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Abstract

Molecular phylogenetics aims to use genomic sequence data to reconstruct
the evolutionary history of species and understand evolutionary processes. It has
proven to be widely useful with statistical methods using mathematical models of
the process of evolution being extensively developed. Despite this, there are still
a number of fundamental questions and assumptions in phylogeny reconstruction
and statistical modelling of evolution that are not well understood. The focus of
this thesis is exploring, and improving understanding of, three of these issues.

The first of these is long branch attraction (LBA), a regularly cited but poorly
understood phenomenon that has been claimed to cause inaccurate phylogenetic
tree topology reconstruction. LBA has been reported to affect all tree reconstruc-
tion methods, including maximum likelihood, a state-of-the-art statistical method
that forms the basis of all of the data analysis methods studied in this thesis. I
carry out an analysis of the simplest possible case, that of one long branch on
a three-species tree, showing that even this causes counterintuitive results that
I am able to explain. I then move to four-species trees and show that the LBA
phenomenon does exist, but is not caused by an attraction.

Secondly, I study the impact of the assumption of time-reversibility that is
made by the majority of models used for phylogeny reconstruction. Models of
the process of substitution of characters (nucleotides or amino acids) in molecular
sequences are time-reversible if, at equilibrium, the amount of change between
characters i and j is the same as the amount of change between characters j
and i. This assumption has no biological basis; it has been maintained solely
for computational and mathematical reasons. Relaxing it could produce models
that describe the process of evolution better. I analyse whether non-reversible
models fit data better for nucleotides and, for the first time, amino acids, and
show that they are often a significant improvement. Analysis of non-reversibility
also requires measures of quantification. I develop measures for non-reversibility
and show that they help distinguish effects different from the total strength of
evidence of reversibility.

Finally, I develop an improved test for positive selection. Detecting site-wise
positive selection has long been a key subject in evolutionary biology. Unfortu-
nately many methods are statistically very conservative and lack power. I develop
a new method using site-wise likelihood ratio tests that achieves greatly improved
power whilst retaining control of the false positive rate. It involves altering the
null hypothesis of a previous site-wise likelihood ratio test so that the null hy-
pothesis better fits the data. I test this method using simulations over a wide
range of realistic conditions, showing that the power can be doubled or tripled

while the false positive rate is kept under control.
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Chapter 1
Introduction

Molecular phylogenetics has proven to be widely useful for improving our un-
derstanding of biological processes. This ranges from illustrating evolutionary
relationships (Meredith et al. 2011), understanding evolutionary mechanisms by
comparing models (Whelan et al. 2001), and identifying sites under positive and
purifying selection (Nielsen and Yang 1998; Massingham and Goldman 2005) to
understanding host-pathogen relationships (Tamuri et al. 2012), dating speciation
events (Rutschmann 2006), and helping locate the source of disease outbreaks in
hospitals (Koser et al. 2013).

Despite the widespread use of phylogenies and related parameters for under-
standing evolutionary processes, and the development of increasingly complicated
models, there are still numerous fundamental questions and assumptions in sta-
tistical modelling of evolution which are not well understood. The focus of this
thesis is exploring, and improving understanding of, some of these issues, specifi-
cally: long branch attraction, a poorly understood phenomenon claimed to cause
inaccurate topology inference; reversibility, an assumption made by almost all
evolutionary models for computational rather than biological reasons; and site-

wise positive selection, which many current tests lack power to find.

1.1 Phylogenetics

The genetic information of an organism is contained in its genome. This informa-
tion resides in DNA sequences that are passed on from parent to child by repli-
cation. A genome is made up of coding and non-coding DNA sequence. Coding
sequences are transcribed into messenger RNAs and then translated into pro-
teins. Non-coding genetic material is not translated, but can nonetheless have a

functional role at the DNA or RNA level. Proteins are biological molecules that



perform a variety of functions in the cell such as DNA replication, catalysing
metabolic reactions, and transporting molecules around the cell. They consist of
chains of amino acids that are encoded in genomic sequences using the genetic
code, a code based on triplets of DNA called codons. There are 20 amino acids
and 43 = 64 codons, only three of which are stop codons, meaning the genetic
code is degenerate, with some amino acids encoded by more than one codon.

