL MAPK 209 26.629 13.121 1.8e-38 5.5e-36
KRAS NFkB 309 -25.626 -12.912 2.4e-37 6.9e-35
VHL JAK-STAT 209 3.672 11.718 3.6e-31 9.6e-29
PBRM1 VEGF 206 10.480 11.279 4.9e-29 1.2e-26
PBRM1 Trail 206 21.485 11.152 2e-28 4.6e-26
KRAS VEGF 309 -8.541 -11.085 4.1e-28 8.9e-26
PIK3CA EGFR 667 -17.154 -10.728 1.8e-26 3.8e-24
KRAS MAPK 309 -17.813 -10.432 3.9e-25 7.7e-23
PIK3R1 JAK-STAT 126 -4.135 -10.324 1.2e-24 2.2e-22
CDH1 JAK-STAT 170 -3.439 -9.900 7.9e-23 1.4e-20
PTEN VEGF 284 -7.494 -9.314 2.1e-20 3.5e-18
MAP3K1 JAK-STAT 129 -3.443 -8.658 7.1le-18 1.1e-15
PBRM1 MAPK 206 17.886 8.643 8e-18 1.2e-15
STK11 MAPK 59 -31.427 -8.289 1.6e-16 2.3e-14
TP53 NFkB 1339 -9.533 -8.243 2.3e-16 3.3e-14
KEAP1 MAPK 114 -22.639 -8.236 2.4e-16 3.3e-14
GATA3 MAPK 136 -19.566 -7.743 1.2e-14 1.6e-12
CTNNB1 VEGF 182 -7.644 -7.690 1.9e-14 2.4e-12
NOTCH1 PI3K 140 3.057 7.662 2.3e-14 2.9e-12
CTNNB1 TGFb 182 8.891 7.566 4.8e-14 5.8e-12
BRAF MAPK 313 12.371 7.234 5.7e-13 6.6e-11

PTEN TGFb 284 -6.817 -7.134 1.2e-12 1.3e-10
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PBRM1
PIK3R1

CDKN2A

PIK3CA

FBXW7
CDH1
PBRM1

NOTCH1

ARHGAP35

CASP8
BRAF
GATA3

KEAP1
RPL22
PIK3R1
ARID1A
RUNX1

TP53
MLL3
TGFBR2
SMAD4
FAT1

PTEN
EP300
TIP2

STK11
FGFR2

KRAS
CHD4
CASP8
ARID1A
CTCF

BAP1
EPHA2
SMAD4
FOXA2
TAF1

EPHA2
MLL2
SPOP
BCOR
ZFHX3

MLL2

CASPS

NSD1
UPF3B
BCLAF1

FN1
MYH10
MKL1
SIN3A
NCOR2

BRAF
PTCH1
STK11
BAP1
PRPF8

MYHI10
ARID5B
B2M
TP53
MTOR

SETD2
CDKN2A
MAP2K4
TGFBR2
CIC

ASPM
FGFR3
MLH3
CREBBP
STAG2

ZFHX3
FAM123B
MLL3

JAK-STAT
VEGF

PI3K

VEGF

JAK-STAT
EGFR
PI3K

Trail
JAK-STAT
Trail
Trail
JAK-STAT

NFkB
JAK-STAT
TGFb
JAK-STAT
JAK-STAT

JAK-STAT
MAPK
PI3K
EGFR
JAK-STAT

PI3K

Trail

TGFb
VEGF
JAK-STAT

Trail
JAK-STAT
NFkB
TGFb
JAK-STAT

NFkB

Trail

PI3K
JAK-STAT
JAK-STAT

TGFb
TGFb
VEGF
JAK-STAT
JAK-STAT

Trail

PI3K
JAK-STAT
JAK-STAT
MAPK

JAK-STAT
JAK-STAT
TGFb
JAK-STAT
TGFb

PI3K
JAK-STAT
NFkB
VEGF
TGFb

TGFb
JAK-STAT
EGFR
TGFb
TGFb

NFkB

TGFb

JAK-STAT
Trail
TGFb

JAK-STAT
MAPK
JAK-STAT
PI3K
TGFb

TGFb
JAK-STAT
EGFR

206
126

165

667

134
170
206

141
59
88

313

136

114
46
126
318
49

1339
296
65
108
239

284

123

52
59
76

309
129

88
318
105

60
278
79
97
166

121
107
42
66
95

107
75
34

1339

136

161

165
64
65
74

178
46
59

145
92

166
78
296

2.257
-8.367

2.586

-3.912

-2.725
-20.242
-2.267

15.746
-3.878
19.248
10.300
-2.409

-19.973
-4.074
-8.608
-1.591
-3.904

-0.898
-10.131
3.328
21.011
-1.693

-1.622
14.043

-12.134
-9.578
-2.865

-8.810
-2.164
19.847
-4.757
-2.306

18.975
18.169
2.319

-5.240
-2.194

-10.246
-4.873
-7.503
-2.290
-1.758

8.314

2.456

-1.955
-3.410
-15.459

-1.992
-2.112
-11.579
-2.668
-7.713

1.316
-2.156
-21.113
6.667
-8.036

-7.145
-2.440
-30.500
-2.481
-6.324

12.777
-5.731

-2.599
15.729
-8.375

-1.574
-19.696
-2.676
1.793
-7.445

-5.539
-2.294
-10.250

7.073
-7.050

7.004

-6.988

-6.956
-6.831
-6.819

6.754
-6.632
6.568
6.418
-6.185

-6.180
-6.158
-6.127
-6.083
-6.088

-5.889
-5.760
5.724
5.690
-5.672

-5.651
5.629

-5.601
-5.560
-5.539

-5.449
-5.410
5.409

-5.226
-5.217

5.198
5.128
5.107
-5.102
-5.097

-5.070
-5.033
-5.022
-4.983
-4.957

4.896

4.894

-4.866
-4.860
-4.847

-4.823
-4.819
-4.804
-4.809
-4.778

4.787
-4.737
-4.725
4.728
-4.715

-4.689
-4.680
-4.675
-4.673
-4.660

4.657
-4.632
-4.612
4.614
-4.591

-4.585
-4.566
-4.562
4.547

-4.539

-4.489
-4.485
-4.467

1.8e-12 2e-10
2.1e-12 2.3e-10
2.9e-12 3e-10
3.3e-12 3.3e-10
4.1e-12 4e-10
9.8e-12 9.4e-10
1.1e-11 9.9e-10
1.7e-11 1.5e-09
3.8e-11 3.3e-09
5.8e-11 5e-09
1.6e-10 1.3e-08
6.9e-10 5.7e-08
7.1le-10 5.7e-08
8.2e-10 6.4e-08
9.9e-10 7.7e-08
1.3e-09 9.6e-08
1.3e-09 9.6e-08
4.2e-09 3.1e-07
9.1e-09 6.5e-07
1.1e-08 7.9e-07
1.4e-08 9.4e-07
1.5e-08 le-06
1.7e-08 1.1e-06
1.9e-08 1.3e-06
2.3e-08 1.5e-06
2.9e-08 1.8e-06
3.2e-08 2e-06
5.4e-08 3.3e-06
6.7e-08 4e-06
6.8e-08 4e-06
1.8e-07 1.1e-05
1.9e-07 1.1e-05
2.1e-07 1.2e-05
3.1e-07 1.7e-05
3.4e-07 1.9e-05
3.5e-07 1.9e-05
3.6e-07 1.9e-05
4.2e-07 2.2e-05
5.1e-07 2.6e-05
5.3e-07 2.7e-05
6.5e-07 3.3e-05
7.5e-07 3.7e-05
le-06 5e-05
le-06 5e-05
1.2e-06 5.6e-05
1.2e-06 5.7e-05
1.3e-06 6.1e-05
1.5e-06 6.7e-05
1.5e-06 6.8e-05
1.6e-06 7.1e-05
1.6e-06 7.1e-05
1.8e-06 7.9e-05
1.8e-06 7.7e-05
2.3e-06 9.6e-05
2.4e-06 9.9e-05
2.4e-06 9.9e-05
2.5e-06 0.0001
2.8e-06 0.00012
3e-06 0.00012
3e-06 0.00012
3.1e-06 0.00012
3.3e-06 0.00013
3.3e-06 0.00013
3.7e-06 0.00014
4.1e-06 0.00015
4.1e-06 0.00015
4.6e-06 0.00017
4.7e-06 0.00017
5.1e-06 0.00019
5.2e-06 0.00019
5.6e-06 0.0002
5.8e-06 0.00021
7.4e-06 0.00026
7.5e-06 0.00026
8.2e-06 0.00028
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ANK3
ASHI1L

EPHA4
KALRN
KRAS
MYH9
NSD1

AKAP9
ANK3
FAT1
CASP8
PTEN

CTCF
DHX35
STAG2
ZNF750
SMAD4

GATA3
VHL
FGFR1
BRWD1
FOXA1

ATM
CUX1
IREB2
KEAP1
ARFGEF2

NRAS

PIK3R1

PER1
NOTCH1
MAP4K1

PGR
LAMA2
CRNKL1
FBXWT7
BAZ2B

EZH2
ARFGEF1
CHD3
KDM5C
FAM46C

JAK-STAT
TGFb

TGFb
JAK-STAT
TGFb
JAK-STAT
TGFb

Trail

Trail

PI3K
JAK-STAT
NFkB

VEGF
TGFb
MAPK
PI3K
TGFb

EGFR
EGFR
Trail
JAK-STAT
JAK-STAT

JAK-STAT
TGFb
TGFb
VEGF
JAK-STAT

EGFR

NFkB

TGFb
JAK-STAT
MAPK

TGFb
JAK-STAT
JAK-STAT
TGFb
TGFb

TGFb
JAK-STAT
JAK-STAT
Trail
TGFb

174
127

61
152
309
110
128

169
174
238

88
284

105
38
92
44

108

136
209
34
105
56

189
110
52
114
85

56
126

141
38

59
173

134
128

37
90
107
78
15

-1.533 -4.418
-6.175 -4.401
-8.777 -4.375
-1.623 -4.385
-4.055 -4.392
-1.898 -4.387
-6.140 -4.392
9.369 4.367

9.247 4.370

1.353 4.337

-2.090 -4.334
9.086 4.320

-5.619 -4.317
-10.832 -4.275
-13.084 -4.261
3.006 4.257

-6.444 -4.246
-14.046 -4.244
-11.426 -4.235
19.759 4.208

-1.864 -4.210
-2.531 -4.205
-1.404 -4.207
-6.291 -4.182
-9.044 -4.166
-5.166 -4.129
-2.024 -4.125
20.999 4.116

12.655 4.098

-9.425 -4.087
-1.563 -4.070
-19.237 -4.055
-8.254 -4.046
-1.403 -4.028
-2.537 -4.024
-5.503 -4.023
-5.623 -4.021
-10.312 -4.015
-1.916 -4.015
-1.758 -4.007
12.438 3.987

-16.029 -3.985

le-05
1.1e-05

.2e-05
.2e-05
.2e-05
.2e-05
.2e-05

o e e

1.3e-05
1.3e-05
1.5e-05
1.5e-05
1.6e-05

1.6e-05
2e-05

2.1e-05
2.1e-05
2.2e-05

2.3e-05
2.3e-05
2.6e-05
2.6e-05
2.7e-05

2.7e-05
3e-05

3.2e-05
3.7e-05
3.8e-05

3.9e-05

4.3e-05

4.5e-05
4.8e-05
5.1e-05

5.3e-05
5.7e-05
5.8e-05
5.9e-05
5.9e-05

6.1e-05
6.1e-05
6.3e-05
6.8e-05
6.9e-05

0.00035
0.00037

0.0004

0.00039
0.00038
0.00039
0.00038

0.00041

0.00041

0.00047
0.00047
0.0005

0.0005
0.0006
0.00063
0.00063
0.00066

0.00066
0.00068
0.00076
0.00076
0.00076

0.00076
0.00083
0.00088
0.001
0.001

0.0011

0.0012

0.0012
0.0013
0.0014

0.0014
0.0015
0.0015
0.0015
0.0015

0.0015
0.0015
0.0016
0.0017
0.0017

Table B4: Pathifier vs. mutations (pan-cancer)

Mutation Pathway Size Effect ‘Wald stat. P-value FDR

PTEN MAPK 284 0.177 17.422 2.1e-65 1.1le-61
PTEN TGFb 284 0.180 16.954 3.7e-62 9.5e-59
PTEN VEGF 284 0.160 15.553 6.9e-53 1.2e-49
PTEN NFkB 284 0.190 15.125 3.4e-50 4.3e-47
VHL JAK-STAT 209 0.190 14.768 5.3e-48 5.4e-45
VHL p53 209 0.220 14.697 1.4e-47 1.2e-44
PTEN TNFa 284 0.158 14.223 9.7e-45 Te-42

PTEN JAK-STAT 284 0.154 13.707 9.4e-42 6e-39

VHL PI3K 209 0.171 12.862 4.5e-37 2.6e-34
VHL NFkB 209 0.185 12.610 9.9e-36 5e-33

CTNNB1 TNFa 182 0.160 11.634 9.4e-31 4.4e-28
PIK3R1 TGFb 126 0.183 11.521 3.3e-30 1.4e-27
PIK3R1 MAPK 126 0.174  11.390 1.5e-29  5.7e-27
PIK3R1 VEGF 126 0.171  11.152 2¢-28 7.2e-26
PBRM1 p53 206 0.166  10.890 3.3e-27  1.le-24
ARID1A JAK-STAT 318 0.112 10.427 4.1e-25 1.3e-22
CTNNB1 TGFb 182 0.139 10.416 4.6e-25 1.4e-22
TP53 EGFR 1339 0.054 10.226 3.2e-24 8.9e-22
CTNNB1 PI3K 182 0.146 10.218 3.4e-24 9.2e-22
PTEN p53 284 0.134 10.192 4.4e-24 1.1e-21
PIK3R1 NFkB 126 0.191 10.185 4.8e-24 1.2e-21
PIK3R1 TNFa 126 0.168 10.169 5.6e-24 1.3e-21
PBRM1 JAK-STAT 206 0.128 9.723 4.4e-22 9.3e-20
ARID1A TGFb 318 0.100 9.723 4.4e-22 9.3e-20
PIK3R1 JAK-STAT 126 0.155 9.262 3.3e-20 6.8e-18
ARID1A VEGF 318 0.091 9.148 9.3e-20 1.8e-17
CTNNB1 EGFR 182 0.107 9.145 9.6e-20 1.8e-17
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VHL Hypoxia
VHL Trail
PIK3CA Trail

CTCF TGFb
ARIDIA  p53
NOTCH1  p53

KRAS TNFa
TP53 JAK-STAT
MLL2 p53
PIK3CA VEGF
PBRM1 NFkB
FAT1 PI3K
VHL TNFa
PTEN Trail
PTEN EGFR
BCOR TGFb
ARHGAP35 MAPK
ZFHX3 TGFb
TP53 PI3K
KRAS p53
NFE2L2 MAPK
MLL2 PI3K
RPL22 NFkB
ARHGAP35 NFkB
RPL22 MAPK
PIK3R1 p53
ARHGAP35 TGFb
APC TGFb
CTCF VEGF
KRAS JAK-STAT
CASPS8 PI3K
NOTCH1 PI3K
RPL22 TGFb
BAP1 JAK-STAT
CTNNB1 NFkB
RPL22 VEGF
ZFHX3 VEGF
TP53 VEGF
CTCF p53
CTNNB1 p53
ARHGAP35 TNFa
CDKN2A PI3K
PBRM1 Hypoxia
PPP2R1A TGFb
CTCF JAK-STAT
FBXWT7 VEGF
FAT1 p53
ARID5B TGFb
EP300 JAK-STAT
CTCF TNFa
BRAF VEGF
RPL22 TNFa
PIK3CA MAPK
CEP290 VEGF
BCOR JAK-STAT
FOXA2 VEGF
CUX1 TGFb
ARHGAP35 VEGF
VHL VEGF
SETD2 JAK-STAT
KEAP1 Trail
MTOR TGFb
PIK3CA JAK-STAT
ARHGAP35 JAK-STAT
ARID5B JAK-STAT
TP53 Trail
FGFR2 VEGF
MLL p53
BAP1 p53
FOXA2 TGFb
SMARCA4 p53
FBXW7 TGFb
MLL2 TGFb
FGFR2 TNFa

CTCF

MAPK

209 0.112 9.090
209 0.137 8.938
667 0.080 8.671
105 0.151 8.637
318 0.106 8.449
141 0.152 8.231
309 0.088 8.137
1339 -0.051 -8.031
278 0.107 7.989
667 0.058 7.880
206 0.117 7.858
239 -0.097 -7.634
209 0.097 7.461
284 0.099 7.412
284 0.071 7.410
97 0.134 7.371
59 0.164 7.331
166 0.103 7.313
1339 -0.047 -7.293
309 -0.093 -7.250
105 0.122 7.238
278 -0.086 -7.226
46 0.222 7.183
59 0.194 7.097
46 0.179 7.095
126 0.137 7.052
59 0.163 7.030
154 0.102 7.020
105 0.118 6.974
309 -0.077 -6.958
88 -0.143 -6.957
141 -0.112 -6.878
46 0.181 6.877
89 0.137 6.874
182 0.109 6.863
46 0.174 6.861
166 0.093 6.820
1339 0.040 6.792
105 0.144 6.760
182 0.110 6.733
59 0.162 6.728
165 -0.101 -6.668
206 0.082 6.585
67 0.143 6.566
105 0.120 6.548
134 0.099 6.542
239 0.094 6.532
75 0.135 6.524
123 0.111 6.515
105 0.118 6.512
313 0.066 6.511
46 0.177 6.504
667 0.047 6.485
88 0.119 6.410
97 0.122 6.402
19 0.251 6.373
110 0.109 6.356
59 0.142 6.296
209 -0.077 -6.278
161 0.093 6.239
114 -0.128 -6.230
136 0.096 6.218
667 0.049 6.168
59 0.150 6.151
75 0.133 6.137
1339 -0.045 -6.134
76 0.122 6.127
126 0.119 6.090
89 0.140 6.067
19 0.247 6.059
118 0.122 6.056
134 0.094 6.046
278 0.067 6.019
76 0.128 6.017
105 0.101 6.004

1.6e-19
6.1e-19
6.3e-18

8.4e-18
4.2e-17
2.5e-16
5.5e-16
1.3e-15

1.8e-15

4.3e-15

5.1e-15
2.9e-14
1.1e-13

1.5e-13
1.6e-13
2.1e-13
2.8e-13
3.2e-13

3.7e-13
5.1e-13
5.5e-13
Ge-13

8.2e-13

1.5e-12
1.5e-12
2.1e-12
2.4e-12
2.6e-12

3.6e-12

4.1e-12

4.1e-12
7.le-12
7.le-12

7.3e-12
7.9e-12
8e-12

1.1e-11
1.3e-11

1.6e-11
1.9e-11
2e-11
3e-11
5.2e-11

5.9e-11
6.6e-11
6.9e-11
7.4e-11
7.8e-11

8.2e-11
8.4e-11
8.5e-11
8.9e-11
le-10

1.6e-10
1.7e-10
2.1e-10
2.3e-10
3.4e-10

3.8e-10
4.9e-10
5.2e-10
5.6e-10
7.6e-10

8.5e-10
9.3e-10
9.5e-10
9.9e-10
1.2e-09

1.4e-09

1.5e-09

1.5e-09
1.6e-09
1.9e-09

2e-09
2.1e-09

2.9e-17
1.1e-16
1.1e-15

1.4e-15
6.6e-15
3.9e-14
8.2e-14
1.9e-13

2.5e-13

5.9e-13

6.8e-13
3.8e-12
1.4e-11

1.9e-11
1.9e-11
2.5e-11
3.2e-11
3.6e-11

4.1e-11
5.5e-11
5.9e-11
6.3e-11
8.4e-11

1.5e-10
1.5e-10
2e-10

2.3e-10
2.4e-10

3.3e-10

3.6e-10

3.6e-10
6.1e-10
6.1e-10

6.1e-10
6.5e-10
6.5e-10
8.5e-10
le-09

1.2e-09
1.5e-09
1.5e-09
2.2e-09
3.8e-09

4.2e-09
4.7e-09
4.8e-09
5.1e-09
5.3e-09

5.5e-09
5.5e-09
5.5e-09
5.7e-09
6.4e-09

1le-08

1.1e-08
1.3e-08
1.4e-08
2.1e-08

2.3e-08
2.9e-08
3e-08

3.2e-08
4.3e-08

4.8e-08
5.2e-08
5.2e-08
5.4e-08
6.7e-08

7.6e-08

7.9e-08

8e-08
8.4e-08
9.8e-08

9.9e-08
1.1e-07
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BRWD1
RPL22
ARID1A

TAF1
CTNNB1
EGFR
MTOR
KEAP1

ARID1A
BRAF
EPHA2
NSD1
VHL

FGFR2
PTEN
CUX1
PIK3CA
BRWD1

CUX1
BRAF
PPP2R1A
BAZ2B
PBRM1

CEP290
TP53
ARID5B
FAT1
FN1

ARID1A
CASPS8
MACF1
LAMA2
SETD2

BCOR

CLSPN

CYLD
TAF1
STK11

RASA1
SETD2
CSDE1
ANK3
SuUZ12

VHL
MED17
FGFR2
PPP2R1A
TAF1

TGFb 105
JAK-STAT 46
TNFa 318
TGFb 111
MAPK 182
Trail 99
p53 136
p53 114
PI3K 318
p53 313
PI3K 60
PI3K 128
MAPK 209
TGFb 76
Hypoxia 284
p53 110
TGFb 667
VEGF 105
JAK-STAT 110
TNFa 313
MAPK 67
TGFb 128
Trail 206
TGFb 88
MAPK 1339
p53 75
TGFb 239
TGFb 121
Hypoxia 318
p53 88
TGFb 257
TGFb 173
p53 161
VEGF 97
MAPK 43
TGFb 61
MAPK 111
Trail 59
p53 87
NFkB 161
TGFb 51
VEGF 174
NFkB 35
TGFb 209
TGFb 29
JAK-STAT 76
TNFa 67
VEGF 111