The process of replication is imperfect, and so is that of DNA repair. Errors,
called mutations, can therefore be made and transmitted to the next generation.
For both coding and non-coding sequences, as it is the nucleotides that mutate,
evolution is often modelled on the nucleotide level. Because functional conse-
quences of mutations in protein-coding sequences mostly happen at the protein
level, it is also popular to model mutations on the amino acid and codon level
for such sequences (Yang 2014). Over generations mutations are either lost, or
spread within a population until they reach equilibrium. If all individuals have
them then they are fixed. Fixed mutations, often called substitutions, leave a
molecular record of the evolutionary relationships between species that molecu-
lar phylogenetics aims to reconstruct. These relationships are generally repre-
sented by a phylogenetic tree, which can either be rooted, so that it indicates the
ancestor-descendent relationships between the organisms studied, or unrooted,
and hence just displays branching patterns. We assume that all sites within the
sequence being studied evolve on the same tree, and that once a branching event
has occurred lineages evolve independently. In this thesis branch lengths on a
tree indicate the amount of evolution, measured as the number of substitutions
per site. If additional information is available it can also be possible to calibrate
evolutionary trees so that branch lengths represent calendar time (Yang 2014).

Mutations can take the form of substitutions at single sites, short sequence
insertions or deletions (indels), or larger-scale events such as recombination or
horizontal gene transfer. Substitutions at single sites can be modelled using
Markov processes (Yang 2014). These substitution models, and phylogenies es-
timated using them, are the focus of this thesis. Although substitutions are
generally assumed to act on one site at a time, substitution models can also be
extended to model mutations on fixed length, non-overlapping, DNA segments,
such as codons (Goldman and Yang 1994; Muse and Gaut 1994), or potentially
the entire sequence (Robinson et al. 2003; Rodrigue et al. 2005; Yu and Thorne
2006). In general the larger the segment, the more computationally intractable
the problem, so models for the entire sequence are not widely used.

Insertions and deletions are of variable length and can affect multiple sites at

a time. Generally, the process of alignment aims to identify homologous sites and



the positions of any indels; gaps in sequence alignments are then usually ignored
for the aims of mathematical modelling. It is also possible to treat gaps as another
state in a substitution model (McGuire et al. 2001), meaning that each gap is
treated independently of other gaps, but this is uncommon (Yang 2006). Ideally,
we would use models which take into account both substitutions and indels.
Attempts have been made to develop these (e.g. Bishop and Thompson 1986;
Thorne et al. 1991; Thorne and Kishino 1992; Hein et al. 2000; Hein et al. 2003);
unfortunately these models are generally still not computationally tractable (Yang
2014). Progress is being made on methods for the joint inference of alignment and
phylogeny (Miklés et al. 2004; Lunter et al. 2005; Fleissner et al. 2005; Redelings
and Suchard 2005), and on estimates of evolutionary distances between sequences
which take into account indels as well as substitutions (Schwarz et al. 2010).

Large-scale events are also not specifically modelled by substitution models,
however their presence can affect evolutionary analyses. Processes that lead to
genetic material being passed amongst organisms in a manner not reflecting the
usual tree-like structure of inter-species relationships, such as recombination or
horizontal gene transfer, lead to violation of the assumption that all sites evolve
along the same tree. Recombination has been shown to adversely affect tree
reconstruction (Posada and Crandall 2002), molecular clock inference (Schierup
and Hein 2000), the detection of positively selected sites (Anisimova et al. 2003;
Shriner et al. 2003) and ancestral reconstruction (Arenas and Posada 2010).
Therefore, methods for identifying and handling recombination events have been
developed (Grassly and Holmes 1997; Husmeier and Wright 2001; Kosakovsky
Pond et al. 2006b). A variety of methods also exist for detecting horizontal gene
transfer (Dessimoz et al. 2008; Abby et al. 2010). In theory, an alternative way
to model these events is to relax the assumption that all sites evolve under the
same tree, and represent evolutionary relationships as a network where nodes can
represent large-scale events as well as speciation. In practice, the calculation of
rooted phylogenetic networks is difficult and there are not yet any widely used
tools (Huson and Scornavacca 2010). For a detailed mathematical introduction
to phylogenetic networks and methods for building them see Huson et al. (2011);
for a biological viewpoint see Morrison (2011). In this thesis I study mostly theo-
retical problems, and assume that users will check for the presence of large-scale
events before using methodology presented here.

Evolutionary relationships between species were originally inferred by com-
paring morphological features. These phenotypical changes are caused by molec-
ular changes, so as sequence data slowly became available sequence alignments

became an alternative, and often preferable, data set to use for building phylo-



genetic trees. Initially, the changes between sequences were counted and used to
infer the divergence between certain sequences (Zuckerkandl and Pauling 1962;
Zuckerkandl and Pauling 1965), or to develop probabilistic models of amino-acid
substitutions (Eck and Dayhoff 1966; Dayhoff and Eck 1968; Dayhoff et al. 1972,
1978). These first studies used the principle of parsimony, that the simplest expla-
nation is the best explanation, interpreted to mean that the tree with the fewest
changes on it is the best tree. This principle was already the basis for building
trees from morphological data. Use of parsimony for studying molecular data was
then promoted as it was believed to be ‘assumption-free’ (Wiley 1981). In fact,
although it may not make explicit assumptions, there are implicit assumptions,
although it can be difficult to identify them (e.g. Goldman 1990; Yang 2006).

Contemporaneously, statistical models of evolution were also being developed.
Starting with a model describing nucleotide evolution (Jukes and Cantor 1969),
Neyman (1971) showed how substitutions over a tree could be described by a
Markov process, and, with the work of Felsenstein (1981), inference of these
models on trees was made computationally feasible. During the 1980s, while
both ‘assumption-free’ methods and statistical model-based methods were be-
ing developed and used on molecular data, there was heated debate over which
approach was better (Felsenstein 2001, 2004). However, from the mid 1990s on-
wards statistical methods became the methods of choice as they allowed for the
fit of the model to the data to be evaluated and improved (Goldman 1993). They
were also shown to be statistically consistent under the true model (Chang 1996;
Rogers 1997), meaning that the probability of obtaining the correct tree tends
to one as the amount of data tends to infinity, whereas parsimony was shown to
be inconsistent in some circumstances (Felsenstein 1978). Since then, with the
increase in both quantity of sequence data and computational power, a large num-
ber of evolutionary models and statistical methods for constructing phylogenies
and understanding evolutionary processes have been developed.

Statistical methods can be split into two categories: frequentist methods, such
as maximum likelihood (ML), and Bayesian methods. Both methodologies are
widely used within phylogenetics (Yang 2014); both have advantages and disad-
vantages. ML is a standard statistical framework for model inference, and comes
with well-studied techniques for comparing and testing models (Fisher 1921, 1925;
Wilks 1938; Edwards 1972). It yields a best point estimate of the parameter(s) of
interest. Bayesian inference on the other hand outputs the posterior distribution
of the parameter(s) given a prior distribution and the data (Yang 2014). This
technique requires the investigator to specify a prior probability of the hypothesis.
In this thesis I only study ML inference.



Another set of methods for building phylogenetic trees, distance matrix meth-
ods, uses pairwise distances, estimates of the evolutionary distance between pairs
of sequences, generally in units of the average number of substitutions per site
which have occurred between the two sequences. Pairwise distances are calcu-
lated between all sequences of interest, and fitted to a tree. These methods do not
make full use of the information in a sequence alignment, and are therefore not
expected to be optimal (Yang 2014). However, they have been shown to work
reasonably (Felsenstein 2004), and are generally faster than ML and Bayesian
approaches. Distance methods are not specifically studied in this thesis but they
are described in Chapter 2, and found to be useful when considering the effects
of ML on long branches in Chapter 3.

Statistical methods require a model of evolution specifying the rates of change
between states. The first, and most simplistic, models made a large number of
assumptions about the biological process of evolution. Over time these assump-
tions have been relaxed in order to find models which fit data better, but there
are a number of common assumptions that most models still hold. Some key
assumptions are that: sites evolve independently of each other; sites evolve un-
der the same process and same rate; rates of change are constant over time
(time-homogeneity); the process is at equilibrium (stationary); and the process
is reversible (the direction of change cannot be determined at equilibrium). In
most real data sets some of these assumptions will be violated. Methods which
relax these assumptions are under development, and I will now briefly review the
progress so far.