0.105
0.164
0.064

0.101
0.077
-0.130
0.111
0.121

-0.066
-0.075
-0.146
-0.101
0.071

0.121

0.063

0.122
0.044
0.099

0.104
0.063
0.122
0.093
0.090

0.110
0.034
0.144
0.068
0.094

0.058
0.133
0.065
0.078
0.099

0.100

0.148

0.129
0.093
-0.160

0.131
0.094
0.140
0.074
0.198

0.070
0.184
0.119
0.125
0.091

5.990
5.962
5.939

5.933
5.931
-5.929
5.920
5.889

-5.890
-5.888
-5.884
-5.881
5.875

5.872

5.871

5.864
5.845
5.833

5.815
5.813
5.797
5.795
5.785

5.769
5.754
5.748
5.724
5.712

5.712
5.702
5.683
5.680
5.677

5.673

5.668

5.649
5.651
-5.632

5.609
5.597
5.593
5.583
5.583

5.566
5.556
5.525
5.515
5.504

2.3e-09
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Table B5: PARADIGM vs. mutations (pan-cancer)

Mutation Pathway Size Effect Wald stat. P-value FDR
PTEN PI3K 281 -0.973 -8.811 1.9e-18 8.8e-15
TP53 PI3K 1337 0.461 7.509 7.5e-14 1.7e-10
PTEN TGFb 281 -0.582 -7.126 1.2e-12 1.9e-09
PIK3R1 PI3K 124 -1.080 -6.618 4.2e-11 4.8e-08
PTEN MAPK 281 -0.364 -6.376 2.1e-10 1.9e-07
BRAF MAPK 312 0.340 6.241 4.8e-10 3.7e-07
CTNNB1 TGFb 182 -0.574 -5.721 1.1e-08 7.6e-06
PIK3CA MAPK 663 -0.212 -5.354 9.1e-08 5.3e-05
CTCF MAPK 104 -0.485 -5.298 1.2e-07 6.4e-05
GATA3 MAPK 136 -0.419 -5.209 2e-07 8.9e-05
ZFHX3 TGFb 166 -0.545 -5.200 2.1e-07 8.9e-05
CTNNB1 PI3K 182 -0.701 -5.150 2.7e-07 0.00011
TP53 MAPK 1337 0.161 5.072 4.1e-07 0.00015
PTEN JAK-STAT 281 -0.379 -4.860 1.2e-06 0.00041
PTEN p53 281 -0.215 -4.800 1.7e-06 0.00051
CTCF PI3K 104 -0.814 -4.568 5.1e-06 0.0015
HDACS3 VEGF 22 0.045 4.506 6.8e-06 0.0019
ARID1A TGFb 316 -0.340 -4.375 1.2e-05 0.003
CTNNB1 MAPK 182 -0.306 -4.369 1.3e-05 0.003
BRAF PI3K 312 0.463 4.364 1.3e-05 0.003
CTCF TGFb 104 -0.541 -4.118 3.9e-05 0.0086
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ARID1A MAPK 316 -0.222 -4.094 4.3e-05 0.0091
APC TGFb 151 -0.446 -4.058 5.1e-05 0.01
BRAF JAK-STAT 312 0.299 4.016 6e-05 0.012
PIK3R1 TGFb 124 -0.480 -3.978 7.1e-05 0.013
GATA3 TGFb 136 -0.453 -3.920 9e-05 0.016
PIK3CA p53 663 -0.121 -3.879 0.00011 0.018
ZFHX3 MAPK 166 -0.283 -3.869 0.00011 0.018
NRAS JAK-STAT 56 -0.653 -3.858 0.00012 0.018
ZNF292 MAPK 109 -0.346 -3.857 0.00012 0.018
PTEN Hypoxia 281 -0.301 -3.661 0.00025 0.036
CDH1 PI3K 170 -0.517 -3.669 0.00025 0.036
CDH1 TGFb 170 0.380 3.663 0.00025 0.036
SETDB1 TGFb 68 -0.590 -3.644 0.00027 0.037
CTNNB1 JAK-STAT 182 -0.347 -3.627 0.00029 0.039
ASHI1L MAPK 127 -0.301 -3.615 0.0003 0.039
CDH1 EGFR 170 0.025 3.595 0.00033 0.041
DIS3 VEGF 41 0.026 3.574 0.00036 0.043
NUP93 VEGF 41 0.026 3.539 0.00041 0.048

Table B6: Perturbation-response genes vs. mutations (pan-cancer)

Mutation Pathway Size Effect ‘Wald stat. P-value FDR

VHL Hypoxia 209 2.201 33.612 1.8e-216 9.3e-213
TP53 PI3K 1339 0.778 26.882 1.4e-145 3.5e-142
PTEN p53 284 -1.121 -21.776 4.9e-99 8.3e-96
TP53 EGFR 1339 0.677 21.746 8.7e-99 1.1e-95
CTNNB1 TGFb 182 -1.283 -20.448 3.8e-88 3.9e-85
PTEN PI3K 284 1.085 19.968 2.4e-84 2.1e-81
CTNNB1 p53 182 -1.196 -18.578 9.7e-74 7.1le-71
PBRM1 Hypoxia 206 1.329 18.436 1.1e-72 6.9e-70
PIK3R1 p53 126 -1.381 -17.949 3.8e-69 2.1e-66
PTEN TGFb 284 -0.915 -17.711 1.9e-67 9.7e-65
TP53 TNFa 1339 0.476 17.266 2.6e-64 1.2e-61
CTNNB1 Trail 182 -1.176 -16.494 4.9e-59 2.1e-56
PTEN MAPK 284 -0.987 -16.414 1.7e-58 6.5e-56
TP53 NFkB 1339 0.502 16.283 1.2e-57 4.5e-55
PTEN Trail 284 -0.937 -16.170 Te-57 2.4e-54
BRAF PI3K 313 -0.843 -15.941 2.2e-55 6.9e-53
TP53 MAPK 1339 0.529 15.880 5.4e-55 1.6e-52
KRAS EGFR 309 0.868 15.585 4.3e-53 1.2e-50
PTEN JAK-STAT 284 -0.884 -15.431 4.1e-52 1.1e-49
ARID1A PI3K 318 0.805 15.286 3.4e-51 8.6e-49
PIK3R1 PI3K 126 1.241 15.240 6.4e-51 1.6e-48
CTNNB1 MAPK 182 -1.114 -14.963 3.4e-49 7.8e-47
CTNNB1 Hypoxia 182 -1.138 -14.656 2.5e-47 5.7e-45
CTNNB1 JAK-STAT 182 -0.987 -13.920 5.7e-43 1.2e-40
FAT1 PI3K 239 0.832 13.774 3.9e-42 8e-40
ARHGAP35 p53 59 -1.533 -13.517 1.1e-40 2.2e-38
CDKN2A EGFR 165 0.996 13.216 5.3e-39 le-36
MLL2 PI3K 278 0.714 12.641 6.9e-36 1.3e-33
PTEN TNFa 284 -0.641 -12.637 7.2e-36 1.3e-33
PIK3R1 Trail 126 -1.089 -12.626 8.2e-36 1.4e-33
PIK3R1 TGFb 126 -0.974 -12.602 1.1e-35 1.8e-33
TP53 VEGF 1339 0.390 12.268 6.1e-34 9.7e-32
BRAF MAPK 313 0.712 12.189 1.5e-33 2.4e-31
PTEN VEGF 284 0.692 12.054 7.5e-33 1.1e-30
CTNNB1 NFkB 182 -0.829 -11.900 4.5e-32 6.6e-30
FBXW7 PI3K 134 0.951 11.896 4.7e-32 6.7e-30
PTEN Hypoxia 284 -0.742 -11.656 7.4e-31 le-28
FAT1 VEGF 239 0.724 11.617 1.1e-30 1.5e-28
RPL22 p53 46 -1.487 -11.520 3.4e-30 4.5e-28
CTNNB1 TNFa 182 -0.720 -11.492 4.7e-30 5.9e-28
CTNNB1 PI3K 182 0.781 11.286 4.5e-29 5.6e-27
NSD1 PI3K 128 0.916 11.184 1.4e-28 1.7e-26
NOTCH1 VEGF 141 0.875 10.917 2.5e-27 2.9e-25
NOTCH1 PI3K 141 0.852 10.895 3.1e-27 3.6e-25
CDKN2A PI3K 165 0.783 10.788 9.7e-27 1.1e-24
TP53 JAK-STAT 1339 0.347 10.786 9.9e-27 1.1e-24
NOTCH1 EGFR 141 0.882 10.777 1.1e-26 1.2e-24
PTEN NFkB 284 -0.606 -10.668 3.4e-26 3.7e-24
VHL PI3K 209 -0.687 -10.584 8.2e-26 8.6e-24
ARHGAP35 PI3K 59 1.262 10.542 1.3e-25 1.3e-23

EP300 PI3K 123 0.880 10.523 1.5e-25 1.5e-23
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FAT1 EGFR 239 0.671 10.518 1.6e-25 1.6e-23
VHL VEGF 209 -0.700 -10.520 1.6e-25 1.6e-23
RPL22 PI3K 46 1.400 10.342 9.9e-25 9.3e-23
KALRN PI3K 152 0.775 10.248 2.5e-24 2.3e-22
CASP8 PI3K 88 1.003 10.182 4.9e-24 4.5e-22
PIK3R1 MAPK 126 -0.914 -10.145 7.1le-24 6.4e-22
LAMA2 PI3K 173 0.721 10.139 7.6e-24 6.7e-22
CTCF p53 105 -0.866 -10.012 2.7e-23 2.3e-21
CTNNB1 VEGF 182 0.711 10.001 3e-23 2.5e-21
PIK3R1 JAK-STAT 126 -0.853 -9.968 4.1e-23 3.4e-21
VHL EGFR 209 -0.675 -9.930 6e-23 4.9e-21
KRAS PI3K 309 0.539 9.926 6.2e-23 5e-21
PIK3R1 VEGF 126 0.835 9.844 1.4e-22 1.1e-20
ARID1A Hypoxia 318 -0.599 -9.844 1.4e-22 1.1e-20
ARHGAP35 TGFb 59 -1.106 -9.797 2.2e-22 1.7e-20
ANK3 PI3K 174 0.692 9.742 3.7e-22 2.8e-20
ARID1A TGFb 318 -0.486 -9.640 9.7e-22 7.3e-20
ARID1A p53 318 -0.491 -9.567 1.9e-21 1.4e-19
ARID5B PI3K 75 1.020 9.563 2e-21 1.5e-19
CREBBP PI3K 145 0.731 9.431 Te-21 5e-19
CTCF PI3K 105 0.852 9.409 8.5e-21 Ge-19
ASPM PI3K 178 0.660 9.383 1.1e-20 7.6e-19
VHL Trail 209 0.633 9.250 3.7e-20 2.5e-18
SPOP MAPK 79 -1.038 -9.151 9.1e-20 6.2e-18
PIK3R1 Hypoxia 126 -0.858 -9.116 1.2e-19 8.4e-18
FAT2 PI3K 188 0.618 9.014 3.1e-19 2.1e-17
ZFHX3 PI3K 166 0.655 9.011 3.2e-19 2.1e-17
SMAD4 EGFR 108 0.841 8.998 3.6e-19 2.3e-17
CTCF TGFb 105 -0.766 -8.980 4.2e-19 2.7e-17
ARHGAP35 Trail 59 -1.132 -8.977 4.3e-19 2.7e-17
ARID1A Trail 318 -0.504 -8.938 6.1e-19 3.8e-17
NSD1 VEGF 128 0.751 8.902 8.4e-19 5.2e-17
MLL2 EGFR 278 0.531 8.900 8.6e-19 5.2e-17
RASA1 PI3K 87 0.884 8.895 9e-19 5.4e-17
AKAP9 PI3K 169 0.641 8.882 le-18 5.9e-17
CDKN2A TNFa 165 0.576 8.708 4.6e-18 2.7e-16
PIK3R1 TNFa 126 -0.653 -8.682 5.7e-18 3.3e-16
MACF1 PI3K 257 0.514 8.680 5.8e-18 3.4e-16
CDKN2A MAPK 165 0.686 8.633 8.7e-18 4.9e-16
FGFR2 PI3K 76 0.916 8.621 9.7e-18 5.4e-16
AHNAK PI3K 195 0.581 8.617 le-17 5.6e-16
TAF1 PI3K 111 0.759 8.589 1.3e-17 Te-16
PIK3CA Hypoxia 667 -0.381 -8.574 1.4e-17 7.8e-16
CDKN2A VEGF 165 0.634 8.478 3.3e-17 1.8e-15
BRAF EGFR 313 0.478 8.448 4.2e-17 2.2e-15
KRAS p53 309 -0.437 -8.378 7.5e-17 4e-15
ARID1A VEGF 318 0.461 8.373 7.9e-17 4.1e-15
CDKN2A NFkB 165 0.616 8.365 8.4e-17 4.3e-15
RB1 PI3K 125 0.695 8.332 1.1e-16 5.6e-15
SPTAN1 PI3K 111 0.735 8.315 1.3e-16 6.4e-15
MLL2 VEGF 278 0.486 8.301 1.4e-16 7.1le-15
ACACA PI3K 97 0.779 8.252 2.1e-16 le-14
NOTCH1 NFkB 141 0.656 8.256 2.1e-16 le-14
APC PI3K 154 0.623 8.245 2.3e-16 1.1e-14
RPL22 TGFb 46 -1.049 -8.192 3.5e-16 1.7e-14
PIK3CA PI3K 667 0.321 8.185 3.7e-16 1.8e-14
ARHGAP35 MAPK 59 -1.072 -8.179 3.9e-16 1.8e-14
PPP2R1A P53 67 -0.883 -8.164 4.4e-16 2.1e-14
NRAS TNFa 56 -0.907 -8.103 7.2e-16 3.3e-14
ATRX PI3K 133 0.656 8.092 7.9e-16 3.6e-14
CEP290 PI3K 88 0.800 8.076 9e-16 4.1le-14
PPP2R1A PI3K 67 0.909 8.037 1.2e-15 5.6e-14
CSDE1 PI3K 51 1.036 8.005 1.6e-15 7.le-14
EP300 VEGF 123 0.689 7.995 1.7e-15 7.6e-14
FN1 PI3K 121 0.677 7.977 2e-15 8.7e-14
PIK3CA MAPK 667 -0.340 -7.955 2.4e-15 le-13
CHD3 PI3K 107 0.716 7.947 2.5e-15 1.1e-13
CHD4 PI3K 129 0.654 7.946 2.5e-15 1.1e-13
FGFR2 p53 76 -0.808 -7.942 2.6e-15 1.1e-13
SIN3A PI3K 66 0.900 7.894 3.8e-15 1.6e-13
NCOR2 PI3K 95 0.753 7.888 4e-15 1.7e-13
ATR PI3K 117 0.679 7.878 4.3e-15 1.8e-13
RPL22 TNFa 46 -0.972 -7.875 4.5e-15 1.8e-13
SMARCA4 PI3K 118 0.672 7.826 6.5e-15 2.7e-13

RPL22 JAK-STAT 46 -1.101 -7.817 Te-15 2.8e-13
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BCOR PI3K 97 0.737 7.803 7.8e-15 3.1e-13
CHDS8 PI3K 96 0.735 7.740 1.3e-14 5e-13

LRP6 PI3K 70 0.858 7.740 1.3e-14 5e-13

CIC PI3K 74 0.832 7.712 1.6e-14 6.2e-13
MYHI10 PI3K 107 0.694 7.700 1.7e-14 6.8e-13
DICER1 PI3K 88 0.757 7.639 2.8e-14 1.1e-12
ASHI1L PI3K 127 0.630 7.589 4e-14 1.6e-12
ABCB1 PI3K 111 0.672 7.585 4.2e-14 1.6e-12
PIK3CA VEGF 667 0.304 7.557 5.2e-14 2e-12

KAT6B P53 42 -1.024 -7.512 7.3e-14 2.7e-12
PLXNA1 PI3K 95 0.717 7.505 7.7e-14 2.9e-12
ASXL1 PI3K 87 0.745 7.476 9.5e-14 3.5e-12
BAZ2B PI3K 128 0.618 7.474 9.6e-14 3.5e-12
CUX1 PI3K 110 0.664 7.461 1.1e-13 3.9e-12
HDAC9 PI3K 80 0.775 7.460 1.1e-13 3.9e-12
INPPL1 PI3K 69 0.831 7.446 1.2e-13 4.2e-12
ARHGAP35 JAK-STAT 59 -0.928 -7.448 1.2e-13 4.2e-12
TRIO PI3K 117 0.642 7.442 1.2e-13 4.3e-12
PTPRF PI3K 80 0.772 7.430 1.3e-13 4.7e-12
NOTCH1 TNFa 141 0.531 7.428 1.4e-13 4.7e-12
BRCA2 PI3K 139 0.589 7.417 1.5e-13 5.1e-12
RPL22 Trail 46 -1.057 -7.385 1.9e-13 6.5e-12
TAF1 TGFb 111 -0.615 -7.382 1.9e-13 6.5e-12
FBXW7 VEGF 134 0.609 7.357 2.3e-13 7.9e-12

B.2 Pathway scores and CNAs

Table B7: Gene Ontology vs. CNAs (pan-cancer)

CNA Pathway Size Effect Wald stat. P-value FDR
CTTN__amp Trail 564 0.352 17.309 7.9e-66 7.9e-62
CCND1__amp Trail 616 0.298 15.189 2.5e-51 1.2e-47
MYC__amp NFkB 974 0.097 8.424 4.6e-17 1.5e-13
CDKN2A__del Trail 1060 0.132 8.342 8.9e-17 2.2e-13
INPPL1__amp Trail 201 0.277 8.237 2.1e-16 4.1e-13
CDKN2A_ del NFkB 1060 0.081 7.362 2e-13 3.4e-10
NDRG1__amp NFkB 744 0.091 7.089 1.5e-12 2.2e-09
PIK3CA__amp VEGF 735 -0.123 -7.043 2.1e-12 2.6e-09
RAD21__amp NFkB 722 0.092 7.021 2.5e-12 2.7e-09
MYC__amp P53 974 0.060 6.759 1.5e-11 1.5e-08
TBL1XR1_amp VEGF 710 -0.119 -6.708 2.1le-11 1.9e-08
FXR1__amp VEGF 705 -0.119 -6.693 2.4e-11 2e-08
MSR1_ del Trail 392 -0.164 -6.619 4e-11 3e-08
EIF4G1__amp VEGF 665 -0.115 -6.346 2.4e-10 1.7e-07
NDRG1__amp p53 744 0.062 6.252 4.4e-10 2.9e-07
MUC20__amp VEGF 647 -0.111 -6.043 1.6e-09 9.9e-07
DLG1__amp VEGF 654 -0.110 -5.989 2.2e-09 1.2e-06
CHD1L__amp EGFR 456 -0.124 -5.977 2.4e-09 1.2e-06
TXNIP__amp EGFR 456 -0.124 -5.977 2.4e-09 1.2e-06
ASXL1_ amp VEGF 246 -0.172 -5.978 2.4e-09 1.2e-06
NOTCH2__amp EGFR 481 -0.119 -5.919 3.4e-09 1.6e-06
CDKN2A__del TNFa 1060 0.051 5.900 3.8e-09 1.7e-06
ASH1L__amp PI3K 451 -0.068 -5.730 1.1e-08 4.6e-06
MNDA__amp EGFR 370 -0.128 -5.592 2.4e-08 9.8e-06
RB1_ del PI3K 368 -0.073 -5.526 3.4e-08 1.4e-05
RFC4__amp VEGF 637 -0.101 -5.461 4.9e-08 1.9e-05
ERBB2_amp JAK-STAT 378 -0.081 -5.443 5.4e-08 2e-05
PABPC1__amp NFkB 664 0.074 5.438 5.6e-08 2e-05
PABPC1__amp p53 664 0.056 5.434 5.8e-08 2e-05
SETDB1__amp EGFR 513 -0.107 -5.417 6.3e-08 2.1e-05
ERBB2__amp Trail 378 0.135 5.395 7.1e-08 2.3e-05
FCRL4_amp EGFR 368 -0.123 -5.373 8e-08 2.5e-05
PIP5K1A__amp PI3K 504 -0.061 -5.369 8.3e-08 2.5e-05
FRG1B__amp VEGF 239 -0.156 -5.358 8.8e-08 2.6e-05
EIF4A2_amp VEGF 639 -0.099 -5.349 9.1e-08 2.6e-05
WHSCIL1__amp VEGF 438 -0.117 -5.343 9.4e-08 2.6e-05
CASP8__amp Trail 73 0.295 5.318 1.1e-07 2.8e-05
SPRR3_amp EGFR 432 -0.113 -5.317 1.1e-07 2.8e-05
ZC3H11A_amp p53 332 0.076 5.323 1.1e-07 2.8e-05
CDK12__amp NFkB 310 0.100 5.296 1.2e-07 3e-05
FGFR1_amp VEGF 428 -0.117 -5.302 1.2e-07 2.9e-05