Independence between sites is a difficult assumption to relax computationally.
Even if only immediate neighbours are considered, ‘contagious dependence’ means
that each neighbour is affected by its own neighbours so that all the nucleotides
are actually dependent on each other (Lunter and Hein 2004). However, there
is significance evidence that sites are not independent, and that their context is
important. A common example of this is the hypermutability of CpGs. CpGs are
a C nucleotide directly followed by a G nucleotide in the genome. Mutation of the
C in CpGs to T is the most common substitution in mammalian genomes, and
occurs around 10-50 times more frequently than any other substitution (Duncan
and Miller 1980; Duret et al. 2006; Walser and Furano 2010). To take this into
account, models which allow dinucleotide substitution rates to be estimated have
been developed (von Haeseler and Schoniger 1998; Jensen and Pedersen 2000;
Lunter and Hein 2004; Hwang and Green 2004; Siepel and Haussler 2004). Work
is ongoing on context-dependent models; for a detailed review of the development

of context-dependent non-coding models and current issues in the field see Baele



(2011).

The assumption that sites evolve at the same rate and with the same process
is often violated, for example by positions in codons evolving at different rates.
This is often dealt with by modelling codons themselves instead of nucleotides or
amino acids (Muse and Gaut 1994; Goldman and Yang 1994), allowing indepen-
dence between sites, which are now whole codons, to be kept, while taking into
account codon structure. However, due to variation in selective constraints over
protein sequences, rates may vary over the entire protein, and not just between
codon positions. The most common way to incorporate this is to describe the
rate as a random draw from a statistical distribution for each site (Yang 1993,
1994b). Further details are given in Section 2.1.1. Variation in process can also
be modelled in a similar way, for example variation in selective pressure over sites
(Nielsen and Yang 1998). More complex heterogeneity, such as variation in the
whole substitution matrix, has also been explored (Lartillot and Philippe 2004).

Time-homogeneity means that the process itself does not change over the
tree. This assumption can be violated in a number of ways: for example, selec-
tive pressure may vary over time, or pathogens may have different evolutionary
processes in different hosts. The first of these examples is generally dealt with by
using branch-site models, which allow selective pressures to be different on pre-
determined branches so that episodic selection can be located (Yang and Nielsen
2002). In the second example different processes can be estimated on different
branches of the phylogeny, significantly improving the fit of the data (dos Reis
et al. 2009; Tamuri et al. 2009). Work is ongoing on further models for taking
time-non-homogeneity into account (Goode et al. 2008; Blanquart and Lartillot
2008; Bielejec et al. 2014).

A process is at equilibrium (stationary) if the probability of finding a site in
a particular state does not vary over the tree. It therefore has an equilibrium
distribution consisting of these probabilities for each state. The assumption of
stationarity has been tested and found to be violated both for the evolution of GC
content (Arndt et al. 2005), and for general evolutionary models (Squartini and
Arndt 2008). Non-stationary models have been suggested (Barry and Hartigan
1987) and shown to give a better fit to the data (Jayaswal et al. 2010). However,
relaxing the assumption of stationarity increases the number of possible models;
choosing between this set of models is a difficult problem (Jayaswal et al. 2010,
2011). The majority of models used currently are stationary ones.

A process is reversible if, at equilibrium, the amount of change from nucleotide
1 to nucleotide j is the same as the amount of change from nucleotide ;7 to nu-

cleotide ¢ (Norris 1998). For a process to be reversible it must have an equilibrium



(stationary) distribution. However just because a process is not at equilibrium
does not mean that it is not reversible. For example, if a reversible process is
acting on a sequence which is not at its equilibrium distribution, then this process
will not be stationary until equilibrium is reached. Reversibility is an assump-
tion held by the majority of models for computational, not biological, reasons.
In Chapter 4, I assess whether non-reversible models describe the evolutionary

process better than reversible models.