IRS2__amp PI3K 173 -0.099 -5.289 1.3e-07 3e-05
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MED24__amp JAK-STAT 261 -0.093 -5.260 1.5e-07 3.4e-05
MYC__amp PI3K 974 -0.045 -5.229 1.8e-07 4e-05
PTEN_ del p53 404 0.068 5.216 1.9e-07 4.2e-05
ABL2__amp JAK-STAT 298 -0.087 -5.179 2.3e-07 4.9e-05
ARHGEF2__amp EGFR 439 -0.110 -5.181 2.3e-07 4.9e-05
PIP5K1A__amp EGFR 504 -0.103 -5.166 2.5e-07 5.1e-05
CDK12_amp JAK-STAT 310 -0.083 -5.109 3.3e-07 6.7e-05
ING1_amp PI3K 169 -0.096 -5.103 3.4e-07 6.8e-05
MED24_amp Trail 261 0.152 5.097 3.5e-07 6.9e-05
PRRX1_amp EGFR 339 -0.121 -5.093 3.6e-07 7e-05
SETDB1__amp PI3K 513 -0.057 -5.071 4.1e-07 7.5e-05
ASH1L__amp EGFR 451 -0.106 -5.072 4.1e-07 7.5e-05
ARHGEF2_amp PI3K 439 -0.061 -5.058 4.4e-07 7.9e-05
RAD21__amp p53 722 0.050 5.031 5e-07 9e-05
MECOM__amp VEGF 783 -0.085 -4.991 6.2e-07 0.00011
PRRX1_amp JAK-STAT 339 -0.079 -4.990 6.2e-07 0.00011
DHX9__amp JAK-STAT 298 -0.084 -4.984 6.4e-07 0.00011
WHSCIL1__amp JAK-STAT 438 -0.068 -4.970 6.9e-07 0.00011
FRG1B__amp Trail 239 -0.153 -4.947 7.8e-07 0.00013
MUC20__amp TGFb 647 -0.036 -4.937 8.1e-07 0.00013
ERBB2_amp NFkB 378 0.085 4.934 8.2e-07 0.00013
NDRG1__amp PI3K 744 -0.048 -4.937 8.2e-07 0.00013
MYC__amp TNFa 974 0.045 4.932 8.4e-07 0.00013
TFDP1__amp PI3K 178 -0.091 -4.918 8.9e-07 0.00013
FGFR1__amp Trail 428 -0.115 -4.891 le-06 0.00015
PTEN_ del TNFa 404 0.065 4.869 1.1e-06 0.00017
ASXL1_amp MAPK 246 -0.038 -4.873 1.1e-06 0.00017
MED24__amp NFkB 261 0.100 4.862 1.2e-06 0.00017
ARFGEF1__amp NFkB 338 0.089 4.846 1.3e-06 0.00018
PABPC1__amp JAK-STAT 664 -0.056 -4.846 1.3e-06 0.00018
PTEN_ del PI3K 404 -0.061 -4.843 1.3e-06 0.00018
ABL2__amp EGFR 298 -0.122 -4.829 1.4e-06 0.00019
EIF4G1__amp TGFb 665 -0.034 -4.810 1.5e-06 0.0002
CAPNT7T__del Hypoxia 72 0.080 4.788 1.7e-06 0.00022
CHDI1L__amp PI3K 456 -0.057 -4.790 1.7e-06 0.00022
TXNIP__amp PI3K 456 -0.057 -4.790 1.7e-06 0.00022
WHSCI1L1__amp Trail 438 -0.111 -4.795 1.7e-06 0.00022
FGFR1__amp JAK-STAT 428 -0.066 -4.778 1.8e-06 0.00022
PIK3CA_amp TGFb 735 -0.033 -4.779 1.8e-06 0.00022
CLASP2_del Hypoxia 76 0.078 4.764 1.9e-06 0.00023
DLG1_amp NFkB 654 0.064 4.765 1.9e-06 0.00023
FRG1B__amp MAPK 239 -0.038 -4.758 2e-06 0.00024
VHL_ del Hypoxia 79 0.076 4.754 2e-06 0.00024
RAD21_amp TNFa 722 0.049 4.736 2.2e-06 0.00026
MAP3K11__amp Trail 117 0.207 4.717 2.4e-06 0.00028
PIK3C2B__amp p53 355 0.065 4.716 2.5e-06 0.00028
RB1_ del TGFb 368 -0.043 -4.657 3.3e-06 0.00037
PIK3CA__amp NFkB 735 0.059 4.642 3.5e-06 0.00039
FXR1_amp TGFb 705 -0.032 -4.634 3.7e-06 0.0004
ARFGAP1__amp JAK-STAT 279 -0.079 -4.621 3.9e-06 0.00042
TBL1XR1__amp TGFb 710 -0.032 -4.620 3.9e-06 0.00042
CDC73_amp JAK-STAT 280 -0.080 -4.603 4.3e-06 0.00045
NCF2__amp JAK-STAT 307 -0.076 -4.596 4.4e-06 0.00046
NOTCH2__amp PI3K 481 -0.053 -4.594 4.4e-06 0.00046
RB1_del EGFR 368 -0.104 -4.577 4.8e-06 0.00049
DLG1_amp TGFb 654 -0.033 -4.553 5.4e-06 0.00055
MED24__amp Hypoxia 261 -0.041 -4.546 5.5e-06 0.00055
CAPNT7__del VEGF 72 0.240 4.541 5.7e-06 0.00055
CDK12_amp Trail 310 0.125 4.539 5.7e-06 0.00055
RFC4__amp TGFb 637 -0.033 -4.541 5.7e-06 0.00055
TBL1XR1__amp NFkB 710 0.059 4.541 5.7e-06 0.00055
ELF3_amp JAK-STAT 302 -0.075 -4.534 5.9e-06 0.00056
NCF2__amp EGFR 307 -0.113 -4.534 5.9e-06 0.00056
NF1_del PI3K 91 -0.117 -4.530 6e-06 0.00056
MYC__amp JAK-STAT 974 -0.044 -4.522 6.3e-06 0.00058
MUC20_amp NFkB 647 0.061 4.502 6.8e-06 0.00063
SPOP__amp NFkB 168 0.115 4.497 Te-06 0.00064
ARFGAP1_amp MAPK 279 -0.033 -4.489 7.3e-06 0.00066
RB1_ del MAPK 368 -0.029 -4.484 7.5e-06 0.00067
ACTG1__amp PI3K 235 -0.072 -4.471 7.9e-06 0.0007
EIF4A2_ amp TGFb 639 -0.032 -4.455 8.5e-06 0.00075
DHX9__amp EGFR 298 -0.113 -4.444 9e-06 0.00078
AHCTF1__amp JAK-STAT 361 -0.068 -4.437 9.3e-06 0.0008
KEAP1_ _amp TNFa 156 -0.092 -4.435 9.4e-06 0.0008

SPOP__amp Trail 168 0.164 4.432 9.5e-06 0.0008



184 APPENDIX

ARHGEF2__amp JAK-STAT 439 -0.062 -4.425 9.8e-06 0.00083

ASH1L__amp JAK-STAT 451 -0.061 -4.423 9.9e-06 0.00083
CTNNB1_ del Hypoxia 91 0.066 4.413 le-05 0.00086
BPTF__amp NFkB 274 0.089 4.409 1.1e-05 0.00086
FCRL4__amp PI3K 368 -0.058 -4.406 1.1e-05 0.00086
MAP4K1__amp Trail 259 -0.131 -4.408 1.1e-05 0.00086
MECOM__amp NFkB 783 0.054 4.393 1.1e-05 0.0009
SPRR3__amp PI3K 432 -0.054 -4.402 1.1e-05 0.00087
ASXL1_amp Trail 246 -0.135 -4.410 1.1e-05 0.00086
ABL2__amp MAPK 298 -0.032 -4.382 1.2e-05 0.00093
MNDA__amp PI3K 370 -0.057 -4.373 1.2e-05 0.00096
MYC_amp VEGF 974 -0.069 -4.386 1.2e-05 0.00092
NCF2__amp MAPK 307 -0.031 -4.360 1.3e-05 0.001
ASPM__amp JAK-STAT 279 -0.075 -4.362 1.3e-05 0.001
MLH1_ del Hypoxia 83 0.068 4.343 1.4e-05 0.0011
ATR__amp VEGF 330 -0.109 -4.335 1.5e-05 0.0011
PPM1D__amp NFkB 264 0.089 4.332 1.5e-05 0.0011
BMPR2__amp Trail 68 0.248 4.312 1.6e-05 0.0012
PABPC1__amp PI3K 664 -0.043 -4.300 1.7e-05 0.0013
PTEN_ del EGFR 404 -0.093 -4.305 1.7e-05 0.0012
SPOP__amp VEGF 168 -0.149 -4.301 1.7e-05 0.0012
CCT5__amp Hypoxia 406 0.032 4.295 1.8e-05 0.0013
DHX9_ amp MAPK 298 -0.031 -4.296 1.8e-05 0.0013
PRPF8__amp Trail 40 -0.320 -4.265 2e-05 0.0014
SMARCA4__amp TNFa 168 -0.086 -4.265 2e-05 0.0014
COL1A1_amp NFkB 170 0.108 4.258 2.1e-05 0.0015
SRGAP3__del Hypoxia 93 0.063 4.256 2.1e-05 0.0015
NDRG1__amp TNFa 744 0.043 4.236 2.3e-05 0.0016
ARFGEF2__amp JAK-STAT 226 -0.080 -4.228 2.4e-05 0.0016
VHL__amp JAK-STAT 112 -0.112 -4.220 2.5e-05 0.0017
NEDD4L__amp TNFa 41 -0.170 -4.208 2.6e-05 0.0017
PSME3__amp TGFb 57 -0.097 -4.213 2.6e-05 0.0017
AXIN2_amp NFkB 239 0.091 4.202 2.7e-05 0.0018

Table B8: Reactome vs. CNAs (pan-cancer)

CNA Pathway Size Effect Wald stat. P-value FDR

MSR1__del Trail 392 -0.209 -9.748 2.8e-22 2.8e-18
CTTN__amp TNFa 564 0.107 9.460 4.1e-21 2e-17

PIP5K1A__amp TNFa 504 0.111 9.254 3e-20 9.9e-17
SETDB1__amp TNFa 513 0.107 9.022 2.5e-19 6.1e-16
MYC_amp p53 974 0.078 8.982 3.6e-19 7.2e-16
NOTCH2_ amp TNFa 481 0.106 8.727 3.3e-18 5.5e-15
CHDI1L__ amp TNFa 456 0.106 8.518 2e-17 2.5e-14
TXNIP__amp TNFa 456 0.106 8.518 2e-17 2.5e-14
SPRR3__amp TNFa 432 0.108 8.411 5.1e-17 5.6e-14
PTEN_ del PI3K 404 -0.061 -8.324 le-16 le-13

ASHI1L_ amp TNFa 451 0.104 8.245 2e-16 1.8e-13
FGFR1_amp Trail 428 -0.168 -8.221 2.4e-16 2e-13

WHSC1L1__amp Trail 438 -0.164 -8.082 7.5e-16 5.7e-13
ARHGEF2__amp TNFa 439 0.103 8.072 8.4e-16 6e-13

NDRG1__amp p53 744 0.078 8.007 1.4e-15 8.9e-13
PABPC1__amp p53 664 0.082 8.013 1.4e-15 8.9e-13
CCND1__amp TNFa 616 0.086 7.972 1.8e-15 1.1le-12
FCRL4__amp TNFa 368 0.109 7.835 5.6e-15 3.1le-12
MNDA__amp TNFa 370 0.107 7.733 1.2e-14 6.5e-12
RAD21__amp p53 722 0.075 7.601 3.5e-14 1.7e-11
PABPC1__amp Trail 664 -0.119 -6.971 3.5e-12 1.7e-09
MYC_amp TGFb 974 0.049 6.942 4.3e-12 2e-09

CTTN_amp Trail 564 0.125 6.882 6.4e-12 2.8e-09
CASP8__amp Trail 73 0.330 6.787 1.2e-11 5.1e-09
SPOP__amp p53 168 0.125 6.498 8.7e-11 3.5e-08
COL1A1_amp p53 170 0.122 6.346 2.3e-10 9e-08

HLF_amp p53 194 0.114 6.328 2.6e-10 9.7e-08
GATA3__amp PI3K 155 -0.073 -6.317 2.8e-10 le-07

SOX17_amp Trail 319 -0.142 -5.978 2.4e-09 8.2e-07
DDX5__amp p53 252 0.093 5.874 4.5e-09 1.5e-06
PPM1D_ amp p53 264 0.090 5.815 6.3e-09 2e-06

SMURF2__amp p53 254 0.092 5.799 7e-09 2.2e-06
CDKN2A_ del TNFa 1060 0.050 5.769 8.4e-09 2.5e-06
BPTF__amp p53 274 0.088 5.742 9.8e-09 2.9e-06
PTEN_ del EGFR 404 -0.046 -5.734 le-08 2.9e-06

ARFGEF1__amp p53 338 0.078 5.596 2.3e-08 6.4e-06
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ARFGEF1__amp Trail 338 -0.129 -5.568 2.7e-08 7.2e-06
PRRX1__amp TNFa 339 0.081 5.563 2.8e-08 7.3e-06
AXIN2__amp p53 239 0.089 5.488 4.2e-08 1.1e-05
MYC__amp Hypoxia 974 0.042 5.482 4.4e-08 1.1e-05
MYC__amp PI3K 974 -0.027 -5.454 5.2e-08 1.2e-05
RAD21__amp PI3K 722 -0.031 -5.438 5.6e-08 1.3e-05
PRKAR1A__amp p53 259 0.085 5.433 5.7e-08 1.3e-05
BMPR2__amp Trail 68 0.270 5.357 8.7e-08 1.9e-05
PABPCI1__amp PI3K 664 -0.032 -5.359 8.7e-08 1.9e-05
FRG1B__amp Trail 239 -0.145 -5.357 8.8e-08 1.9e-05
ASH1L_amp PI3K 451 -0.038 -5.358 8.8e-08 1.9e-05
CLTC_amp P53 252 0.085 5.327 le-07 2.1e-05
NDRG1__amp PI3K 744 -0.030 -5.296 1.2e-07 2.5e-05
CDKN2A_ del Trail 1060 0.074 5.286 1.3e-07 2.5e-05
KLF6__amp PI3K 157 -0.061 -5.287 1.3e-07 2.5e-05
NDRG1__amp TGFb 744 0.042 5.275 1.4e-07 2.6e-05
CCND1__amp Trail 616 0.091 5.218 1.9e-07 3.5e-05
PIK3C2B__amp TNFa 355 0.073 5.174 2.4e-07 4.4e-05
MED24__amp p53 261 0.080 5.129 3e-07 5.4e-05
WHSCIL1__amp JAK-STAT 438 -0.058 -5.115 3.2e-07 5.7e-05
ABL2__amp VEGF 298 -0.061 -5.091 3.7e-07 6.4e-05
RAD21__amp Hypoxia 722 0.044 5.082 3.9e-07 6.6e-05
NDRG1__amp Hypoxia 744 0.044 5.064 4.2e-07 7.2e-05
ASH1L__amp EGFR 451 -0.039 -5.045 4.7e-07 7.8e-05
VIM__amp PI3K 91 -0.075 -5.020 5.3e-07 8.6e-05
CDKN2A__del p53 1060 0.042 5.004 5.8e-07 9.2e-05
FMR1__amp Hypoxia 124 0.098 4.985 6.3e-07 0.0001
MNDA__amp PI3K 370 -0.039 -4.958 7.3e-07 0.00011
FGFR1_amp JAK-STAT 428 -0.057 -4.949 7.6e-07 0.00012
FGFR1__amp VEGF 428 -0.049 -4.941 7.9e-07 0.00012
KRAS__amp TGFb 277 0.060 4.938 8.1e-07 0.00012
ARID4B__amp VEGF 346 -0.055 -4.932 8.4e-07 0.00012
AFF4_amp JAK-STAT 103 0.113 4.921 8.8e-07 0.00013
MECOM__amp TGFb 783 0.037 4.921 8.8e-07 0.00013
PPM1D__amp TGFb 264 0.062 4.913 9.2e-07 0.00013
SMAD4__del PI3K 208 -0.049 -4.898 le-06 0.00014
HLF__amp TGFb 194 0.070 4.855 1.2e-06 0.00017
FCRL4__amp PI3K 368 -0.038 -4.845 1.3e-06 0.00017
CHDI1L_amp PI3K 456 -0.034 -4.818 1.5e-06 0.00019
DHX9__amp VEGF 298 -0.057 -4.810 1.5e-06 0.0002
TXNIP__amp PI3K 456 -0.034 -4.818 1.5e-06 0.00019
PRRX1__amp VEGF 339 -0.054 -4.806 1.6e-06 0.0002
WHSCIL1__amp VEGF 438 -0.047 -4.793 1.7e-06 0.00021
ZC3H11A_amp TNFa 332 0.070 4.792 1.7e-06 0.00021
PRKAR1A__amp TGFb 259 0.060 4.775 1.8e-06 0.00023
MNDA__amp EGFR 370 -0.040 -4.773 1.9e-06 0.00023
INPPL1_amp TNFa 201 0.088 4.753 2e-06 0.00024
MNDA__amp VEGF 370 -0.051 -4.723 2.4e-06 0.00028
MYC__amp Trail 974 -0.069 -4.723 2.4e-06 0.00028
FCRL4__amp EGFR 368 -0.040 -4.709 2.5e-06 0.00029
PSIP1__amp JAK-STAT 92 0.113 4.712 2.5e-06 0.00029
SOX17_amp p53 319 0.067 4.711 2.5e-06 0.00029
SPRR3__amp EGFR 432 -0.037 -4.707 2.6e-06 0.00029
ASPM__amp VEGF 279 -0.058 -4.704 2.6e-06 0.00029
BPTF__amp TGFb 274 0.058 4.696 2.7e-06 0.00029
FCRL4__amp VEGF 368 -0.051 -4.700 2.7e-06 0.00029
NCF2_amp VEGF 307 -0.055 -4.654 3.3e-06 0.00035
NOTCH2__amp PI3K 481 -0.032 -4.654 3.3e-06 0.00035
CHDI1L__amp VEGF 456 -0.045 -4.643 3.5e-06 0.00036
TXNIP__amp VEGF 456 -0.045 -4.643 3.5e-06 0.00036
ARID4B_ amp EGFR 346 -0.040 -4.610 4.1e-06 0.00042
SPRR3__amp VEGF 432 -0.046 -4.595 4.4e-06 0.00045
ELF3_amp VEGF 302 -0.054 -4.586 4.6e-06 0.00046
ARHGEF2__amp PI3K 439 -0.033 -4.588 4.6e-06 0.00046
RAD21_amp Trail 722 -0.076 -4.574 4.9e-06 0.00048
ERBB2_amp pb53 378 0.060 4.564 5.1e-06 0.0005
SPRR3__amp PI3K 432 -0.033 -4.554 5.4e-06 0.00052
ASH1L_amp VEGF 451 -0.045 -4.551 5.4e-06 0.00052
HDAC3__amp JAK-STAT 99 0.106 4.541 5.7e-06 0.00054
CHD1L__amp EGFR 456 -0.034 -4.527 6.1e-06 0.00056
PPP2R5A_amp TNFa 259 0.074 4.527 6.1e-06 0.00056
TXNIP__amp EGFR 456 -0.034 -4.527 6.1e-06 0.00056
DIS3__del NFkB 123 -0.100 -4.502 6.8e-06 0.00062
SETDB1__amp VEGF 513 -0.041 -4.461 8.3e-06 0.00075

AFF4_amp Trail 103 0.184 4.456 8.5e-06 0.00076
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F8_ amp NFkB 176 0.083 4.453 8.6e-06 0.00076
TBL1XR1__amp p53 710 0.044 4.452 8.7e-06 0.00076
PABPC1__amp Hypoxia 664 0.040 4.427 9.7e-06 0.00085
PIP5K1A__amp VEGF 504 -0.041 -4.420 le-05 0.00086
ARHGEF2__amp EGFR 439 -0.034 -4.417 le-05 0.00087
ARHGEF6__amp Hypoxia 89 0.103 4.420 le-05 0.00086
CDKN2A_del PI3K 1060 -0.021 -4.391 1.1e-05 0.00095
PIP5K1A__amp EGFR 504 -0.032 -4.400 1.1e-05 0.00092
SETDB1__amp PI3K 513 -0.029 -4.407 1.1e-05 0.0009
CLTC_amp TGFb 252 0.056 4.376 1.2e-05 0.00099
ARAP3_amp JAK-STAT 100 0.102 4.380 1.2e-05 0.00098
NDRG1__amp Trail 744 -0.072 -4.379 1.2e-05 0.00098
PIK3C2B__amp VEGF 355 -0.048 -4.384 1.2e-05 0.00098
CDK12_ amp p53 310 0.063 4.356 1.3e-05 0.001
COL1A1_amp NFkB 170 -0.083 -4.368 1.3e-05 0.00099
FIP1L1_amp Trail 139 -0.154 -4.360 1.3e-05 0.001
KDR__amp Trail 116 -0.169 -4.369 1.3e-05 0.00099
NOTCH2__amp VEGF 481 -0.041 -4.362 1.3e-05 0.001
SETDB1__amp EGFR 513 -0.032 -4.371 1.3e-05 0.00099
SMURF2__amp TGFb 254 0.056 4.368 1.3e-05 0.00099
TCF4__amp NFkB 32 -0.188 -4.361 1.3e-05 0.001
KDMG6A__del EGFR 135 -0.059 -4.352 1.4e-05 0.001
STK11_del PI3K 91 -0.066 -4.344 1.4e-05 0.0011
CDC73_amp VEGF 280 -0.053 -4.329 1.5e-05 0.0011
HCFC1__amp NFkB 195 0.077 4.311 1.6e-05 0.0012
WNK1__amp TGFb 267 0.053 4.312 1.6e-05 0.0012
EIF4G1__amp NFkB 665 -0.043 -4.311 1.7e-05 0.0012
KDM6A__del PI3K 135 -0.054 -4.308 1.7e-05 0.0012
ARID4B__amp PI3K 346 -0.035 -4.311 1.7e-05 0.0012
PIP5K1A__amp PI3K 504 -0.029 -4.285 1.9e-05 0.0013
ARFGEF1_amp Hypoxia 338 0.052 4.263 2e-05 0.0014
NOTCH2__amp EGFR 481 -0.032 -4.270 2e-05 0.0014
ARHGEF2_amp VEGF 439 -0.042 -4.265 2e-05 0.0014
ZC3H11A_amp VEGF 332 -0.048 -4.263 2e-05 0.0014
NFE2L2_ amp p53 133 0.092 4.259 2.1e-05 0.0014
DDX5__amp NFkB 252 -0.067 -4.251 2.2e-05 0.0015
FXR1 amp NFkB 705 -0.041 -4.250 2.2e-05 0.0015
MCMS8_amp Trail 85 -0.190 -4.245 2.2e-05 0.0015
DDX5__amp TGFb 252 0.054 4.240 2.3e-05 0.0015
Table B9: SPIA vs. CNAs (pan-cancer)
CNA Pathway Size Effect ‘Wald stat. P-value FDR
MSR1__del Trail 341 -21.244 -13.496 1.5e-40 1.1e-36
HDAC3_amp NFkB 87 43.874 12.053 5e-33 1.2e-29
ARAP3_amp NFkB 87 43.872 12.052 5e-33 1.2e-29
PIK3CA__amp MAPK 621 -15.399 -11.950 2e-32 3.6e-29
FXR1_amp MAPK 595 -15.554 -11.835 7.7e-32 9.3e-29
CLASP2_ del NFkB 69 45.058 11.843 7.8e-32 9.3e-29
TBL1XR1__amp MAPK 595 -15.399 -11.716 3e-31 3.1e-28
EIF4G1__amp MAPK 561 -15.678 -11.639 7.3e-31 6.6e-28
CLASP2__del VEGF 69 19.588 11.570 1.8e-30 1.4e-27
MLH1_ del VEGF 77 18.555 11.558 2e-30 1.5e-27
CSNK1G3_amp NFkB 78 44.343 11.501 2.9e-30 1.7e-27
ARHGAP26__amp NFkB 94 40.340 11.500 3e-30 1.7e-27
AFF4__amp NFkB 90 41.309 11.494 3.1e-30 1.7e-27
MECOM__amp MAPK 643 -14.604 -11.503 3.4e-30 1.8e-27
MYDS88_ del NFkB 68 43.618 11.366 1.7e-29 8.4e-27
ACSL6__amp NFkB 86 41.353 11.252 4.7e-29 2.1e-26
NPM1__amp NFkB 124 34.537 11.248 5.1e-29 2.1e-26
G3BP1__amp NFkB 91 39.829 11.167 1.2e-28 4.9e-26
PPM1D__amp PI3K 222 -3.518 -11.164 1.4e-28 5.2e-26
FAT2__amp NFkB 92 39.180 11.043 4.7e-28 1.7e-25
CLTC_amp PI3K 212 -3.552 -10.998 8.3e-28 2.9e-25
CAPNT7__del NFkB 69 41.875 10.973 1.2e-27 4e-25
CTNNB1__del VEGF 78 17.413 10.873 3.7e-27 1.2e-24
MLH1_ del NFkB 7 39.206 10.850 4.7e-27 1.4e-24
MYDS88_del VEGF 68 18.553 10.839 5.3e-27 1.5e-24
CTNNB1_ del NFkB 78 38.705 10.788 9.2e-27 2.5e-24
PABPC1__amp Trail 523 -14.336 -10.713 2.2e-26 5.9e-24
CAPNT7__del VEGF 69 18.071 10.678 2.8e-26 7.3e-24
ITGA9_del VEGF 7 16.964 10.532 1.3e-25 3.3e-23
RFC4__amp MAPK 537 -14.271 -10.380 5.9e-25 1.4e-22
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12.938
-13.653
31.354

27.552
14.474
11.525
10.507
28.872

28.044

-10.290

-16.546
13.436
-13.870

28.296
-2.810
-15.918
-1.597
-14.014

-14.014
-13.122
28.957
27.021
-15.903

-28.297
-2.689
-13.998
-2.776
-2.074

-15.536

11.572

-14.723
-13.656
1.475

-11.103
14.967
-13.285
-1.999
-1.581

-10.360
10.314
10.313
10.329
-10.332

10.242
-10.185
10.170
-10.077
10.017

9.974
9.863
9.837
-9.825
9.810

9.801
-9.739
-9.632
9.636
9.628

9.625
-9.619
9.590
-9.599
9.585

9.562

-9.553

-9.497
9.501
9.484

-9.488
-9.457
-9.423
9.407
9.362

9.303
-9.289
9.282
-9.093
9.058

9.038
9.008
8.998
8.999
8.887

8.888

-8.846

-8.783
8.779
-8.749

8.724

-8.685
-8.674
-8.674
-8.644

-8.644
-8.617
8.600
8.601
-8.570

-8.550
-8.544
-8.550
-8.530
-8.511

-8.456

8.462

-8.405
-8.397
8.389

-8.398
8.357

-8.340
-8.300
-8.299

7.2e-25
le-24
le-24
1.1e-24
1.1e-24

2.2e-24
4.7e-24
5.1e-24
1.4e-23
2.4e-23

3.2e-23
1.1e-22
1.2e-22
1.4e-22
1.6e-22

1.7e-22
3.7e-22
9.1e-22
9.8e-22
le-21

1.1e-21
1.2e-21
1.3e-21
1.4e-21
1.6e-21

1.9e-21
2e-21
3.4e-21

1.7e-22
2.2e-22
2.2e-22
2.2e-22
2.2e-22

4.3e-22
9.2e-22
9.7e-22
2.5e-21
4.3e-21

5.6e-21
1.9e-20
2e-20

2.3e-20
2.5e-20

2.7e-20
5.7e-20
1.4e-19
1.4e-19
1.5e-19

1.5e-19
1.6e-19
1.8e-19
1.9e-19
2.1e-19

2.5e-19
2.6e-19
4.2e-19

3.5e-21 4.2e-19
4e-21 4.8e-19

4.2e-21 5e-19

5.4e-21 6.3e-19
6.8e-21 7.8e-19
8.3e-21 9.4e-19
1.1e-20 1.2e-18

2.2e-20 2.4e-18
2.6e-20 2.7e-18
2.7e-20 2.9e-18
1.5e-19 1.6e-17
2e-19 2.1e-17

2.4e-19 2.5e-17
2.9e-19 2.9e-17
3.1e-19 3.1e-17
3.1e-19 3.1le-17
9.2e-19 8.8e-17

9.4e-19 8.9e-17
1.4e-18 1.3e-16
2.4e-18 2.2e-16

2.4e-18
3.1e-18

3.9e-18
5.2e-18
5.6e-18
5.8e-18
7.6e-18

7.6e-18
9.9e-18
1.1e-17
1.1e-17
1.4e-17

1.6e-17
1.7e-17
1.8e-17
1.9e-17
2.3e-17

3.7e-17

3.7e-17

6e-17
6.4e-17
6.5e-17

6.5e-17
8e-17

9.6e-17
1.3e-16
1.4e-16

2.2e-16
2.8e-16

3.5e-16
4.5e-16
4.9e-16
4.9e-16
6.3e-16

6.3e-16
8.2e-16
9.2e-16
9.2e-16
1.1le-15

1.3e-15
1.4e-15
1.4e-15
1.5e-15
1.7e-15

2.8e-15

2.8e-15

4.4e-15
4.6e-15
4.6e-15

4.6e-15
5.7e-15
6.7e-15
9.2e-15
9.4e-15
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NPM1_amp PI3K 124 -3.466 -8.274 1.6e-16 1.1e-14
ARAP3_amp PI3K 87 -4.122 -8.263 1.8e-16 1.2e-14
HDAC3_amp PI3K 87 -4.120 -8.257 1.9e-16 1.2e-14
ARHGAP26__amp PI3K 94 -3.968 -8.254 1.9e-16 1.3e-14
ACSL6__amp PI3K 86 -4.142 -8.246 2e-16 1.3e-14
SETD2_ del Trail 97 22.570 8.235 2.4e-16 1.6e-14
CSNK1G3_amp PI3K 78 -4.331 -8.220 2.5e-16 1.6e-14
CAPNT7__del MAPK 69 27.702 8.219 2.7e-16 1.7e-14
G3BP1__amp PI3K 91 -4.005 -8.209 2.8e-16 1.7e-14
PIK3CA__amp JAK-STAT 621 -1.537 -8.211 2.8e-16 1.8e-14
PRRX1__amp Trail 284 -14.998 -8.217 2.9e-16 1.8e-14
WHSCI1L1__amp MAPK 399 -12.921 -8.203 3e-16 1.8e-14
PBRM1_ del NFkB 110 25.065 8.208 3.1le-16 1.9e-14
AFF4_amp MAPK 90 26.357 8.187 3.3e-16 2e-14
EIF4G1__amp NFkB 561 -12.787 -8.188 3.4e-16 2.1e-14
TFDP2_amp MAPK 287 -14.760 -8.181 3.6e-16 2.2e-14
TBL1XR1_amp JAK-STAT 595 -1.553 -8.154 4.5e-16 2.7e-14
MLH1_ del MAPK 7 25.958 8.151 4.8e-16 2.8e-14
FAT2__amp PI3K 92 -3.948 -8.133 5.1e-16 3e-14
FXR1_amp NFkB 595 -12.415 -8.141 5.1e-16 2.9e-14
COL1A1_amp PI3K 150 -3.119 -8.135 5.2e-16 3e-14
PRKAR1A_amp PI3K 207 -2.660 -8.127 5.6e-16 3.2e-14
MNDA__amp Trail 315 -14.110 -8.096 7.6e-16 4.3e-14
NSD1__amp PI3K 150 -3.092 -8.086 7.6e-16 4.3e-14
XPO1_amp MAPK 82 -26.742 -8.075 8.4e-16 4.7e-14
HDAC3_amp MAPK 87 26.418 8.065 9e-16 4.9e-14
ARAP3_amp MAPK 87 26.411 8.063 9.1e-16 5e-14
FOXA1l_amp MAPK 142 -20.268 -8.050 le-15 5.5e-14
ABL2__amp Trail 249 -15.636 -8.051 1.1e-15 5.9e-14
PIK3CB__amp MAPK 255 -15.319 -8.019 1.3e-15 7.2e-14
MYDS88_del MAPK 68 27.188 8.014 1.4e-15 7.6e-14
HLF__amp PI3K 165 -2.934 -8.008 1.5e-15 7.6e-14
XRN1_amp MAPK 289 -14.379 -7.977 1.9e-15 9.9e-14
CHDI1L__amp Trail 390 -12.510 -7.949 2.4e-15 1.2e-13
TXNIP__amp Trail 390 -12.510 -7.949 2.4e-15 1.2e-13
ATR_ amp MAPK 289 -14.309 -7.945 2.4e-15 1.2e-13
BAP1_del NFkB 109 24.346 7.937 2.7e-15 1.4e-13
ABL2__amp MAPK 249 -15.825 -7.931 2.8e-15 1.4e-13
SPOP__amp PI3K 145 -3.080 -7.900 3.4e-15 1.7e-13
TGFBR2_ del MAPK 98 22.330 7.887 4e-15 2e-13
BPTF__amp MAPK 223 -15.958 -7.873 4.3e-15 2.1e-13
RB1_del MAPK 272 -14.594 -7.871 4.4e-15 2.2e-13
RHOA__del Trail 103 20.930 7.868 4.6e-15 2.3e-13
EIF4G1_amp JAK-STAT 561 -1.519 -7.785 8.6e-15 4.2e-13
WNTS5A__del VEGF 92 11.600 7.788 8.7e-15 4.2e-13
Table B10: Pathifier vs. CNAs (pan-cancer)
CNA Pathway Size Effect ‘Wald stat. P-value FDR
PIK3CA__amp VEGF 621 0.102 12.429 6.8e-35 4.5e-31
EIF4G1_amp NFkB 561 0.124 12.406 9e-35 4.5e-31
EIF4G1__amp VEGF 561 0.105 12.273 4.5e-34 le-30
FXR1_amp VEGF 595 0.102 12.265 4.9e-34 le-30
PIK3CA__amp NFkB 621 0.117 12.259 5.2e-34 le-30
FXR1_amp NFkB 595 0.119 12.228 7.6e-34 1.3e-30
TBL1XR1__amp NFkB 595 0.118 12.065 5.3e-33 7.5e-30
TBL1XR1__amp VEGF 595 0.100 12.016 9.4e-33 1.2e-29
MUC20_amp VEGF 547 0.104 11.966 1.7e-32 1.8e-29
CTTN__amp Trail 529 0.124 11.801 9.7e-32 9.6e-29
DLG1_amp VEGF 554 0.101 11.732 2.5e-31 2.3e-28
MECOM__amp VEGF 643 0.094 11.640 7.3e-31 6e-28
RFC4__amp VEGF 537 0.101 11.562 1.7e-30 1.3e-27
EIF4A2__amp VEGF 538 0.100 11.497 3.6e-30 2.6e-27
MECOM__amp NFkB 643 0.109 11.434 7.4e-30 4.9e-27
DLG1__amp NFkB 554 0.114 11.392 1.2e-29 7.2e-27
CTTN__amp TNFa 529 0.102 11.334 1.9e-29 1.1e-26
RFC4_amp NFkB 537 0.115 11.306 3.1e-29 1.7e-26
EIF4A2__amp NFkB 538 0.115 11.277 4.2e-29 2.2e-26
MUC20_amp NFkB 547 0.114 11.263 4.9e-29 2.4e-26
TBL1XR1__amp EGFR 595 0.085 11.234 6.8e-29 3.2e-26
PIK3CA__amp EGFR 621 0.083 11.162 1.5e-28 6.7e-26
CCND1__amp TNFa 581 0.095 11.020 6.1e-28 2.6e-25
DLG1_amp EGFR 554 0.086 10.951 1.5e-27 6e-25

FXR1_amp EGFR 595 0.082 10.772 9.9e-27 3.9e-24
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MUC20_amp EGFR 547  0.085 10.754 1.2e-26  4.6e-24
CCND1_amp Trail 581  0.106 10.444 2.7¢-25  le-22
EIF4G1_amp EGFR 561  0.080 10.357 7.4e-25  2.6e-22
FXR1_amp MAPK 595  0.079 9.923 5.7¢-23  2e-20
PIK3CA_amp MAPK 621  0.078 9.909 6.6e-23  2.2e-20
RFC4_amp EGFR 537  0.078 9.872 9.5e-23  3e-20
EIF4A2_ amp EGFR 538  0.078 9.852 1.1e-22  3.6e-20
TBL1XR1_amp MAPK 595  0.077  9.607 1.2e-21  3.6e-19
EIF4G1_amp MAPK 561  0.078 9.525 2.6e-21  7.7e-19
MECOM__amp EGFR 643  0.070 9.498 3.4e-21  9.6e-19
DLG1_amp MAPK 554  0.077  9.345 1.4e-20  3.9e-18
TRIO__amp NFkB 365 0.114  9.275 2.7e-20  7.4e-18
MUC20__amp MAPK 547  0.076 9.146 8.8¢-20  2.3e-17
RFC4_amp MAPK 537  0.074 8.832 1.5¢-18  3.7¢-16
EIF4A2_amp MAPK 538  0.074 8.809 1.8¢-18  4.4e-16
XRN1_amp EGFR 289  0.091 8.669 6e-18 1.4e-15
ARHGAP26_amp  JAK-STAT 94 0.180 8.646 6.9¢-18  1.6e-15
ZNF292_ del NFkB 118  -0.179  -8.606 le-17 2.4e-15
CCT5_amp NFkB 342  0.108 8.550 1.7e-17  3.8e-15
TFDP2_amp EGFR 287  0.090 8.524 2.1e-17  4.6e-15
CLASP2_ del p53 69  0.225 8.490 2.9¢-17  6.2¢-15
TRIO__amp Trail 365 -0.105  -8.458 3.7¢-17  7.8e-15
ATR_ amp VEGF 289  0.098 8.450 3.9¢-17  8.1le-15
ATR_amp EGFR 289  0.089 8.426 4.8¢-17  9.6e-15
AFF4_amp JAK-STAT 90  0.178 8.389 6.2e-17  1.2e-14
XRNI1_amp VEGF 289  0.097 8.322 1.1e-16  2.2e-14
BRWD1_ del NFkB 83  -0.204  -8.317 1.2e-16  2.2e-14
HDAC3_amp JAK-STAT 87  0.179 8.302 1.3e-16  2.4e-14
ARAP3_amp JAK-STAT 87  0.179 8.301 1.3e-16  2.4e-14
RASA2_amp VEGF 276  0.098 8.245 2.1e-16  3.9e-14
TFDP2_amp VEGF 287  0.096 8.212 2.8¢-16  5e-14
ACSL6_amp JAK-STAT 86  0.178 8.189 3.3¢-16  5.7¢-14
CCT5_amp Trail 342  -0.105  -8.182 3.7¢-16  6.3¢-14
MYD88__del p53 68  0.219 8.180 3.8¢-16  6.3¢-14
CSNK1G3_amp p53 78  0.202 8.129 5.3e-16  8.8e-14
MECOM__amp MAPK 643  0.063 8.125 5.7e-16  9.3e-14
MLH1_ del p53 77 0.202 8.036 1.2e-15  1.9e-13
TFDP2_amp NFkB 287  0.109 8.021 1.3e-15  2.1e-13
XRN1_amp NFkB 289  0.108 7.986 1.8e-15  2.7e-13
CSNK1G3_amp JAK-STAT 78  0.182 7.962 2e-15 3.1e-13
ATR_ amp NFkB 289  0.107 7.951 2.3e-15  3.5e-13
RASA2_amp EGFR 276  0.085 7.940 2.5¢-15  3.8e-13
PIK3CB_ amp VEGF 255  0.097 7.893 3.7¢-15  5.4e-13
HDAC3_amp p53 87  0.184 7.787 8.2e-15  1.2e-12
ARAP3_amp p53 87  0.184 7.787 8.2e-15  1.2e-12
ARHGAP26_amp  p53 94 0.177 7.785 8.3e-15  1.2e-12
ACSL6_amp p53 86  0.184 7.766 9.6e-15  1.3e-12
RASA2_amp NFkB 276  0.107 7.770 9.7e-15  1.3e-12
CDKN2A__del VEGF 793 0.058 7.729 1.3e-14  1.8e-12
SYNCRIP_ del NFkB 104 -0.171  -7.725  1l.4e-14  1.8e-12
EIF4G1_amp TGFb 561  0.064 7.711 1.5e-14  2e-12
CTNNB1_ del p53 78  0.192 7.667 2.2e-14  2.8e-12
CAPN7_del p53 69  0.201 7.616 3.2e-14  4.le-12
AFF4_amp Trail 90  0.188 7.592 3.7e-14  4.6e-12
CTTN_amp VEGF 529  0.066 7.566 4.5e-14  5.6e-12
ITGA9_ del p53 77 0.189 7.503 7.7e-14  9.4e-12
CTTN_amp EGFR 529  0.059 7.431 1.2e-13  1.5e-11
PIK3CA__amp TGFb 621  0.059 7.339 2.5¢-13  3e-11
TGFBR2_ del p53 98  0.164 7.344 2.5e-13  3e-11
FXRI1_amp TGFb 595  0.060 7.331 2.7e-13  3.2e-11
AFF4_amp p53 90  0.170 7.309 3.1e-13  3.5e-11
CCND1_amp VEGF 581  0.061 7.269 4.1e-13  4.7e-11
FAT2_amp JAK-STAT 92 0.153 7.250 4.7¢-13  5.3e-11
PIK3CB_amp NFkB 255  0.104 7.246 5e-13 5.6e-11
G3BP1_amp JAK-STAT 91  0.153 7.220 5.9e-13  6.5e-11
PIK3CB_ amp EGFR 255  0.080 7.131 1.2e-12  1.3e-10
RHOA_ del p53 103 0.157 7.130 1.2e-12  1.3e-10
LCP1_del NFkB 167  -0.125 -7.079  1.7e-12  1.8e-10
XPO1_amp NFkB 82  0.174 7.071 1.8¢-12  1.8e-10
PBRM1_ del p53 110 0.151 7.067 1.9e-12  2e-10
RFC4_amp TGFb 537  0.060 7.029 2.4e-12  2.5e-10
EIF4A2_amp TGFb 538  0.060 7.004 2.9¢-12  2.9e-10
TBL1XRI1_amp TGFb 595  0.056 6.909 5.6e-12  5.6e-10
STAG1_amp VEGF 227 0.090 6.897 6.1e-12  6.1e-10

FAT2_amp p53 92 0.158 6.877 6.8e-12 6.7e-10
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G3BP1_amp P53 91 0.159 6.873 Te-12 6.9e-10
MUC20__amp TGFb 547 0.058 6.840 9e-12 8.7e-10
IRF6__amp PI3K 245 0.098 6.819 1l.1le-11 le-09
PIK3C2B__amp PI3K 280 0.092 6.816 1.1le-11 1le-09
CCND1__amp EGFR 581 0.052 6.798 1.2e-11 1.1e-09
ACSL6__amp Trail 86 0.172 6.778 1.3e-11 1.2e-09
CDKN2A_ del EGFR 793 0.047 6.791 1.3e-11 1.2e-09
BAP1_del p53 109 0.145 6.756 1.6e-11 1.5e-09
CDKN2A_ del MAPK 793 0.049 6.697 2.4e-11 2.2e-09
STAG1__amp EGFR 227 0.079 6.654 3.2e-11 2.9e-09
BCL11A_amp NFkB 82 0.163 6.622 3.9e-11 3.5e-09
MLHI1_ del JAK-STAT 7 0.158 6.627 3.9e-11 3.5e-09
FGFR1_amp Trail 389 -0.081 -6.616 4.1e-11 3.6e-09
TRIO__amp VEGF 365 0.070 6.609 4.3e-11 3.8e-09
NCK1__amp VEGF 227 0.086 6.602 4.5e-11 3.9e-09
ACSL6__amp PI3K 86 0.155 6.597 4.6e-11 3.9e-09
HDAC3_amp Trail 87 0.165 6.543 6.6e-11 5.6e-09
ARAP3_amp Trail 87 0.165 6.538 6.8e-11 5.7e-09
ARHGAP26__amp Trail 94 0.159 6.531 7.le-11 5.9e-09
ZC3H11A_amp PI3K 265 0.090 6.492 9.5e-11 7.9e-09
G3BP1_amp PI3K 91 0.148 6.473 le-10 8.5e-09
WHSC1L1__amp Trail 399 -0.078 -6.475 le-10 8.5e-09
LCP1__del p53 167 -0.116 -6.458 1.2e-10 9.5e-09
RBMS5__del P53 104 0.142 6.458 1.2e-10 9.5e-09
HDAC3_amp PI3K 87 0.150 6.434 1.3e-10 1.1e-08
DLG1_amp TGFb 554 0.054 6.429 1.4e-10 1.1e-08
ARAP3_amp PI3K 87 0.150 6.433 1.4e-10 1.1e-08
VHL__del p53 76 0.162 6.430 1.4e-10 1.1e-08
CLASP2_ del JAK-STAT 69 0.162 6.418 1.5e-10 1.2e-08
NCK1__amp EGFR 227 0.076 6.406 1.6e-10 1.3e-08
CSNK1G3_amp Trail 78 0.169 6.356 2.2e-10 1.7e-08
SETD2_ del p53 97 0.145 6.361 2.2e-10 1.7e-08
ARHGAP26__amp PI3K 94 0.142 6.310 3e-10 2.3e-08
APC_amp JAK-STAT 63 0.160 6.306 3.1e-10 2.3e-08
CSNK1G3_amp PI3K 78 0.155 6.293 3.3e-10 2.4e-08
ACVR2A__del NFkB 55 -0.189 -6.298 3.3e-10 2.4e-08
ASH1L__amp PI3K 364 0.075 6.286 3.6e-10 2.6e-08
MECOM__amp Trail 643 -0.062 -6.267 4e-10 2.9e-08
XRN1_amp MAPK 289 0.069 6.240 4.8e-10 3.4e-08
CTNNB1_ del NFkB 78 0.161 6.217 5.6e-10 3.9e-08
KALRN__amp NFkB 143 0.116 6.185 6.8e-10 4.8e-08
ELF1_del NFkB 155 -0.113 -6.183 6.9e-10 4.8e-08
CTNNBI1_ del JAK-STAT 78 0.147 6.179 7.1e-10 4.9e-08
CAPNT7__del NFkB 69 0.168 6.176 7.2e-10 4.9e-08
ATR_ amp MAPK 289 0.069 6.173 7.3e-10 5e-08
AFF4_amp PI3K 90 0.142 6.155 8e-10 5.4e-08
STAG1__amp NFkB 227 0.093 6.152 8.3e-10 5.6e-08
FAT2__amp PI3K 92 0.139 6.132 9.3e-10 6.2e-08
EIF4G1_amp Trail 561 -0.064 -6.125 9.8e-10 6.5e-08
MYDS88__del JAK-STAT 68 0.156 6.122 le-09 6.7e-08