1.2 Thesis Outline

This thesis consists of three largely separate projects, all of which aim at better
understanding or improved methodology for phylogenetic inference. They are
all based on ML estimation of phylogenies from sequence alignments, focusing
on different parameters of interest. Each chapter contains its own introduction;
however, as the mathematical background to these projects is similar, Chap-
ter 2 contains an introduction to the necessary mathematics and assumptions.
Throughout this thesis I assume evolution proceeds according to a Markov pro-
cess which can be parameterised in a variety of biologically informative ways,
such as on a nucleotide, amino acid, or codon level. Many methodologies exist
for inferring phylogenies, as well as parameters of these processes, from sequence
alignments. In this thesis I focus on ML estimation, but I also use distance meth-
ods to gain insight on ML processes and therefore I briefly describe both methods
of inferring phylogenies.

Chapter 3 describes work on ML inference of small trees in the presence of
long branches. It has long been known that long branches can cause problems
for topology estimation (Felsenstein 1978). Intuitively, this is not surprising, as
the longer the branch the more changes that will have occurred which need to
be inferred. Discussion of this has previously focused on long branch attraction
(LBA), a regularly cited term generally used to describe a propensity for long
branches to be joined together in estimated trees (Hendy and Penny 1989). LBA
has been claimed to affect all major phylogenetic reconstruction methods, in-
cluding ML (Huelsenbeck 1995). Despite the widespread use of this term in the
literature, exactly what LBA is and what may be causing it is poorly understood,
even for simple evolutionary models and small model trees. Until now the focus
has always been on two long branches, and no-one has considered the extent to
which even one long branch may be problematic. I look, for the first time, at the
effect of just one long branch, in particular the placement of one long branch on a

three species tree, and show that it is placed unexpectedly. I am able to explain
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this with the use of both ML and distance method equations. I go on to look
at the placement of two long branches on four-taxon trees, showing that there is
no attraction between long branches, but that for extreme branch lengths long
branches are joined together disproportionally often. These results illustrate that
even small model trees are still interesting to help understand how ML phylo-
genetic reconstruction works, and that LBA is a complicated phenomenon that
deserves further study. This work has been published in Systematic Biology and
is presented here largely unchanged (Parks and Goldman 2014).

Chapter 4 investigates the assumption of time-reversibility on phylogeny in-
ference. Almost all evolutionary models commonly used in phylogenetic analysis
are a subset of the general time reversible (GTR, REV) model (Lanave et al.
1984; Tavaré 1986), and therefore assume the mathematical condition of time
reversibility. This assumption reduces computational effort and eases mathemat-
ical complexity when calculating likelihoods (Yang 2014); it has no biological
basis. Relaxing this assumption by using a non-reversible model may fit data
significantly better, potentially giving a more accurate description of evolution,
better trees and other benefits. A consensus has not been reached on whether
non-reversible models are significantly better than reversible models (Yang 1994c¢;
Squartini and Arndt 2008; Jayaswal et al. 2010). Often studies have only looked
at a few trees and alignments and made decisions on the utility of non-reversible
models based on this. Further, most of this work has been done on nucleotide
data sets: no previous research has investigated non-reversible models for amino
acid data sets, even though many phylogenies are built using amino acid data.
Analysis of non-reversibility also requires measures of quantification, which so far
have not been developed. In Chapter 4 I explore the use of non-reversible models
for nucleotide data sets, and, for the first time, amino acid data sets. I devise
a number of new measures of non-reversibility and explored their relationship
to measures of the strength or evidence for reversibility, such as likelihood ratio
tests, a common method for choosing between nested models. I show that these
effects are different and can be distinguished. I perform these assessments on
both amino acid and nucleotide data, and cover a much larger range of data sets
than previous papers, allowing me to draw conclusions about the applicability of
non-reversible models for nucleotide and amino acid alignment data sets.