Table B11: PARADIGM vs. CNAs (pan-cancer)

CNA Pathway Size Effect Wald stat. P-value FDR
PIK3CA_amp PI3K 732 1.667 24.349 3.5e-125 3.1e-121
TBL1XR1_ amp PI3K 708 1.642 23.585 7.1e-118 3.2e-114
FXR1_amp PI3K 703 1.627 23.271 Ge-115 1.8e-111
MECOM__amp PI3K 781 1.493 22.263 le-105 2.3e-102
EIF4G1_amp PI3K 664 1.575 21.886 2.3e-102 4.2e-99
RFC4__amp PI3K 636 1.527 20.747 1.6e-92 2.4e-89
EIF4A2_amp PI3K 638 1.525 20.741 1.8e-92 2.4e-89
DLG1_amp PI3K 652 1.430 19.576 Te-83 7.9e-80
MUC20__amp PI3K 645 1.427 19.440 8.6e-82 8.7e-79
XRN1_amp PI3K 329 1.429 14.141 le-44 8.6e-42
ATR__amp PI3K 329 1.428 14.139 1.1e-44 8.6e-42
TFDP2_amp PI3K 327 1.415 13.957 1.3e-43 9.6e-41
RASA2 amp PI3K 313 1.402 13.541 3.4e-41 2.4e-38
PIK3CB__amp PI3K 292 1.338 12.470 2.8e-35 1.8e-32
NCK1__amp PI3K 257 1.341 11.739 1.7e-31 le-28
STAG1__amp PI3K 257 1.341 11.734 1.8e-31 le-28
KALRN__amp PI3K 173 1.160 8.331 9.7e-17 5.2e-14
PLXNA1_amp PI3K 153 1.195 8.098 6.7e-16 3.3e-13
ARFGAP1_del VEGF 5 0.195 7.565 4.3e-14 2e-11

COL1A1_del EGFR 5 0.267 6.007 2e-09 8.9e-07
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CTCF__del EGFR 59 0.074 5.669 1.5e-08 6.5e-06
SMARCB1__del Trail 15 0.067 5.331 1le-07 4.2e-05
CDKN2A__del JAK-STAT 1056 -0.253 -5.320 1.1e-07 4.2e-05
STK4 _amp MAPK 212 0.364 5.244 1.6e-07 6.1e-05
TNPO2__amp PI3K 123 0.792 4.817 1.5e-06 0.00054
CEBPA__amp PI3K 254 0.559 4.807 1.6e-06 0.00054
ASHI1L__amp JAK-STAT 449 -0.331 -4.804 1.6e-06 0.00054
RB1_del TGFb 367 -0.382 -4.758 2e-06 0.00065
CDKN2A__del TNFa 1056 -0.014 -4.688 2.8e-06 0.00088
ABL2_amp JAK-STAT 296 -0.389 -4.647 3.5e-06 0.001
EPC1_del VEGF 16 0.069 4.587 4.6e-06 0.0013
FOXA2_ del Trail 16 0.052 4.584 4.6e-06 0.0013
BNC2__amp p53 103 0.333 4.571 4.9e-06 0.0013
MAP2K4_amp Hypoxia 43 0.927 4.570 5e-06 0.0013
WHSC1L1__amp p53 438 0.163 4.496 7e-06 0.0018
CDK4_ del Trail 2 0.144 4.468 8e-06 0.002
GNAS__amp MAPK 281 0.269 4.421 le-05 0.0024
SMARCA4__amp PI3K 168 0.619 4.378 1.2e-05 0.0029
FGFR1__amp p53 427 0.158 4.313 1.6e-05 0.0038
ARHGEF2__amp JAK-STAT 437 -0.300 -4.280 1.9e-05 0.0043
MNDA__amp JAK-STAT 368 -0.323 -4.271 2e-05 0.0044
SPRR3__amp JAK-STAT 430 -0.301 -4.262 2.1e-05 0.0044
SPOP__del EGFR 9 0.141 4.243 2.2e-05 0.0047
CCND1_amp p53 616 0.131 4.237 2.3e-05 0.0047
CARM1__amp PI3K 162 0.605 4.207 2.6e-05 0.0052
FCRL4__amp JAK-STAT 366 -0.319 -4.206 2.6e-05 0.0052
PRRX1__amp JAK-STAT 337 -0.332 -4.202 2.7e-05 0.0052
CTTN__amp PI3K 564 0.331 4.142 3.5e-05 0.0066
HDAC3__del EGFR 17 0.104 4.137 3.6e-05 0.0066
KEAP1_amp PI3K 156 0.601 4.099 4.2e-05 0.0076
FXR1_amp p53 703 0.119 4.080 4.6e-05 0.0081
WT1_amp p53 89 0.318 4.057 5e-05 0.0087
RB1_del JAK-STAT 367 -0.310 -4.038 5.5e-05 0.0093
MAP4K1_ amp PI3K 259 0.465 4.034 5.6e-05 0.0093
MUC20_amp p53 645 0.122 4.021 5.9e-05 0.0096
SETDB1__amp JAK-STAT 511 -0.261 -4.010 6.1e-05 0.0098
CDC73_amp JAK-STAT 279 -0.347 -4.009 6.2e-05 0.0098
THRAP3_ del p53 14 0.790 3.993 6.6e-05 0.01
DHX9__amp JAK-STAT 297 -0.335 -3.987 6.8e-05 0.01
ARAP3__del EGFR 18 0.097 3.983 6.9e-05 0.01
HLF__amp JAK-STAT 192 -0.405 -3.957 7.7e-05 0.011
ABL2__amp TNFa 296 -0.022 -3.946 8e-05 0.012
MYC_amp p53 971 0.102 3.924 8.8e-05 0.013
RB1_del p53 367 0.153 3.906 9.5e-05 0.013
DDX5__amp MAPK 251 -0.259 -3.866 0.00011 0.015
DLG1_amp p53 652 0.117 3.862 0.00011 0.015
PTPRF__del p53 11 0.863 3.869 0.00011 0.015
CTTN__amp p53 564 0.123 3.826 0.00013 0.017
PSIP1__amp p53 92 0.295 3.829 0.00013 0.017
CDH1__del EGFR 84 0.042 3.803 0.00014 0.018
PPM1D__amp MAPK 263 -0.250 -3.819 0.00014 0.017
TP53_amp MAPK 19 0.906 3.810 0.00014 0.018
ASXL1_del Trail 1 0.172 3.793 0.00015 0.019
PSME3__amp TGFb 57 -0.740 -3.777 0.00016 0.02
BNC2__amp PI3K 103 0.676 3.747 0.00018 0.022
TP53BP1__amp Hypoxia 13 1.379 3.731 0.00019 0.023
ARID4B__amp TNFa 346 -0.019 -3.722 0.0002 0.023
RPSAP58__amp PI3K 93 0.701 3.706 0.00021 0.025
DHX9__amp TNFa 297 -0.020 -3.687 0.00023 0.026
ASPM__amp JAK-STAT 279 -0.318 -3.677 0.00024 0.027
PIP5K1A__amp JAK-STAT 502 -0.240 -3.661 0.00025 0.028
MYC__amp TNFa 971 0.012 3.657 0.00026 0.028
MSR1__del MAPK 389 0.194 3.640 0.00028 0.03
NCF2__amp JAK-STAT 306 -0.300 -3.620 0.0003 0.032
NF1_amp p53 102 0.266 3.617 0.0003 0.032
PSIP1__amp PI3K 92 0.689 3.611 0.00031 0.032
CBFB__del EGFR 56 0.048 3.604 0.00032 0.033
NCF2__amp TNFa 306 -0.019 -3.593 0.00033 0.034
CLTC__amp JAK-STAT 251 -0.322 -3.585 0.00034 0.034
PIK3CA__amp p53 732 0.103 3.579 0.00035 0.035
MED24__amp JAK-STAT 261 -0.314 -3.568 0.00036 0.036
PIK3R3__del p53 14 0.707 3.573 0.00036 0.035
CDK12__amp JAK-STAT 310 -0.287 -3.541 0.0004 0.038
CIC__amp Hypoxia 101 0.469 3.543 0.0004 0.038

DDX5__amp TGFb 251 -0.336 -3.542 0.0004 0.038
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PLCG1_amp MAPK 148 0.291 3.539 0.0004 0.038
CSNK2A1_amp VEGF 90 0.023 3.538 0.00041 0.038
LCP1_del TGFb 186 -0.394 -3.538 0.00041 0.038
TBL1XR1__amp P53 708 0.103 3.518 0.00044 0.04

SPOP__amp JAK-STAT 168 -0.384 -3.514 0.00045 0.04

CUL3__del PI3K 74 0.749 3.507 0.00046 0.041
EPHA4_ del PI3K 61 0.820 3.493 0.00048 0.043
CLTC_amp MAPK 251 -0.233 -3.488 0.00049 0.043
DIS3__del Hypoxia 123 0.414 3.486 0.00049 0.043
CEBPA__amp p53 254 0.163 3.475 0.00051 0.044
MECOM__amp P53 781 0.097 3.470 0.00052 0.044
DDX5__amp JAK-STAT 251 -0.312 -3.468 0.00053 0.044
PPMI1D_ amp JAK-STAT 263 -0.305 -3.468 0.00053 0.044
WNKI1_ del VEGF 31 0.036 3.457 0.00055 0.046
ERBB2_amp JAK-STAT 378 -0.254 -3.453 0.00056 0.046
CSNK2A1l__amp TGFb 90 0.527 3.447 0.00057 0.047
AXIN2__amp TGFb 238 -0.335 -3.438 0.00059 0.048
CREBBP__del p53 53 0.346 3.432 0.0006 0.048
EIF4G1_amp p53 664 0.103 3.433 0.0006 0.048

Table B12: Perturbation-response genes vs. CNAs (pan-cancer)

CNA Pathway Size Effect Wald stat. P-value FDR
CDKN2A__del EGFR 1060 0.744 22.891 1.6e-111 1.6e-107
CDKN2A__del MAPK 1060 0.683 20.849 1.9e-93 9.6e-90
CAPNT7__del Hypoxia 72 1.992 20.656 1.1e-91 3.6e-88
CLASP2_ del Hypoxia 76 1.914 20.422 1.1e-89 2.9e-86
FXR1_amp p53 705 0.740 20.244 2.3e-88 4.6e-85
PIK3CA__amp p53 735 0.717 19.938 7.6e-86 1.3e-82
MLH1_ del Hypoxia 83 1.775 19.754 3.5e-84 5e-81
EIF4G1_amp p53 665 0.740 19.727 4e-84 5e-81
TBL1XR1_amp p53 710 0.716 19.639 2.1e-83 2.3e-80
MYD88_del Hypoxia 76 1.834 19.516 2.9e-82 2.9e-79
TGFBR2__del Hypoxia 105 1.557 19.381 3.2e-81 2.9e-78
VHL_ del Hypoxia 79 1.780 19.231 4.5e-80 3.7e-77
RFC4_amp p53 637 0.730 19.119 2.9e-79 2.2e-76
EIF4A2_ amp p53 639 0.728 19.097 4.3e-79 3e-76
ITGA9_ del Hypoxia 84 1.705 19.002 3.3e-78 2.2e-75
PIK3CA__amp NFkB 735 0.720 18.844 4e-T7 2.5e-74
MECOM__amp NFkB 783 0.699 18.773 1.5e-76 8.5e-74
DLG1__amp NFkB 654 0.754 18.720 3.6e-76 2e-73
DLG1_amp p53 654 0.705 18.641 1.4e-75 7.6e-73
TBL1XR1__amp NFkB 710 0.721 18.619 2.2e-75 1.1e-72
FXR1_amp NFkB 705 0.719 18.457 3.8e-74 1.8e-71
MUC20__amp NFkB 647 0.746 18.403 9.8e-74 4.4e-71
PIK3CA__amp TNFa 735 0.687 18.291 7.1e-73 3e-70
HDAC3_amp Hypoxia 99 1.662 18.238 9.5e-73 3.9e-70
MECOM__amp TNFa 783 0.664 18.147 8.6e-72 3.4e-69
ARAP3_amp Hypoxia 100 1.641 18.092 1.2e-71 4.7e-69
DLG1_amp TNFa 654 0.717 18.116 1.4e-71 5.3e-69
TBL1XR1__amp TNFa 710 0.688 18.051 4.5e-71 1.6e-68
EIF4G1_amp NFkB 665 0.720 18.010 9.2e-71 3.1e-68
MUC20__amp p53 647 0.686 17.985 1.4e-70 4.6e-68
FXR1_amp TNFa 705 0.686 17.918 4.4e-70 1.4e-67
EIF4A2 amp NFkB 639 0.728 17.869 le-69 3.2e-67
SRGAP3__del Hypoxia 93 1.529 17.827 2.4e-69 7.3e-67
RFC4_amp NFkB 637 0.726 17.787 4.1e-69 1.2e-66
MUC20__amp TNFa 647 0.707 17.754 7.1e-69 2e-66
EIF4G1__amp TNFa 665 0.690 17.558 2e-67 5.5e-65
EIF4A2__amp TNFa 639 0.702 17.540 2.7e-67 7.2e-65
RFC4__amp TNFa 637 0.700 17.460 le-66 2.7e-64
NPM1__amp Hypoxia 143 1.315 17.238 2.6e-65 6.6e-63
CTNNBI1_del Hypoxia 91 1.493 17.247 4.6e-65 1.1e-62
ACSL6__amp Hypoxia 99 1.573 17.170 7.5e-65 1.8e-62
ARHGAP26__amp Hypoxia 118 1.436 17.149 1.1e-64 2.6e-62
G3BP1_amp Hypoxia 103 1.523 16.993 1.4e-63 3.3e-61
FAT2_ amp Hypoxia 105 1.491 16.777 4.8e-62 1.1e-59
CDKN2A_del p53 1060 0.540 16.752 1.1e-61 2.5e-59
SETD2_ del Hypoxia 120 1.264 16.624 1.2e-60 2.6e-58
AFF4__amp Hypoxia 103 1.486 16.504 3.9e-60 8.2e-58
MECOM__amp p53 783 0.579 16.367 5.3e-59 1.1e-56
CSNK1G3_amp Hypoxia 86 1.601 16.214 3.8e-58 7.6e-56

CDKN2A_ del TNFa 1060 0.526 16.157 1.4e-57 2.7e-55
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Pan-cancer

Table B13: Gene Ontology vs.

MYC__amp JAK-STAT 974 0.402 11.691 3.4e-31 2.7e-29
RASA2_ amp TNFa 314 0.654 11.615 7.1le-31 5.6e-29
CCND1__amp MAPK 616 0.483 11.535 1.6e-30 1.2e-28
EIF4A2_ amp JAK-STAT 639 0.480 11.539 1.7e-30 1.3e-28
RFC4__amp JAK-STAT 637 0.478 11.479 3.3e-30 2.5e-28
EIF4G1__amp JAK-STAT 665 0.467 11.435 5.5e-30 4.2e-28
CCND1__amp JAK-STAT 616 0.475 11.214 6e-29 4.5e-27
PIK3CB__amp NFkB 293 0.663 11.217 6.3e-29 4.7e-27
TRIO__amp MAPK 438 0.544 11.030 5e-28 3.7e-26
ASXL1_amp PI3K 246 0.665 11.029 5.5e-28 4e-26

EGFR_amp EGFR 351 0.595 10.988 8.3e-28 6.1e-26
STAG1__amp NFkB 258 0.683 10.832 4.2e-27 3e-25

NCK1__amp NFkB 258 0.682 10.820 4.7e-27 3.4e-25
NDRG1__amp JAK-STAT 744 0.413 10.734 1.3e-26 9.4e-25
TRIO__amp EGFR 438 0.531 10.729 1.3e-26 9.1e-25
PIK3CB__amp TNFa 293 0.620 10.659 2.6e-26 1.9e-24
XRN1_amp Hypoxia 330 0.599 10.604 4.7e-26 3.3e-24
MYC__amp MAPK 974 0.358 10.505 1.5e-25 le-23

CCND1__amp NFkB 616 0.435 10.400 3.7e-25 2.6e-23
TFDP2__amp Hypoxia 328 0.589 10.393 4.2e-25 2.9e-23
MYC_amp TNFa 974 0.354 10.389 4.9e-25 3.3e-23
CCT5__amp MAPK 406 0.529 10.343 7.2e-25 4.9e-23
FRG1B__amp PI3K 239 0.633 10.346 7.4e-25 5e-23

CCT5__amp EGFR 406 0.529 10.316 9.5e-25 6.3e-23
ATR__amp Hypoxia 330 0.582 10.291 1.2e-24 8e-23

B.3 Pathway scores and drugs

drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
Trametinib Trail 713 -1.099 -5.824 8.8e-09 2.6e-05
Bleomycin (50 uM) TNFa 746 -2.292 -5.592 3.2e-08 4.7e-05
RDEA119 (rescreen) Trail 698 -0.706 -5.459 6.8e-08 6.6e-05
BMN-673 p53 727 -1.321 -4.989 7.7e-07 0.00054
RDEA119 Trail 668 -0.743 -4.957 9.2e-07 0.00054
MP470 JAK-STAT 730 1.254 4.823 1.7e-06 0.00084
Bleomycin (50 uM) NFkB 746 -1.242 -4.621 4.5e-06 0.0019
Nutlin-3a p53 676 -0.919 -4.572 5.8e-06 0.0021
Bleomycin (50 uM) JAK-STAT 746 -1.349 -4.317 1.8e-05 0.0059
TAK-715 Hypoxia 735 1.279 4.289 2e-05 0.006
TAK-715 TGFb 735 1.165 4.227 2.7e-05 0.0071
Bleomycin TNFa 682 -2.314 -4.185 3.2e-05 0.0079
Bleomycin P53 682 -1.533 -4.016 6.6e-05 0.015
CI-1040 Trail 669 -0.515 -3.954 8.6e-05 0.018
Lenalidomide NFkB 677 -0.437 -3.890 0.00011 0.022
PD-0325901 Trail 669 -0.586 -3.847 0.00013 0.024
MP470 TGFb 730 1.581 3.753 0.00019 0.026
GSK690693 JAK-STAT 732 0.948 3.755 0.00019 0.026
JNK Inhibitor VIII NFkB 674 -0.453 -3.756 0.00019 0.026
RO-3306 NFkB 676 -0.595 -3.751 0.00019 0.026
XAV 939 TNFa 730 -0.747 -3.742 0.0002 0.026
BMN-673 NFkB 727 -0.947 -3.739 0.0002 0.026
SN-38 TNFa 741 -1.308 -3.716 0.00022 0.027
Bleomycin (50 uM) p53 746 -1.056 -3.718 0.00022 0.027
MK-2206 JAK-STAT 658 0.933 3.680 0.00025 0.028
CCT018159 Trail 715 -0.374 -3.677 0.00025 0.028
JNK Inhibitor VIII TNFa 674 -0.694 -3.671 0.00026 0.028
RDEA119 (rescreen) TGFb 698 -1.396 -3.645 0.00029 0.03
FTI-277 TNFa 695 -0.654 -3.564 0.00039 0.038
BMN-673 TNFa 727 -1.382 -3.560 0.0004 0.038
Dasatinib TGFb 287 -3.603 -3.564 0.00043 0.038
YK 4-279 TNFa 627 -1.115 -3.543 0.00043 0.038
EHT 1864 JAK-STAT 737 0.525 3.536 0.00043 0.038
Temozolomide p53 721 -0.377 -3.513 0.00047 0.04
Afatinib (rescreen) Trail 727 -0.524 -3.499 0.0005 0.041
PD-0332991 Trail 659 -0.509 -3.448 0.0006 0.049
AUY922 TNFa 681 -1.299 -3.435 0.00063 0.049
Trametinib TGFb 713 -1.930 -3.429 0.00064 0.049
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FTI-277 PI3K 695 0.616 3.427 0.00065 0.049

Table B14: Reactome vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
RDEA119 (rescreen) Trail 698 -0.973 -6.328 4.6e-10 6.9e-07
Trametinib Trail 713 -1.418 -6.320 4.7e-10 6.9e-07
RDEA119 TNFa 668 -1.252 -5.127 3.9e-07 0.00038
RDEA119 Trail 668 -0.899 -4.981 8.2e-07 0.0006
Docetaxel TGFb 676 -1.453 -4.797 2e-06 0.0012
TG101348 Hypoxia 734 -1.058 -4.749 2.5e-06 0.0012
Bleomycin (50 uM) TGFb 746 -1.792 -4.662 3.7e-06 0.0014
Trametinib TNFa 713 -1.467 -4.667 3.7e-06 0.0014
MP470 VEGF 730 1.899 4.626 4.4e-06 0.0014
Trametinib VEGF 713 -2.450 -4.527 7.1e-06 0.0021
MP470 JAK-STAT 730 1.617 4.315 1.8e-05 0.0048
MP470 EGFR 730 2.594 4.290 2e-05 0.0049
Afatinib (rescreen) Trail 727 -0.764 -4.274 2.2e-05 0.0049
Trametinib TGFb 713 -1.791 -4.154 3.7e-05 0.0075
AZD6244 TNFa 658 -1.023 -4.129 4.1e-05 0.0075
AZD6244 TNFa 658 -1.023 -4.129 4.1e-05 0.0075
RDEA119 (rescreen) VEGF 698 -1.518 -4.086 4.9e-05 0.0085
Trametinib EGFR 713 -3.256 -4.037 6e-05 0.0093
EHT 1864 JAK-STAT 737 0.846 4.029 6.2e-05 0.0093
Cetuximab JAK-STAT 688 -1.013 -4.024 6.4e-05 0.0093
TL-2-105 NFkB 735 0.777 3.994 7.2e-05 0.01
Bleomycin (50 uM) TNFa 746 -1.106 -3.950 8.6e-05 0.011
Afatinib (rescreen) NFkB 727 -1.128 -3.945 8.8e-05 0.011
Pyrimethamine TGFb 292 -2.045 -3.904 0.00012 0.014
EHT 1864 p53 737 -0.723 -3.868 0.00012 0.014
Cetuximab Trail 688 -0.452 -3.867 0.00012 0.014
RDEA119 VEGF 668 -1.629 -3.816 0.00015 0.016
PD-0325901 Trail 669 -0.699 -3.814 0.00015 0.016
NSC-207895 TGFb 730 -1.077 -3.789 0.00016 0.017
RDEA119 (rescreen) TNFa 698 -0.815 -3.762 0.00018 0.017
XAV 939 NFkB 730 -0.597 -3.760 0.00018 0.017
(52)-7-Oxozeaenol VEGF 729 -1.267 -3.743 0.0002 0.018
Bleomycin (50 uM) JAK-STAT 746 -1.639 -3.733 0.0002 0.018
Obatoclax Mesylate TGFb 684 -1.373 -3.723 0.00021 0.018
A-770041 PI3K 289 -4.074 -3.742 0.00022 0.018
SN-38 TGFb 741 -1.211 -3.701 0.00023 0.018
Nutlin-3a Trail 676 -0.541 -3.705 0.00023 0.018
Docetaxel NFkB 676 -0.954 -3.706 0.00023 0.018
YK 4-279 TGFb 627 -1.066 -3.700 0.00024 0.018
BMN-673 TGFb 727 -1.338 -3.677 0.00025 0.018
RDEA119 (rescreen) EGFR 698 -2.032 -3.677 0.00025 0.018
PFI-1 TGFb 744 -0.786 -3.652 0.00028 0.019
RDEA119 JAK-STAT 668 -1.430 -3.654 0.00028 0.019
CI-1040 Trail 669 -0.569 -3.643 0.00029 0.019
RDEA119 (rescreen) TGFb 698 -1.069 -3.627 0.00031 0.02
FMK Hypoxia 623 -0.504 -3.599 0.00035 0.022
XL-880 Hypoxia 730 -0.799 -3.587 0.00036 0.022
Cytarabine Hypoxia 673 -1.034 -3.579 0.00037 0.022
RDEA119 TGFb 668 -1.224 -3.576 0.00038 0.022
Dabrafenib Trail 692 -0.663 -3.570 0.00038 0.022
XL-880 TGFb 730 -0.975 -3.558 0.0004 0.023
AC220 JAK-STAT 734 0.763 3.526 0.00045 0.025
MLN4924 TGFb 553 -1.276 -3.523 0.00046 0.025
Cetuximab VEGF 688 -0.984 -3.520 0.00046 0.025
RDEA119 EGFR 668 -2.224 -3.524 0.00046 0.025
Bleomycin (50 uM) VEGF 746 -1.691 -3.478 0.00054 0.027
(52)-7-Oxozeaenol TNFa 729 -0.682 -3.473 0.00055 0.027
Axitinib JAK-STAT 673 0.997 3.474 0.00055 0.027
PD-0325901 TNFa 669 -0.860 -3.448 0.0006 0.03
ABT-888 p53 676 -0.544 -3.435 0.00063 0.03
Camptothecin TGFb 675 -1.242 -3.433 0.00064 0.03
Bleomycin (50 uM) MAPK 746 -1.318 -3.423 0.00065 0.031
NPK76-11-72-1 TGFb 733 -1.012 -3.409 0.00069 0.031
SB52334 TNFa 732 0.631 3.406 0.0007 0.031
XAV 939 JAK-STAT 730 -0.721 -3.404 0.0007 0.031
Docetaxel JAK-STAT 676 -1.175 -3.403 0.00071 0.031
TAK-715 EGFR 735 1.342 3.375 0.00078 0.034

AZD7762 Hypoxia 676 -0.847 -3.367 0.00081 0.035
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Afatinib NFkB 675 -0.903 -3.355 0.00084 0.035
MP470 MAPK 730 1.083 3.331 0.00091 0.038
JW-7-24-1 Hypoxia 734 -0.748 -3.321 0.00094 0.039
Cytarabine TGFb 673 -1.149 -3.297 0.001 0.041
MK-2206 MAPK 658 1.047 3.301 0.001 0.041
Bleomycin TGFb 682 -1.677 -3.265 0.0012 0.044
VX-11le TGFb 733 -0.924 -3.244 0.0012 0.046
TW 37 TGFb 735 -0.793 -3.260 0.0012 0.044
Trametinib JAK-STAT 713 -1.608 -3.263 0.0012 0.044
SN-38 JAK-STAT 741 -1.216 -3.262 0.0012 0.044
XAV 939 TGFb 730 -0.604 -3.223 0.0013 0.048
Nutlin-3a P53 676 -0.921 -3.240 0.0013 0.046
Phenformin JAK-STAT 728 1.306 3.220 0.0013 0.048

Table B15: SPIA vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
RDEA119 (rescreen) Trail 678 -0.013 -5.536 4.5e-08 7.7e-05
Trametinib Trail 692 -0.019 -5.445 7.3e-08 7.7e-05
Bleomycin (50 uM) Trail 724 -0.016 -5.206 2.5e-07 0.00016
Bleomycin (50 uM) MAPK 724 -0.019 -5.134 3.7e-07 0.00016
RDEA119 Trail 648 -0.014 -5.135 3.8e-07 0.00016
Cetuximab Trail 668 -0.009 -5.093 4.6e-07 0.00016
NVP-BEZ235 MAPK 650 -0.012 -4.703 3.2e-06 0.00096
PI-103 JAK-STAT 707 0.089 4.279 2.2e-05 0.0051
XAV 939 MAPK 708 -0.007 -4.275 2.2e-05 0.0051
PLX4720 (rescreen) Trail 708 -0.008 -4.181 3.3e-05 0.007
PD-0325901 Trail 649 -0.012 -4.145 3.9e-05 0.0075
XAV 939 Trail 708 -0.006 -4.063 5.4e-05 0.0096
NG-25 JAK-STAT 713 0.054 3.911 0.0001 0.016
GSK2126458 JAK-STAT 714 0.063 3.900 0.00011 0.016
SN-38 Trail 719 -0.010 -3.832 0.00014 0.02
NVP-BEZ235 Trail 650 -0.009 -3.808 0.00015 0.02
XAV 939 NFkB 708 -0.007 -3.751 0.00019 0.021
Temozolomide Trail 700 -0.004 -3.736 0.0002 0.021
(52)-7-Oxozeaenol Trail 708 -0.008 -3.713 0.00022 0.021
Axitinib EGFR 654 0.010 3.718 0.00022 0.021
AZD6482 NFkB 670 -0.010 -3.720 0.00022 0.021
AZD6482 NFkB 670 -0.010 -3.720 0.00022 0.021
RDEA119 (rescreen) JAK-STAT 678 -0.050 -3.701 0.00023 0.021
Nutlin-3a Trail 656 -0.008 -3.686 0.00025 0.022
Afatinib (rescreen) Trail 705 -0.010 -3.669 0.00026 0.022
CI-1040 Trail 650 -0.009 -3.664 0.00027 0.022
SN-38 MAPK 719 -0.011 -3.616 0.00032 0.025
CEP-701 MAPK 657 -0.010 -3.558 0.0004 0.03
Afatinib EGFR 656 -0.012 -3.516 0.00047 0.034
TL-1-85 JAK-STAT 713 0.044 3.484 0.00053 0.037
Camptothecin MAPK 656 -0.012 -3.459 0.00058 0.04
CMK EGFR 279 0.017 3.436 0.00069 0.046
Afatinib (rescreen) EGFR 705 -0.012 -3.389 0.00074 0.047
Bleomycin Trail 661 -0.015 -3.386 0.00075 0.047
Methotrexate VEGF 656 -0.019 -3.372 0.00079 0.048
CAL-101 NFkB 714 -0.007 -3.361 0.00082 0.048
Pyrimethamine VEGF 285 -0.031 -3.379 0.00084 0.048
Axitinib NFkB 654 0.008 3.344 0.00088 0.049

Table B16: Pathifier vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
HG-6-64-1 VEGF 642 -1.375 -4.292 2e-05 0.031
Temsirolimus VEGF 622 -1.331 -4.283 2.1e-05 0.031
Vorinostat JAK-STAT 629 0.848 3.881 0.00011 0.084
FK866 JAK-STAT 668 2.121 3.900 0.00011 0.084
piperlongumine JAK-STAT 688 0.696 3.811 0.00015 0.084
AZ628 VEGF 271 -1.896 -3.812 0.00017 0.084
Ruxolitinib JAK-STAT 683 0.583 3.648 0.00028 0.099
AICAR p53 627 -0.814 -3.611 0.00033 0.099
CP724714 JAK-STAT 686 0.682 3.604 0.00034 0.099

VX-702 JAK-STAT 626 0.590 3.602 0.00034 0.099
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Table B17: PARADIGM vs.

drugs (pan-cancer)

Drug Pathway Size Effect ‘Wald stat. P-value FDR
ABT-869 Trail 732 4.197 3.528 0.00045 0.38
XMD13-2 TNFa 671 -2.326 -3.368 0.0008 0.38
17-AAG PI3K 447 0.123 3.307 0.001 0.38
Z-LLNle-CHO VEGF 43 5.884 3.289 0.0011 0.38
GSK-650394 TNFa 622 -3.478 -3.246 0.0012 0.38
CCTO018159 PI3K 476 0.074 3.228 0.0013 0.38
Ruxolitinib Trail 731 3.469 3.113 0.0019 0.38
JW-7-24-1 TNFa 672 -2.511 -3.062 0.0023 0.38
XAV 939 MAPK 730 0.124 3.049 0.0024 0.38
JW-7-24-1 JAK-STAT 734 0.182 3.039 0.0025 0.38

Table B18: Perturbation-response genes vs. drugs (pan-cancer)

Drug Pathway Size Effect Wald stat. P-value FDR
Nutlin-3a p53 676 -0.562 -11.662 1.2e-28 3.5e-25
Trametinib EGFR 713 -0.847 -8.677 3e-17 4.3e-14
Trametinib MAPK 713 -0.727 -8.153 1.7e-15 1.7e-12
RDEA119 (rescreen) EGFR 698 -0.486 -7.201 1.6e-12 1.2e-09
RDEA119 EGFR 668  -0.547  -7.043 4.9e-12  2.9¢-09
RDEA119 (rescreen) MAPK 698 -0.423 -6.826 2e-11 9.5e-09
RDEA119 MAPK 668 -0.474 -6.780 2.7e-11 1.1e-08
Dabrafenib MAPK 692 -0.460 -6.209 9.4e-10 3.4e-07
(5Z)-7-Oxozeaenol MAPK 729 -0.343 -6.041 2.5e-09 8.1e-07
VX-11le MAPK 733 -0.341 -5.703 1.7e-08 5.1e-06
AZ628 MAPK 292 -0.745 -5.781 2.1e-08 5.5e-06
XAV 939 TNFa 730 -0.203 -5.208 2.5e-07 5.6e-05
Dabrafenib EGFR 692 -0.429 -5.211 2.5e-07 5.6e-05
CCTO018159 MAPK 715 -0.233 -4.903 1.2e-06 0.00025
CI-1040 EGFR 669 -0.339 -4.849 1.6e-06 0.00029
Bleomycin (50 uM) TNFa 746 -0.393 -4.838 1.6e-06 0.00029
CI-1040 MAPK 669 -0.291 -4.685 3.4e-06 0.00059
(5Z)-7-Oxozeaenol EGFR 729 -0.293 -4.653 3.9e-06 0.00063
PLX4720 (rescreen) TNFa 730 -0.219 -4.597 5.1e-06 0.00078
PD-0325901 EGFR 669 -0.366 -4.565 6e-06 0.00087
NSC-207895 P53 730 0.242 4.432 1.1e-05 0.0015
CCT018159 EGFR 715 -0.234 -4.400 1.3e-05 0.0017
EHT 1864 JAK-STAT 737 0.161 4.317 1.8e-05 0.0023
PD-0325901 MAPK 669 -0.311 -4.310 1.9e-05 0.0023
A7628 EGFR 292 -0.638 -4.334 2.1e-05 0.0024
VX-1le EGFR 733 -0.283 -4.239 2.5e-05 0.0027
XAV 939 TGFb 730 -0.214 -4.244 2.5e-05 0.0027
XAV 939 NFkB 730 -0.166 -4.236 2.6e-05 0.0027
Bleomycin NFkB 682 -0.461 -4.219 2.8e-05 0.0028
Bleomycin TNFa 682 -0.462 -4.191 3.2e-05 0.0031
AZD7762 PI3K 676 -0.253 -4.178 3.3e-05 0.0031
Bleomycin (50 uM) NFkB 746 -0.331 -4.041 5.9e-05 0.0054
Thapsigargin MAPK 680 -0.382 -4.020 6.5e-05 0.0057
SB590885 TGFb 660 0.254 4.003 Te-05 0.006
Afatinib Hypoxia 675 0.265 3.993 7.3e-05 0.0061
NVP-BHG712 MAPK 733 -0.245 -3.984 7.5e-05 0.0061
Axitinib JAK-STAT 673 0.206 3.954 8.5e-05 0.0067
NVP-TAE684 p53 292 0.384 3.980 8.9e-05 0.0067
Afatinib (rescreen) Hypoxia 727 0.279 3.940 9e-05 0.0067
SN-38 TNFa 741 -0.271 -3.921 9.7e-05 0.007
SB590885 MAPK 660 -0.194 -3.880 0.00012 0.0082
17-AAG EGFR 677 -0.327 -3.864 0.00012 0.0085
Gefitinib Hypoxia 673 0.188 3.829 0.00014 0.0096
FTI-277 EGFR 695 -0.153 -3.822 0.00014 0.0096
CAL-101 Trail 734 -0.264 -3.788 0.00016 0.01
Bleomycin (50 uM) VEGF 746 -0.312 -3.801 0.00016 0.01
TGX221 Hypoxia 290 -0.293 -3.811 0.00017 0.011
Bleomycin (50 uM) MAPK 746 -0.312 -3.744 0.0002 0.012
Camptothecin TNFa 675 -0.287 -3.705 0.00023 0.014
SB-505124 JAK-STAT 741 0.135 3.690 0.00024 0.014
FMK MAPK 623 -0.137 -3.670 0.00026 0.015
Cytarabine MAPK 673 -0.272 -3.659 0.00027 0.015
CH5424802 MAPK 732 -0.151 -3.655 0.00028 0.015
GSK429286A p53 734 0.150 3.640 0.00029 0.016
SN-38 NFkB 741 -0.252 -3.631 0.0003 0.016
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RDEA119 (rescreen) TNFa 698 -0.224 -3.611 0.00033 0.017
T0901317 JAK-STAT 728 0.128 3.605 0.00033 0.017
FMK VEGF 623 -0.128 -3.597 0.00035 0.018
MP470 TGFb 730 0.316 3.581 0.00037 0.018
Camptothecin NFkB 675 -0.276 -3.570 0.00038 0.019
SB52334 TGFb 732 0.242 3.545 0.00042 0.02
PLX4720 (rescreen) NFkB 730 -0.168 -3.522 0.00046 0.021
AZD6482 TNFa 691 -0.213 -3.496 0.0005 0.023
AZD6482 TNFa 691 -0.213 -3.496 0.0005 0.023
SN-38 MAPK 741 -0.246 -3.478 0.00054 0.024
Docetaxel MAPK 676 -0.229 -3.478 0.00054 0.024
Docetaxel TNFa 676 -0.227 -3.454 0.00059 0.026
FH535 TGFb 686 0.255 3.435 0.00063 0.027
STF-62247 p53 732 0.119 3.431 0.00064 0.027
DMOG TNFa 692 -0.211 -3.408 0.0007 0.029
AUY922 MAPK 681 -0.257 -3.403 0.00071 0.029
TAK-715 TGFb 735 0.196 3.398 0.00072 0.029
Temsirolimus VEGF 666 -0.245 -3.381 0.00077 0.031
WH-4-023 TGFb 287 -0.645 -3.374 0.00085 0.033
Gemcitabine MAPK 685 -0.415 -3.347 0.00086 0.033
FTI-277 MAPK 695 -0.122 -3.338 0.00089 0.033
Temsirolimus PI3K 666 -0.229 -3.335 0.0009 0.033
(5Z)-7-Oxozeaenol VEGF 729 -0.191 -3.332 0.00091 0.033
TGX221 TGFb 290 -0.359 -3.352 0.00092 0.033
SNX-2112 MAPK 725 -0.290 -3.327 0.00092 0.033
PF-562271 MAPK 680 -0.167 -3.326 0.00093 0.033
Obatoclax Mesylate MAPK 684 -0.265 -3.320 0.00095 0.034
CP724714 TGFb 734 0.179 3.317 0.00096 0.034
KIN001-270 p53 733 0.103 3.310 0.00098 0.034
EHT 1864 TGFb 737 0.165 3.302 0.001 0.035
FH535 Hypoxia 686 0.198 3.294 0.001 0.035
Genentech Cpd 10 p53 734 0.211 3.273 0.0011 0.037
PLX4720 (rescreen) MAPK 730 -0.156 -3.241 0.0012 0.039
BX-795 PI3K 676 -0.176 -3.245 0.0012 0.039
AZD6244 PI3K 658 0.222 3.266 0.0012 0.038
AZD6244 PI3K 658 0.222 3.266 0.0012 0.038
Cetuximab TNFa 688 -0.152 -3.261 0.0012 0.038
Trametinib p53 713 -0.270 -3.243 0.0012 0.039
17-AAG VEGF 677 -0.241 -3.240 0.0013 0.039
SL 0101-1 MAPK 664 -0.113 -3.236 0.0013 0.039
Afatinib (rescreen) p53 727  -0.207  -3.204 0.0014 0.043
BI-2536 P53 288 0.341 3.213 0.0015 0.044
Thapsigargin p53 680 0.269 3.190 0.0015 0.044
Bleomycin MAPK 682 -0.353 -3.196 0.0015 0.044
Cetuximab NFkB 688 -0.148 -3.178 0.0016 0.045
MP470 JAK-STAT 730 0.212 3.157 0.0017 0.048

Tissue specific

Table B19: Gene Ontology vs. drugs (tissue-specific)

Drug Pathway Size Effect Wald stat. P-value FDR
Nutlin-3a p53 23 -3.551 -4.741 0.00013 0.12

PD-0325901 Hypoxia 40 6.985 4.209 0.00016 0.045
Cisplatin VEGF 13 -4.200 -5.731 0.00019 0.059
Axitinib Hypoxia 51 4.209 3.980 0.00023 0.046
SB-715992 p53 25 -2.794 -4.234 0.00034 0.17

Vismodegib JAK-STAT 29 1.891 3.845 0.0007 0.55

Trametinib Hypoxia 48 7.143 3.612 0.00076 0.062
AZD6244 p53 22 -4.676 -3.995 0.00078 0.12

AZD6244 p53 22 -4.676 -3.995 0.00078 0.12

PD-0325901 MAPK 40 9.195 3.646 0.00081 0.062
RDEA119 MAPK 40 9.250 3.622 0.00087 0.062
CI-1040 MAPK 45 8.203 3.448 0.0013 0.074
PD-0325901 JAK-STAT 40 3.822 3.396 0.0016 0.076
RDEA119 Hypoxia 40 5.990 3.353 0.0019 0.076
Trametinib MAPK 48 9.337 3.216 0.0024 0.086
Trametinib JAK-STAT 48 4.005 3.132 0.003 0.092
CEP-701 TGFb 45 4.243 3.070 0.0037 0.092
CEP-701 MAPK 45 6.160 3.057 0.0039 0.092
PD-0325901 TGFb 40 5.506 3.083 0.0039 0.092
Tipifarnib PI3K 48 4.180 3.014 0.0042 0.093

CEP-701 EGFR 45 1.715 2.993 0.0046 0.094
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Table B20: Reactome vs. drugs (tissue-specific)