Chapter 5 moves to codon models that allow for measurement of selection.
Finding positively selected genes, or sites in genes, is a key question in biology
(Kosiol et al. 2008). A variety of maximum likelihood and Bayesian methods for
testing for positive selection using a parameter w, the ratio of the fixation rates

of non-synonymous and synonymous mutations, have been developed (Nielsen



and Yang 1998; Massingham and Goldman 2005; Kosakovsky Pond and Muse
2005; Murrell et al. 2013). These can be statistically conservative when applied
to real genes, and hence achieve a lower power than desired. One of these tests,
embodied in the SLR method (Massingham and Goldman 2005), estimates the
maximum likelihood value of w for each site, and then tests whether this value
is greater than 1. The test as originally published by Massingham and Goldman
(2005) is conservative because the null hypothesis assumes all sites are neutral
(w = 1), whereas in reality the majority of sites in genes are under purifying
selection (w < 1). I present a new method to test for positive selection that has
greatly improved power whilst retaining control of the false positive rate. This
involves a new site-wise likelihood ratio test, designed to have power and control
when many of the sites in the gene are under purifying selection (as is typically
the case), and a diagnostic for detecting certain situations in which the original
SLR test should be preferred. The new test achieves improved power by fitting
the null hypothesis to the data and then performing parametric bootstraps (Efron
and Tibshirani 1993). The method is tested using simulations over a wide range
of realistic conditions, including standard comparisons used in previous studies
and larger and more realistic examples modelled on real-life studies. I show that,
for those rare cases where all sites are either strictly neutral (w = 1) or positively
selected (w > 1), the new method performs as well as SLR. More importantly, for
genes where many of the sites are conserved, this method has much better power
than SLR and a controlled false positive rate.

In Chapter 6 I summarise the work and tie together the themes within the

separate chapters.



Chapter 2
Mathematical Background

This chapter covers the mathematical background to this thesis. It is not possible
to cover the entire field of phylogenetic theory, so I will concentrate on areas
where I make contributions, giving an overview of the main assumptions made
when modelling evolution and introducing relevant mathematical terminology
and techniques. A useful reference text is Yang (2014).

In this thesis I assume that sequence alignments are given and correct. This
is a standard assumption, as it is very difficult to use knowledge, or inferred
knowledge, of alignment error, in phylogeny inference. Methods that take into
account alignment uncertainty by integrating over all possible alignments while
inferring the phylogeny and model parameters are being developed (Lunter et al.
2005; Redelings and Suchard 2005; Redelings 2014); however, they are still very
computationally expensive and cannot be applied to large alignments. Although
it is clear that the assumption that alignments are correct may often be invali-
dated, the inference of alignments is a different but related problem which is not

assessed in this thesis.

2.1 Markov Models

Evolutionary models describe the rates of change between states. An assump-
tion of almost all evolutionary models is that future events depend only on the
current state and not on past events. In probability theory this ‘lack of mem-
ory’ assumption is called the Markov property, and processes where it holds are
Markov processes (Norris 1998). This assumption is reasonable biologically be-
cause at any instant in time mutations, and natural selection, can only occur
on the sequence present, and will not know what has occurred before. Some

experimental protein studies have shown evidence of non-Markovian amino acid
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processes (Benner et al. 1994; Mitchison and Durbin 1995); however, it has since
been shown that data produced by a nucleotide or codon Markov process can
be non-Markovian when analysed on the amino acid level (Kosiol and Goldman
2011).

It is generally also assumed that sites evolve independently. This assumption
is unlikely to hold in practice due to selective and functional constraints; however,
it is made because it significantly reduces the computational complexity of model
estimation. Work has been carried out on context-dependent models which relax
this assumption; details of some of these models are given in Section 1.1 (also see
von Haeseler and Schoniger 1998; Jensen and Pedersen 2000; Lunter and Hein
2004; Hwang and Green 2004; Siepel and Haussler 2004; Baele 2011 etc.). These
models are not yet in general use and are not considered in this thesis.

Throughout this thesis I also assume time homogeneity, meaning that in-
stantaneous rates of change are constant (and hence there is one substitution
model for the whole tree). Progress is being made in the development of time-
inhomogeneous models (Blanquart and Lartillot 2008; Bielejec et al. 2014); how-
ever, these models are still experimental, and it is computationally and mathe-

matically easier to keep this assumption.

2.1.1 Instantaneous Rate and Probability Matrices

The simplifying assumptions detailed above allow evolution to be described by
a continuous-time Markov process. Sequences evolve by a series of independent
substitutions that each change a character at one site into another character. This
is generally modelled as a process over a tree, where branching events often signify
speciations, and after branching events the two daughters evolve independently.