Drug Pathway Size Effect ‘Wald stat. P-value FDR
AT-7519 EGFR 20 12.077 5.151 8e-05 0.02
SB-715992 Hypoxia 25 -3.784 -4.506 0.00018 0.17
Afatinib (rescreen) Trail 23 -1.469 -4.404 0.00027 0.32
AT-7519 VEGF 20 8.657 4.514 0.00031 0.039
Pazopanib TNFa 49 -2.685 -3.795 0.00043 0.067
ABT-263 Trail 49 3.645 3.748 0.0005 0.098
Ruxolitinib NFkB 27 5.059 4.015 0.00051 0.37
Trametinib p53 48 -5.534 -3.640 0.0007 0.067
PD-0325901 VEGF 40 8.932 3.695 0.00071 0.067
GDC0941 p53 31 9.983 3.783 0.00075 0.37
17-AAG Hypoxia 42 -4.145 -3.456 0.0013 0.096
Table B21: SPIA vs. drugs (tissue-specific)
Drug Pathway Size Effect Wald stat. P-value FDR
OSI-027 NFkB 22 -0.046 -4.469 0.00026 0.14
OSI-027 MAPK 22 -0.060 -4.382 0.00032 0.14
Ruxolitinib VEGF 21 -0.137 -4.232 0.0005 0.14
GSK2126458 NFkB 27 -0.054 -3.865 0.00074 0.34
GSK2126458 MAPK 22 -0.083  -3.921 0.00092  0.19
AV-951 JAK-STAT 27 0.092 3.760 0.00096 0.34
Shikonin NFkB 21 -0.027 -3.888 0.0011 0.19
EKB-569 EGFR 46 0.043 3.468 0.0012 0.14
GSK2126458 NFkB 22 -0.062 -3.774 0.0013 0.19
GSK2126458 JAK-STAT 27 0.316 3.595 0.0015 0.35
ZSTKA474 MAPK 47 0.037 3.201 0.0025 0.08
Afatinib (rescreen) EGFR 46 -0.050 -3.203 0.0026 0.08
Afatinib (rescreen) VEGF 46 0.075 2.987 0.0046 0.08
CH5424802 NFkB 46 -0.023 -2.904 0.0058 0.08
GSK2126458 MAPK 46 0.038 2.849 0.0067 0.08
MP470 PI3K 46 0.170 2.852 0.0067 0.08
Afatinib EGFR 44 -0.040 -2.719 0.0096 0.098
Table B22: Pathifier vs. drugs (tissue-specific)
Drug Pathway Size Effect Wald stat. P-value FDR
ABT-263 EGFR 47 6.245 5.720 7.6e-07 0.00015
ABT-263 VEGF 46 5.175 4.790 1.8e-05 0.0018
ABT-263 PI3K 47 6.203 4.566 3.7e-05 0.0025
GSK2126458 MAPK 21 5.347 5.096 6.4e-05 0.076
ABT-263 JAK-STAT 45 8.539 4.319 8.3e-05 0.0041
Trametinib PI3K 47 7.220 4.244 0.00011 0.022
Camptothecin EGFR 9 4.776 7.713 0.00011 0.046
AT-7519 NFkB 51 6.730 4.145 0.00014 0.0054
Trametinib VEGF 47 6.736 4.130 0.00016 0.022
5-Fluorouracil JAK-STAT 27 4.946 4.467 0.00016 0.081
Crizotinib PI3K 23 3.265 4.514 0.00019 0.081
ABT-263 Trail 48 6.438 3.997 0.00023 0.0076
CHb5424802 PI3K 26 4.501 4.295 0.00025 0.081
Trametinib EGFR 47 6.869 3.901 0.00032 0.025
ZSTKA474 VEGF 46 4.391 3.872 0.00035 0.015
PD-0325901 MAPK 40 6.398 3.891 0.0004 0.025
GSK2126458 VEGF 45 4.905 3.793 0.00046 0.015
GSK2126458 TGFb 45 4.479 3.755 0.00052 0.015
Ruxolitinib MAPK 26 5.113 4.006 0.00052 0.097
Gemcitabine p53 25 7.826 4.004 0.00056 0.097
AZD6482 TGFb 43 -3.437 -3.714 0.00058 0.025
AZD6482 TGFb 43 -3.437 -3.714 0.00058 0.025
ZSTKA474 TGFb 46 3.832 3.695 0.0006 0.015
GSK2126458 TNFa 26 -4.175 -3.945 0.00061 0.097
Cytarabine TGFb 29 -7.218 -3.850 0.00069 0.097
AZD6482 p53 45 -3.470 -3.648 0.00071 0.025
AZD6482 p53 45 -3.470 -3.648 0.00071 0.025
5-Fluorouracil EGFR 26 4.859 3.833 0.0008 0.098
ABT-263 MAPK 47 3.830 3.577 0.00083 0.018
Axitinib Hypoxia 50 -2.714 -3.551 0.00087 0.018
BMS-708163 p53 50 -1.193 -3.536 0.00091 0.018
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BMS-708163 p53 50  -1.193  -3.536 0.00091 0.018
Trametinib JAK-STAT 47 6.506 3.487 0.0011 0.035
Trametinib MAPK 47 5.721 3.380 0.0015 0.042
CI-1040 MAPK 44 4.189 3.368 0.0016 0.042
PD-0325901 p53 40 4.720 3.356 0.0018 0.044
ABT-263 TNFa 48 5.348 3.280 0.002 0.036
MP470 EGFR 44 4.063 3.242 0.0023 0.037
ABT-263 NFkB 48 6.189 3.217 0.0024 0.039
PD-0325901 VEGF 40 5.634 3.255 0.0024 0.052
MP470 P53 45 3.702 3.203 0.0026 0.037
CI-1040 p53 44 3.730 3.204 0.0026 0.052
Trametinib TNFa 45 3.722 3.172 0.0027 0.052
ZSTK474 EGFR 45  3.372 3.183 0.0027 0.037
OSI1-027 JAK-STAT 48  4.871 3.145 0.0028 0.043
AT-7519 MAPK 49 3.902 3.124 0.003 0.043
PD-0325901 TNFa 38 3.359 3.177 0.003 0.054
GSK2126458 EGFR 44 3.789 3.150 0.003 0.037
OSI-027 NFkB 51 5.496 3.075 0.0035 0.044
Afatinib VEGF 43 4.527 3.086 0.0036 0.04
OSI-027 p53 50 -4.409 -3.040 0.0038 0.044
Axitinib p53 50 -2.376 -3.041 0.0038 0.044
PD-0325901 EGFR 40 6.663 3.084 0.0039 0.056
Vorinostat JAK-STAT 47 3.580 3.017 0.0041 0.045
RDEA119 MAPK 40 5.386 3.054 0.0042 0.056
CI-1040 TNFa 42 2.763 3.030 0.0042 0.056
Dasatinib TNFa 16 -5.308 -3.391 0.0044 0.056
CI-1040 VEGF 44 4.076 3.004 0.0045 0.056
Bleomycin p53 47 -5.864 -2.992 0.0045 0.056
Trametinib p53 47 4.582 2.991 0.0045 0.056
MP470 TGFb 45 3.889 2.963 0.0049 0.045
Cytarabine NFkB 44 -6.451 -2.972 0.0049 0.059
MP470 PI3K 44 3.627 2.961 0.005 0.045
PD-0325901 PI3K 40 6.271 2.949 0.0055 0.063
ABT-263 Hypoxia 48 3.916 2.855 0.0064 0.067
AT-7519 JAK-STAT 47 4.288 2.833 0.0067 0.067
RDEA119 TNFa 38 3.130 2.871 0.0067 0.071
Tipifarnib p53 47 -3.571 -2.843 0.0067 0.071
ABT-263 TGFb 49 4.621 2.790 0.0076 0.069
Methotrexate p53 50 -3.393 -2.784 0.0077 0.069
CEP-701 TNFa 42 2.140 2.801 0.0077 0.078
CH5424802 NFkB 51 1.842 2.767 0.008 0.069
ZSTK474 PI3K 45 2.891 2.772 0.0081 0.067
CI-1040 PI3K 44 4.623 2.761 0.0085 0.084
TG101348 P53 50 -2.278 -2.733 0.0088 0.072
AC220 Trail 49  -1.504  -2.710  0.0094  0.089
CEP-701 JAK-STAT 44  3.982 2.699 0.01 0.092
Methotrexate JAK-STAT 47 4.877 2.635 0.011 0.086
AT-7519 VEGF 48 3.489 2.643 0.011 0.086
Dasatinib VEGF 17 -11.610 -2.929 0.011 0.098
Masitinib p53 49 -2.213 -2.632 0.011 0.099
Afatinib TGFb 43 3.549 2.634 0.012 0.084
GSK2126458 PI3K 44 3.140 2.639 0.012 0.084
Afatinib (rescreen) TGFb 45 3.731 2.572 0.014 0.09

Table B23: PARADIGM vs. drugs (tissue-specific)

Drug Pathway Size Effect ‘Wald stat. P-value FDR
AC220 Trail 46 -834.661 -6.272 1.5e-07 1.3e-05
AC220 EGFR 20 -20.564 -7.168 8.2e-07 0.00089
AC220 EGFR 41 -29.924 -5.604 1.4e-06 6.2e-05
XL-184 TGFb 22 -0.903 -5.599 2.1e-05 0.011
Sorafenib EGFR 19 -22.004 -4.910 0.00011 0.03
XL-880 TGFb 22 -0.778 -4.866 0.00011 0.03
Paclitaxel TNFa 26 14.815 4.476 0.00017 0.15
Vinorelbine VEGF 2 1158.739 4.493 0.00028 0.061
Nutlin-3a Hypoxia 12 -0.720 -4.212 0.00039 0.061
XL-184 EGFR 20 -17.356 -4.288 0.0004 0.061
YM155 EGFR 35 58.933 3.794 0.00044 0.079
Sunitinib EGFR 18 -18.552 -4.179 0.00063 0.078
PXD101, Belinostat Trail 22 5.076 4.072 0.00065 0.078
Afatinib MAPK 44 -1.037 -3.689 0.00066 0.02

PXD101, Belinostat EGFR 37 41.576 3.512 0.00099 0.089
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Table B24: Perturbation-response genes vs. drugs (tissue-specific)

Drug Pathway Size Effect Wald stat. P-value FDR
CHb5424802 Hypoxia 27 -1.319 -5.416 1.5e-05 0.014
Bexarotene PI3K 21 -1.303 -5.550 2.9e-05 0.034
ABT-263 JAK-STAT 49 2.237 4.427 5.8e-05 0.012
MP470 Trail 46 1.813 4.112 0.00017 0.017
AT-7519 p53 51 1.884 4.038 0.00019 0.019
BMS-708163 TGFb 26 -1.587 -4.344 0.00024 0.12
BMS-708163 TGFb 26 -1.587 -4.344 0.00024 0.12
OSI-027 Trail 22 -0.805 -4.491 0.00025 0.15
Cytarabine VEGF 29 1.270 4.211 0.00027 0.12
Nilotinib TNFa 10 3.552 6.593 0.00031 0.12
ABT-263 MAPK 49 1.219 3.391 0.0014 0.075
Axitinib Hypoxia 51 0.549 3.339 0.0016 0.075
Vorinostat JAK-STAT 51 1.000 3.253 0.0021 0.075
ABT-263 NFkB 49 1.972 3.234 0.0023 0.075
ABT-263 TNFa 49 1.577 3.169 0.0027 0.077

B.4 Pathway scores and survival

Pan-cancer

Table B25: Gene Ontology vs. patient survival (pan-cancer)

Pathway Size Effect Wald stat. P-value FDR
Hypoxia 8922 0.917 5.606 2.1e-08 2.3e-07
p53 8922 0.308 3.302 0.00096 0.0053
NFkB 8922 0.225 3.116 0.0018 0.0067
TGFb 8922 0.394 2.943 0.0032 0.0089
MAPK 8922 0.526 2.747 0.006 0.013
TNFa 8922 0.227 2.526 0.012 0.021
Trail 8922 0.115 2.389 0.017 0.027
PI3K 8922 -0.128 -1.336 0.18 0.25
EGFR 8922 0.008 0.148 0.88 0.98
VEGF 8922 -0.003 -0.061 0.95 0.98
JAK-STAT 8922 0.002 0.019 0.98 0.98

Table B26: Reactome vs

. patient survival (pan-cancer)

Pathway Size Effect ‘Wald stat. P-value FDR
TGFb 8922 0.486 4.112 3.9e-05 0.00043
VEGF 8922 0.204 1.731 0.084 0.28
PI3K 8922 -0.263 -1.586 0.11 0.28
p53 8922 0.144 1.536 0.12 0.28
Trail 8922 0.083 1.504 0.13 0.28
MAPK 8922 0.152 1.426 0.15 0.28
JAK-STAT 8922 0.097 0.973 0.33 0.48
Hypoxia 8922 0.096 0.938 0.35 0.48
EGFR 8922 0.068 0.447 0.66 0.8
NFkB 8922 0.020 0.218 0.83 0.91
TNFa 8922 -0.003 -0.032 0.97 0.97

Table B27:

SPIA vs. patient survival (pan-cancer)

Pathway Size Effect ‘Wald stat. P-value FDR
EGFR 6501 0.004 3.997 6.4e-05 0.00051
JAK-STAT 6502 0.016 2.011 0.044 0.18
MAPK 6502 0.002 1.473 0.14 0.38
VEGF 6502 -0.003 -1.230 0.22 0.44
NFkB 6501 -0.001 -0.960 0.34 0.49
TGFb 6501 -0.002 -0.803 0.42 0.49
Trail 6502 0.001 0.790 0.43 0.49
PI3K 6501 -0.000 -0.050 0.96 0.96
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Table B28: Pathifier vs. patient survival (pan-cancer)

Pathway Size Effect Wald stat. P-value FDR
TNFa 6463 0.470 2.825 0.0047 0.021
EGFR 6494 0.517 2.815 0.0049 0.021
PI3K 6484 0.500 2.768 0.0056 0.021
MAPK 6490 0.407 2.286 0.022 0.061
Trail 6462 0.282 1.805 0.071 0.16
p53 6461 0.281 1.658 0.097 0.18
TGFb 6476 -0.294 -1.538 0.12 0.19
JAK-STAT 6483 -0.121 -0.754 0.45 0.59
Hypoxia 6475 0.122 0.706 0.48 0.59
VEGF 6485 -0.022 -0.121 0.9 0.94
NFkB 6484 -0.012 -0.074 0.94 0.94

Table B29: PARADIGM vs. patient survival (pan-cancer)

Pathway Size Effect Wald stat. P-value FDR
EGFR 7494 0.697 3.150 0.0016 0.016
PI3K 5835 0.032 2.365 0.018 0.084
Hypoxia 4463 0.039 2.231 0.026 0.084
TGFb 8784 0.036 2.126 0.034 0.084
p53 7968 0.064 2.032 0.042 0.084
TNFa 8146 0.479 1.837 0.066 0.11
MAPK 8784 0.021 0.849 0.4 0.57
JAK-STAT 8784 0.013 0.682 0.5 0.62
VEGF 1615 -0.176 -0.416 0.68 0.75
Trail 8784 -0.093 -0.163 0.87 0.87

Table B30: Perturbation-response genes vs. patient survival (pan-cancer)

Pathway Size Effect Wald stat. P-value FDR
EGFR 8922 0.296 8.456 0 0

PI3K 8922 0.415 8.302 1.1le-16 6.1e-16
MAPK 8922 0.307 8.085 6.7e-16 2.4e-15
Hypoxia 8922 0.250 6.091 1.1e-09 3.1e-09
TGFb 8922 0.182 4.716 2.4e-06 5.3e-06
TNFa 8922 0.157 4.330 1.5e-05 2.7e-05
Trail 8922 -0.069 -2.230 0.026 0.04
NFkB 8922 0.051 1.480 0.14 0.19
p53 8922 -0.062 -1.387 0.17 0.2
VEGF 8922 0.036 1.142 0.25 0.28
JAK-STAT 8922 0.014 0.480 0.63 0.63

Tissue specific

Table B31: Gene Ontology vs. patient survival (tissue-specific)

tissue Pathway Size Effect ‘Wald stat. P-value FDR
LGG JAK-STAT 495 2.475 6.160 7.3e-10 8e-09
KIRC VEGF 519 -0.971 -4.944 7.7e-07 8.4e-06
LGG Trail 495 1.169 4.903 9.4e-07 5.2e-06
KIRC EGFR 519 -0.822 -4.731 2.2e-06 1.2e-05
CESC TGFb 277 4.003 4.651 3.3e-06 3.6e-05
PAAD p53 174 2.441 4.479 7.5e-06 8.2e-05
KIRC TGFb 519 -1.586 -3.761 0.00017 0.00055
KIRC PI3K 519 -1.398 -3.720 0.0002 0.00055
PAAD Trail 174 0.957 3.723 0.0002 0.0011
HNSC Trail 509 0.648 3.655 0.00026 0.0028
SARC JAK-STAT 253 -1.782 -3.598 0.00032 0.0035
LGG p53 495 1.720 3.490 0.00048 0.0018
KIRP p53 267 3.085 3.442 0.00058 0.0064
CESC Hypoxia 277 3.207 3.368 0.00076 0.0042
LGG TNFa 495 1.528 3.229 0.0012 0.0027
LGG Hypoxia 495 2.734 3.232 0.0012 0.0027
KIRC TNFa 519 0.958 3.081 0.0021 0.0045

PAAD TGFb 174 2.443 3.046 0.0023 0.0085



B ASSOCIATIONS FOR EVALUATING SIGNATURES (CHAPTER 4)

MESO
ACC

LUSC
KIRC
KIRP
LGG
PAAD

HNSC
PAAD
KIRC

MESO
MESO

PAAD
PAAD
MESO
PAAD

TGFb
EGFR

TGFb
Hypoxia
TGFb
TGFb
MAPK

NFkB
Hypoxia
NFkB
JAK-STAT
Hypoxia

NFkB
TNFa
VEGF
PI3K

80
79

469
519
267
495
174

509
174
519
80
80

174
174

80
174

2.197
-1.725

1.410
-1.418
2.632
1.363
2.720

0.595
2.113
0.571
-1.203
2.395

0.982
1.224
0.861
0.957

2.962
-2.918

2.806
-2.766
2.710
2.560
2.549

2.490
2.471
2.378
-2.357
2.344

2.340
2.327
2.199
1.943

0.0031
0.0035

0.005
0.0057
0.0067
0.01
0.011

0.013
0.013
0.017
0.018
0.019

0.019
0.02

0.028
0.052

0.034
0.039

0.055
0.01
0.037
0.019
0.03

0.07
0.03
0.027
0.07
0.07

0.031
0.031
0.077
0.072

Table B32: Reactome vs. patient survival (tissue-specific)

tissue Pathway Size Effect ‘Wald stat. P-value FDR
LGG TNFa 495 2.046 5.417 6.1e-08 6.7e-07
LGG JAK-STAT 495 2.154 5.019 5.2e-07 2.9e-06
KIRC VEGF 519 -1.975 -4.993 5.9e-07 6.5e-06
PAAD TGFb 174 3.340 4.888 le-06 1.1e-05
LGG Hypoxia 495 -2.497 -4.584 4.6e-06 1.3e-05
LGG Trail 495 1.111 4.580 4.7e-06 1.3e-05
KIRC TGFb 519 -1.735 -4.398 1.1e-05 6e-05
SARC NFkB 253 -1.978 -4.045 5.2e-05 0.00057
LGG NFkB 495 1.695 4.030 5.6e-05 0.00012
KIRC PI3K 519 -2.301 -3.825 0.00013 0.00048
KIRC MAPK 519 -1.244 -3.638 0.00027 0.00066
KIRC EGFR 519 -1.958 -3.615 0.0003 0.00066
LGG p53 495 -1.862 -3.604 0.00031 0.00057
PAAD Hypoxia 174 2.220 3.554 0.00038 0.0017
KIRC Hypoxia 519 -1.312 -3.503 0.00046 0.00084
PAAD Trail 174 0.995 3.498 0.00047 0.0017
ACC TGFb 79 3.876 3.396 0.00068 0.0075
PAAD JAK-STAT 174 1.971 3.259 0.0011 0.0031
SARC JAK-STAT 253 -1.650 -3.263 0.0011 0.004
SARC TNFa 253 -1.558 -3.277 0.0011 0.004
HNSC p53 509 1.046 3.195 0.0014 0.015
PAAD TNFa 174 1.365 2.911 0.0036 0.0079
LUAD TGFb 462 1.353 2.881 0.004 0.044
PAAD MAPK 174 1.556 2.824 0.0047 0.0087
SARC Trail 253 -0.760 -2.810 0.0049 0.014
ACC PI3K 79 -5.621 -2.817 0.0049 0.027
CESC TGFb 277 1.755 2.709 0.0067 0.074
BRCA Hypoxia 1018 1.283 2.639 0.0083 0.065
LGG TGFb 495 1.317 2.629 0.0086 0.013
BRCA p53 1018 1.086 2.516 0.012 0.065
PAAD NFkB 174 1.340 2.472 0.013 0.019
PAAD VEGF 174 1.509 2.459 0.014 0.019
LGG VEGF 495 1.327 2.442 0.015 0.02
ACC p53 79 -2.460 -2.236 0.025 0.093
Table B33: SPIA vs. patient survival (tissue-specific)
tissue Pathway Size Effect Wald stat. P-value FDR
KIRC  EGFR 519  -0.015  -4.699 2.66-06  2.1e-05
KIRC  VEGF 519  -0.032  -4.228 2.46-05  9.4e-05
KIRC  PI3K 519  -0.083  -3.894 9.9¢-05  0.00026
PAAD EGFR 174 0.019 3.630 0.00028 0.0023
CESC EGFR 277 0.016 3.545 0.00039 0.0031
BRCA JAK-STAT 1018 0.104 3.533 0.00041 0.0033
KIRC TGFb 519 -0.018 -2.925 0.0034 0.0069
CESC MAPK 277 0.014 2.898 0.0038 0.015
HNSC EGFR 509 0.006 2.693 0.0071 0.057
PAAD Trail 174 0.016 2.562 0.01 0.042
CESC Trail 277 0.014 2.461 0.014 0.037
KIRC MAPK 519 0.010 2.085 0.037 0.045
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KIRC NFkB 519 0.007 2.077 0.038 0.045
KIRC Trail 519 0.010 2.061 0.039 0.045

Table B34: Pathifier vs. patient survival (tissue-specific)

tissue Pathway Size Effect ‘Wald stat. P-value FDR
KIRC NFkB 517 4.484 6.528 6.7e-11 7.3e-10
KIRC PI3K 514 4.508 6.236 4.5e-10 2.5e-09
KIRC EGFR 513 3.767 5.244 1.6e-07 5.8e-07
KIRC TGFb 518 4.204 4.997 5.8e-07 1.6e-06
KIRC p53 518 4.340 4.605 4.1e-06 9.1e-06
KIRC JAK-STAT 510 2.602 4.300 1.7e-05 3.1e-05
KIRC MAPK 517 3.501 4.189 2.8e-05 4.4e-05
PAAD Trail 172 3.122 3.436 0.00059 0.0065
CESC TNFa 274 2.991 3.364 0.00077 0.0084
HNSC TNFa 501 1.261 3.051 0.0023 0.025
PAAD TGFb 174 -4.152 -3.014 0.0026 0.014
KIRC TNFa 517 2.185 2.998 0.0027 0.0037
LUSC NFkB 469 -1.360 -2.871 0.0041 0.045
PAAD JAK-STAT 174 -2.928 -2.827 0.0047 0.014
PAAD NFkB 171 -2.669 -2.800 0.0051 0.014
CESC TGFb 277 -2.288 -2.675 0.0075 0.041
KIRC VEGF 514 -1.836 -2.522 0.012 0.014
HNSC Trail 507 1.084 2.450 0.014 0.079
COAD TNFa 341 1.692 2.214 0.027 0.08
COAD NFkB 341 1.391 2.127 0.033 0.08
PAAD MAPK 170 1.408 2.119 0.034 0.075
COAD TGFb 341 1.435 1.973 0.048 0.08
COAD MAPK 341 1.480 1.953 0.051 0.08
COAD p53 341 1.271 1.946 0.052 0.08
COAD Hypoxia 341 1.180 1.934 0.053 0.08
COAD JAK-STAT 341 1.363 1.906 0.057 0.08
COAD EGFR 341 1.293 1.874 0.061 0.08
COAD PI3K 341 1.340 1.843 0.065 0.08
COAD Trail 341 1.327 1.721 0.085 0.086
COAD VEGF 341 1.306 1.718 0.086 0.086

Table B35: PARADIGM vs. patient survival (tissue-specific)

tissue Pathway Size Effect Wald stat. P-value FDR
LGG JAK-STAT 495 0.344 4.124 3.7e-05 0.00024
ACC TNFa 73 8.767 4.125 3.7e-05 0.00037
LGG EGFR 394 2.558 4.068 4.7e-05 0.00024
PAAD PI3K 117 0.264 3.521 0.00043 0.0043
BRCA Trail 1018 7.516 3.371 0.00075 0.0075
STAD TGFb 366 0.259 3.201 0.0014 0.014
LGG MAPK 495 0.350 3.165 0.0016 0.0052
KIRC TGFb 381 -0.230 -2.978 0.0029 0.029
UCEC Hypoxia 305 0.282 2.874 0.004 0.04
BRCA PI3K 663 0.161 2.740 0.0061 0.031
LUSC JAK-STAT 469 0.168 2.684 0.0073 0.073
KIRC PI3K 257 -0.152 -2.670 0.0076 0.038
KIRP EGFR 214 6.056 2.622 0.0087 0.079
LUAD PI3K 308 0.138 2.600 0.0093 0.093
HNSC Hypoxia 258 -0.186 -2.594 0.0095 0.095
PAAD p53 160 0.477 2.524 0.012 0.058
LGG TNFa 452 3.080 2.394 0.017 0.042
KIRP MAPK 267 0.372 2.344 0.019 0.079
KIRP TGFb 267 0.299 2.263 0.024 0.079

Table B36: Perturbation-response genes vs. patient survival (tissue-specific)

tissue Pathway Size Effect ‘Wald stat. P-value FDR

KIRC TNFa 519 0.828 5.182 2.2e-07 2.4e-06
ACC MAPK 79 1.375 4.833 1.3e-06 1.5e-05
LGG JAK-STAT 495 0.533 4.808 1.5e-06 1.4e-05
LGG TNFa 495 0.813 4.700 2.6e-06 1.4e-05

KIRC NFkB 519 0.654 4.422 9.8e-06 5.4e-05
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PAAD MAPK
KIRC EGFR
ACC EGFR
KIRP PI3K
ACC PI3K

LIHC Hypoxia
CESC Hypoxia
LGG MAPK
ACC p53
LUAD PI3K

CESC MAPK
LGG NFkB
MESO PI3K
LUAD EGFR
LGG EGFR

BRCA PI3K
CESC EGFR
UCEC VEGF
SARC JAK-STAT
PAAD EGFR

LUAD MAPK
SARC Trail
CESC TNFa
KICH Hypoxia
PAAD JAK-STAT

KIRC PI3K
LUAD Hypoxia
PRAD Trail
CESC TGFb
SARC NFkB

KIRP EGFR

SARC MAPK

KIRP MAPK
PAAD Hypoxia
LGG PI3K

HNSC MAPK
MESO TGFb
UVM PI3K
CESC PI3K
KIRP TGFb

LIHC MAPK
LGG TGFb
LIHC PI3K
PAAD TNFa
KICH PI3K

PAAD PI3K
ACC TGFb
MESO EGFR
ACC Trail
KICH  p53

LGG Trail

SARC Hypoxia

CESC Trail
SARC TNFa

MESO JAK-STAT

KIRC JAK-STAT

PAAD p53
KIRP Hypoxia
KIRP NFkB
PAAD NFkB
PAAD TGFb

174 1.153 4.393
519 0.610 4.252
79 0.969 4.192
267 1.826 4.034
79 2.039 4.026
333 0.703 4.006
277 0.939 3.998
495 0.672 3.932
79 -1.395 -3.865
462 0.854 3.774
277 0.743 3.753
495 0.613 3.737
80 1.112 3.714
462 0.530 3.680
495 0.671 3.677
1018 0.693 3.582
277 0.600 3.383
531 -0.751 -3.375
253 -0.535 -3.327
174 0.675 3.319
462 0.519 3.297
253 -0.541 -3.273
277 0.755 3.237
64 2.730 3.181
174 0.572 3.157
519 0.648 3.041
462 0.502 2.961
472 -2.169 -2.906
277 0.700 2.898
253 -0.492 -2.883
267 0.786 2.860
253 0.479 2.850
267 0.683 2.823
174 0.507 2.788
495 0.741 2.714
509 0.358 2.716
80 0.549 2.705
T 1.681 2.700
277 0.843 2.667
267 0.913 2.627
333 0.511 2.616
495 0.856 2.592
333 0.541 2.514
174 0.473 2.494
64 4.270 2.454
174 0.945 2.464
79 0.942 2.437
80 0.382 2.407
79 -0.940 -2.395
64 -1.991 -2.363
495 0.365 2.274
253 0.401 2.223
277 -0.407 -2.232
253 -0.384 -2.213
80 -0.348 -2.195
519 0.419 2.174
174 0.838 2.074
267 0.468 1.969
267 0.641 1.956
174 0.383 1.910
174 0.412 1.822

1.1e-05
2.1e-05
2.8e-05
5.5e-05
5.7e-05

6.2e-05
6.4e-05
8.4e-05
0.00011
0.00016

0.00018
0.00019
0.0002

0.00023
0.00024

0.00034
0.00072
0.00074
0.00088
0.0009

0.00098
0.0011
0.0012
0.0015
0.0016

0.0024
0.0031
0.0037
0.0038
0.0039

0.0042

0.0044

0.0048
0.0053
0.0066

0.0066
0.0068
0.0069
0.0076
0.0086

0.0089
0.0095
0.012
0.013
0.014

0.014
0.015
0.016
0.017
0.018

0.023

0.026

0.026
0.027
0.028

0.03

0.038
0.049
0.051
0.056
0.068

0.00012
7.8e-05
0.00015
0.0006
0.00021

0.00068
0.0007
0.00031
0.00031
0.0013

0.00096
0.00051
0.0022
0.0013
0.00052

0.0037
0.0026
0.0081
0.0058
0.005
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PRGs Gene Ontology
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Figure B1:

Volcano plot for pan-cancer associations between pathway scores

and mutated driver genes. Effect

size is standard deviations of

pathway scores. P-values FDR-corrected. Associations corrected

for can- cer type. PRGs provide

stronger associations and are

more in line with literature knowledge of signaling pathways.
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Figure B2: Volcano plots for pan-cancer associations between

pathway

scores and GISTIC-filtered gene ampli- fications and deletion.

Effect size is standard deviations of pathway scores.

P-values

FDR-corrected. Cancer type regressed out. Associations by
PRGs are more in line with established literature knowledge.
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Figure B3: Pan-cancer volcano plots for associations between pathway

scores and drug response (IC50).

Effect size arbitrary units,

p-values FDR-corrected. Pathway-response genes are the only
method to recover highly significant oncogene addiction associ-
ations, the rest of methods show no obvious connection between
the drug target and pathway.
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Figure B4:

Tissue-specific volcano plots for associations between pathway
Effect size arbitrary units,
p-values FDR-corrected. Pathway-response genes are the only
method to recover highly significant oncogene addiction associ-
ations, the rest of methods show no obvious connection between
the drug target and pathway.

scores and drug response (IC50).
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Figure B5: Volcano plots for pan-cancer survival associations. Effect size ar-
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provide stronger associations and are the only method to sep-
arate associations into classical oncogenic and tumor suppressor
pathways, calling into question the meaning of associations ob-
tained by other methods.
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Figure B6: Volcano plots for tissue-specific survival associations. Effect size

arbitrary units, p-values FDR- corrected. All methods show
strongest associations with KIRC and LGG. Pathway-response
genes only method to separate associations into classical onco-
genic and tumor suppressor pathways, calling into question the
meaning of associations obtained by other methods.
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APPENDIX

C DRUG SENSITISATION (CHAPTER 5)

c.1 MANTRA

Pan-cancer

Table C1: MANTRA (pan-cancer)

Drug response Pathway Size Effect Wald stat. P-value FDR
NPK76-1I-72-1 cyclic_adenosine__monophosphate 733 -0.448 -6.698 4.3e-11 9.3e-06
NPK76-1I-72-1 bromocriptine 733 0.358 6.664 5.4e-11 9.3e-06
Bleomycin (50 uM) diphemanil metilsulfate 746 -0.509 -6.537 1.2e-10 1.4e-05
Lenalidomide fenoterol 677 0.190 6.453 2.1e-10 1.9e-05
NPK76-1I-72-1 1,4-chrysenequinone 733 0.395 6.375 3.3e-10 2.3e-05
Lenalidomide methylergometrine 677 0.179 6.299 5.5e-10 3.2e-05
NPK76-1I-72-1 chlorogenic__acid 733 -0.409 -6.252 Te-10 3.2e-05
CCT018159 naproxen 715 0.269 6.240 7.7e-10 3.2e-05
GSK-650394 mepacrine 680 0.435 6.222 8.8e-10 3.2e-05
Lenalidomide tetryzoline 677 0.192 6.194 le-09 3.2e-05
GSK429286A 1,4-chrysenequinone 734 0.274 6.169 1.2e-09 3.2e-05
QS11 STOCKI1N-35874 689 -0.339 -6.157 1.3e-09 3.2e-05
Docetaxel clidinium__bromide 676 0.440 6.153 1.3e-09 3.2e-05
GSK429286A N6-methyladenosine 734 0.302 6.114 1.6e-09 3.2e-05
NPK76-1I-72-1 daunorubicin 733 0.374 6.119 1.6e-09 3.2e-05
NPK76-1I-72-1 albendazole 733 0.350 6.107 1.7e-09 3.2e-05
NPK76-11-72-1 dilazep 733 0.334 6.103 1.7e-09 3.2e-05
NPK76-11-72-1 pirlindole 733 0.327 6.110 1.7e-09 3.2e-05
Lenalidomide quinostatin 677 0.174 6.108 1.7e-09 3.2e-05
GSK-650394 isoetarine 680 0.406 6.099 1.8e-09 3.2e-05
NPK76-1I-72-1 pimethixene 733 0.423 6.068 2.1e-09 3.4e-05
EX-527 1,4-chrysenequinone 731 0.165 6.063 2.2e-09 3.4e-05
FK866 carbinoxamine 718 0.637 6.039 2.5e-09 3.6e-05
Lenalidomide sulfasalazine 677 0.183 6.045 2.5e-09 3.6e-05
QSs11 isoetarine 689 0.341 6.040 2.6e-09 3.6e-05
Lenalidomide bromocriptine 677 0.175 6.023 2.9e-09 3.8e-05
T0901317 N6-methyladenosine 728 0.244 5.992 3.3e-09 4e-05
EX-527 ozagrel 731 -0.244 -5.995 3.3e-09 4e-05
Lenalidomide wortmannin 677 0.169 5.998 3.3e-09 4e-05
NPK76-11-72-1 fulvestrant 733 0.363 5.962 3.9e-09 4.5e-05
GSK1070916 1,4-chrysenequinone 713 0.440 5.963 4e-09 4.5e-05
EHT 1864 ritodrine 737 0.204 5.942 4.4e-09 4.8e-05
ZM-447439 clidinium__bromide 635 0.382 5.949 4.6e-09 4.8e-05
Vismodegib cyclic_adenosine__monophosphate 676 -0.241 -5.907 5.6e-09 5.6e-05
Trametinib PF-00875133-00 713 -0.563 -5.896 5.9e-09 5.6e-05
EHT 1864 bacampicillin 737 -0.211 -5.890 6e-09 5.6e-05
EHT 1864 neostigmine__bromide 737 -0.208 -5.889 6e-09 5.6e-05
Lenalidomide perhexiline 677 0.170 5.888 6.3e-09 5.7e-05
Bleomycin (50 uM) STOCKI1N-35696 746 -0.422 -5.872 6.6e-09 5.9e-05
Lenalidomide pentamidine 677 0.197 5.872 6.9e-09 6e-05
NPK76-11-72-1 (-)-isoprenaline 733 0.339 5.848 7.6e-09 6.1e-05
Lenalidomide fulvestrant 677 0.191 5.852 7.7e-09 6.1e-05
NPK76-11-72-1 tranylcypromine 733 0.332 5.841 7.9e-09 6.1e-05
Lenalidomide etacrynic__acid 677 0.181 5.846 8e-09 6.1e-05
Gemcitabine 1,4-chrysenequinone 685 0.708 5.842 8.1e-09 6.1e-05
Cytarabine cyclic__adenosine__monophosphate 673 -0.456 -5.844 8.1e-09 6.1e-05
Lenalidomide latamoxef 677 0.165 5.830 8.8e-09 6.5e-05
Bleomycin (50 uM) domperidone 746 -0.432 -5.812 9.3e-09 6.7e-05
Afatinib (rescreen) hydroxyachillin 727 0.565 5.809 9.5e-09 6.7e-05
EX-527 metoprolol 731 0.196 5.807 9.6e-09 6.7e-05
Tissue specific
Table C2: MANTRA (cancer-specific)

Drug response Pathway Size Effect ‘Wald stat. P-value FDR

BAY 61-3606 cisapride 39 1.517 8.057 1.2e-09 0.0004

Lenalidomide pheniramine 51 1.417 7.150 3.9e-09 0.00067

BAY 61-3606 halofantrine 39 0.986 7.102 2.1e-08 0.0013
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Naive

Shikonin cisapride 39 1.178 7.084 2.2e-08 0.0013
PD-173074 pentolonium 51 1.105 6.653 2.3e-08 0.0013
Lenalidomide harpagoside 51 1.458 6.624 2.5e-08 0.0013
Shikonin thioridazine 39 1.297 6.977 3e-08 0.0013
Lenalidomide isoxsuprine 51 1.576 6.542 3.4e-08 0.0013
PD-173074 scriptaid 51 1.287 6.532 3.5e-08 0.0013
Shikonin reserpine 39 0.952 6.898 3.9e-08 0.0013
Shikonin lobeline 39 0.817 6.773 5.7e-08 0.0016
Shikonin methoxsalen 39 1.065 6.773 5.7e-08 0.0016
Lenalidomide hyoscyamine 51 1.383 6.376 6.2e-08 0.0016
PD-173074 delsoline 51 1.382 6.331 7.2e-08 0.0017
PD-173074 nalidixic__acid 51 1.294 6.333 7.2e-08 0.0017
BAY 61-3606 amantadine 39 1.025 6.629 8.9e-08 0.0019
Shikonin halofantrine 39 0.778 6.579 le-07 0.0021
BAY 61-3606 5152487 39 -0.947 -6.547 1.1e-07 0.0021
Lenalidomide dopamine 51 1.574 6.217 1.1e-07 0.0021
Shikonin tolazoline 39 1.027 6.530 1.2e-07 0.022
Shikonin vorinostat 39 1.048 6.473 1.4e-07 0.022
Shikonin dopamine 39 1.157 6.487 1.4e-07 0.0024
Shikonin 5152487 39 -0.767 -6.424 1.7e-07 0.0027
Shikonin amantadine 39 0.824 6.407 1.8e-07 0.0027
Lenalidomide nalidixic__acid 51 1.479 6.076 1.8e-07 0.0027
Lenalidomide tiletamine 51 1.326 6.057 1.9e-07 0.022
PD-173074 betahistine 51 1.169 6.064 1.9e-07 0.0027
PD-173074 epirizole 51 1.112 6.000 2.3e-07 0.0028
BAY 61-3606 methoxsalen 39 1.261 6.308 2.4e-07 0.0028
PD-173074 sulfamerazine 51 1.171 5.997 2.4e-07 0.0028
Lenalidomide butirosin 51 1.554 5.980 2.5e-07 0.0028
Lenalidomide canavanine 51 1.263 5.980 2.5e-07 0.0028
Tamoxifen canavanine 51 0.592 5.985 2.5e-07 0.0028
PD-173074 dihydroergotamine 51 1.178 5.975 2.6e-07 0.0028
Shikonin idazoxan 39 0.949 6.282 2.6e-07 0.0028
Lenalidomide probucol 51 1.102 5.950 2.8e-07 0.0029
PD-173074 indometacin 51 1.192 5.923 3.1e-07 0.0031
PD-173074 budesonide 51 1.080 5.913 3.2e-07 0.0032
Shikonin withaferin_ A 39 0.980 6.210 3.3e-07 0.028
PHA-665752 sulfamethoxazole 25 1.098 7.053 3.5e-07 0.0033
AG-014699 nalidixic__acid 48 0.844 5.915 3.9e-07 0.0035
Lenalidomide sulindac 51 1.309 5.859 3.9e-07 0.0035
PD-173074 dicoumarol 51 1.252 5.839 4.1e-07 0.0037
Lenalidomide etidronic__acid 51 1.178 5.819 4.4e-07 0.0037
AC220 probucol 50 1.160 5.842 4.4e-07 0.0037
Lenalidomide dicoumarol 51 1.577 5.812 4.5e-07 0.0037
Lenalidomide delsoline 51 1.613 5.807 4.6e-07 0.0037
Shikonin isoxsuprine 39 1.076 6.086 4.8e-07 0.0037
PD-173074 lactobionic__acid 51 1.115 5.800 4.8e-07 0.0037
Lenalidomide vinburnine 51 1.231 5.793 4.9e-07 0.034
c.2 LINCS Connectivity Map
Table C3: Drug sensitisation (naive pan-cancer)
Drug response Sensitiser Effect Wald stat. P-value FDR
Afatinib (rescreen) BMS-536924 -0.451 -6.561 le-10 3.4e-06
Afatinib PI-103 -0.419 -6.469 2e-10 3.4e-06
Afatinib BMS-536924 -0.412 -6.349 4.1e-10 3.9e-06
Afatinib NVP-BEZ235 -0.439 -6.332 4.5e-10 3.9e-06
Afatinib Dasatinib -0.373 -5.935 4.8e-09 3.1e-05
Afatinib ZSTK474 -0.399 -5.915 5.4e-09 3.1e-05
Afatinib GSK2126458 -0.361 -5.710 1.7e-08 6.8e-05
Afatinib (rescreen) NVP-TAE684  -0.447  -5.703 1.7e-08 6.8e-05
Afatinib NVP-TAE684 -0.418 -5.704 1.8e-08 6.8e-05
Afatinib KINO001-102 -0.352 -5.681 2e-08 6.9e-05
Afatinib (rescreen) AP-24534 -0.391 -5.635 2.5e-08 6.9e-05
Afatinib (rescreen) PI-103 -0.391 -5.641 2.5e-08 6.9e-05
Gefitinib NVP-BEZ235 -0.292 -5.624 2.8e-08 6.9e-05
Afatinib (rescreen) NVP-BEZ235 -0.415 -5.616 2.8e-08 6.9e-05
Afatinib (rescreen) Dasatinib -0.374 -5.541 4.3e-08 9.8e-05
Afatinib (rescreen) ZSTK474 -0.391 -5.495 5.5e-08 0.00012
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Afatinib AZD6482 -0.364 -5.452
Gefitinib PI-103 -0.263 -5.410
Gefitinib BMS-536924 -0.261 -5.382
Gefitinib Dasatinib -0.254 -5.386
Afatinib AZD8055 -0.361 -5.381
Afatinib AP-24534 -0.348 -5.323
Gefitinib KINO001-102 -0.243 -5.291
Afatinib (rescreen) GSK2126458 -0.356 -5.288
Afatinib GDC0941 -0.332 -5.256
Gefitinib ZSTKA474 -0.265 -5.249
Afatinib (rescreen) Embelin -0.426 -5.231
Afatinib PLX4720 -0.362 -5.129
Afatinib PLX4720 -0.362 -5.129
Afatinib (rescreen) FR-180204 -0.337 -5.108
Docetaxel MS-275 0.313 5.088
Afatinib OSI-027 -0.315 -5.027
Afatinib BMS-754807 -0.301 -5.020
Gefitinib GSK2126458 -0.233 -4.938
Cisplatin HG-6-64-1 0.225 4.880
Gefitinib PLX4720 -0.256 -4.874
Gefitinib PLX4720 -0.256 -4.874
Afatinib (rescreen) AZDB8055 -0.344 -4.848
Afatinib (rescreen) KINO001-102 -0.325 -4.825
AICAR Temsirolimus -0.257 -4.817
17-AAG FH535 0.344 4.813
BX-795 CCT018159 -0.238 -4.816
Bleomycin (50 uM) PD-0332991 0.430 4.775
Embelin WZ3105 -0.211 -4.769
Afatinib (rescreen) PHA-665752 -0.313 -4.769
Gefitinib GDC0941 -0.225 -4.761
BX-795 WZ3105 -0.261 -4.748
MLN4924 MS-275 0.374 4.753
Gefitinib XL-880 -0.210 -4.732
Afatinib (rescreen) AZD6482 -0.338 -4.729
Afatinib (rescreen) OSI-027 -0.314 -4.727
Afatinib (rescreen) BMS-754807 -0.305 -4.718
Olaparib CCT018159 -0.187 -4.718
piperlongumine XL-880 0.179 4.704
Gefitinib YM201636 -0.215 -4.699
17-AAG Rapamycin 0.343 4.649
Elesclomol XL-880 0.340 4.652
MLN4924 Docetaxel 0.330 4.642
(5Z)-7-Oxozeaenol GW 441756 0.251 4.621
Afatinib (rescreen) PLX4720 -0.350 -4.610
Afatinib (rescreen) PLX4720 -0.350 -4.610
Afatinib GSK-1904529A -0.289 -4.607
BMN-673 HG-6-64-1 0.315 4.604
Gefitinib NVP-TAE684 -0.252 -4.605
Elesclomol PHA-665752 0.346 4.602
Afatinib (rescreen) GSK-1904529A -0.308 -4.586
Gefitinib AZD8055 -0.230 -4.588
Embelin CCTO018159 -0.186 -4.580
CX-5461 Pyrimethamine -0.355 -4.572
Afatinib (rescreen) GDC0941 -0.309 -4.570
Bleomycin (50 uM) HG-6-64-1 0.332 4.568
XL-880 Nilotinib 0.235 4.564
Gefitinib GSK-1904529A -0.213 -4.563
T0901317 BIRB 0796 -0.191 -4.561
Afatinib (rescreen) YM201636 -0.308 -4.552
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With added covariate

Table C4: Drug sensitisation (pan-cancer with covariate)

Drug response Sensitiser Effect Wald stat. P-value FDR
Afatinib NVP-BEZ235 -0.397 -5.347 1.2e-07 0.00094
Afatinib PI-103 -0.389 -5.344 1.3e-07 0.00094
BX-795 WZ3105 -0.299 -5.330 1.4e-07 0.00094
Afatinib BMS-536924 -0.379 -5.230 2.3e-07 0.0012
AICAR Temsirolimus -0.268 -4.951 9.5e-07 0.0027
piperlongumine XL-880 0.188 4.946 9.5e-07 0.0027
T0901317 BIRB 0796 -0.214 -4.935 le-06 0.0027
Temsirolimus AZD6482 0.407 4.923 1.1e-06 0.0027
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Figure C1: Predicted vs. measured synergy for drug combinations. Exper-
imental result on the left, Loewe-additive model in the middle.
Difference between the two on the right. Both axes represent
micro-molar drug concentrations.
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Figure C2: Figure C1 cont.
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Figure C4: Figure C1 cont.
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