The rate at which substitutions between states occur is described by an N x N
instantaneous rate matrix (), with elements ¢;; describing the instantaneous rate
of change from character i to character j, i # 7, and N the size of the character
alphabet. The states of the Markov process are the characters in a sequence. In
this thesis three different character alphabets are considered: nucleotides, amino
acids and codons (without stop codons). N is therefore 4, 20 and 61 (for the
universal genetic code), respectively. Whilst in a state ¢, the rate of leaving is
the sum of the rates of moving from ¢ to any other state j. The diagonals ¢;; are
set to be equal to -1 times the total rate of leaving a site, so that the rows of the
matrix sum to 0 (Norris 1998). This matrix acts independently at each site.

In general when using these models to describe evolution or make inferences

about evolution from data we are interested in the probability of moving between
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two states in a given time period. In an arbitrarily small time interval At, the
probability that a nucleotide ¢ will change to a nucleotide j (j # 7) is ¢;;At. Over
a larger time period, ¢, the probability matrix, P(t), is calculated from

(tQ)?* | (tQ)°

+

— ol@ —
P(t)=e“=1+tQ+ o a3l

+ ..

where [ is the appropriate size identity matrix (Norris 1998). p;;(t) is then the
probability of change from ¢ to j after a time t for all ¢ and j. The matrix
exponential can be calculated in a variety of ways (Moler and Loan 2003). In
phylogenetics, for reversible models (see below), this is often carried out using
matrix decomposition of @) into eigenvalues and eigenvectors (Yang 2006). For
non-reversible models, this does not work well, so instead a function of the ma-
trix is squared repeatedly. This is more computationally expensive than matrix
decomposition (Yang 2006).

If a Markov process is irreducible, meaning that p; ;(t) > 0V ¢ # j and
t > 0, and recurrent, meaning that the probability of returning to each state
unboundedly many times is 1 (Norris 1998), then it has a unique equilibrium
distribution, 7. This means that in the long run the probability of finding a
Markov process in a particular state converges to a value which is independent of

the starting state. The equilibrium distribution 7 can be found by solving either
nP(t) =7 for any ¢t > 0

or
Q=0

(Norris 1998). In general, phylogenetic Markov processes satisfy these conditions
and therefore have unique equilibrium distributions. We generally also assume
that processes are stationary, meaning that they are at equilibrium throughout
the time period (evolutionary time) under consideration and the probability of
finding any site in a particular state does not change over time.

The majority of phylogenetic Markov processes are also time reversible, mean-
ing that, at equilibrium, the amount of change from nucleotide ¢ to nucleotide
Jj is the same as the amount of change from nucleotide j to nucleotide i (Norris
1998). Equivalently, a time reversible process (at equilibrium) observed forwards
in time is indistinguishable from the same process observed backwards. Reversible

models satisfy the detailed balance equations
Tidij = Tjqji Vi, J
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where 7;¢g;;, the amount of change from i to j, is often called the probability flux
(Kelly 1979). If a model is reversible then this relationship also holds for all prob-
ability matrices: m;p(t);; = m;p(t);;. Although a reversible model at equilibrium
is stationary, it is possible for a process to be reversible but non-stationary if it
initially acts on a distribution which is not its equilibrium distribution.

Reversibility is not biologically necessary, but is assumed for the majority
of phylogenetic Markov processes as it eases computational and mathematical
issues, including matrix exponentiation (Yang 2006). Chapter 4 of this thesis is
devoted to the study of the effect of this assumption on the inference of nucleotide
and amino acid models, and calculation of measures for assessing the level of non-
reversibility of models.

For all Markov processes time and rate are confounded, so it is not possible
to estimate one without knowing extra information about the other (Felsenstein
1981). Any scalar product of @) is therefore indistinguishable from ) with a differ-
ent unit of time. In general, and throughout this thesis, matrices are normalised
so that the expected substitution rate at equilibrium, >, > i Tiij, 1s 1. Time,
and branch lengths on a tree, are therefore measured as the expected number of
substitutions per site.

Markov processes are often parameterised to take into account biological fea-
tures. For a reversible model the () matrix can be written as the product of
a diagonal matrix of the equilibrium distribution, and a symmetric matrix S
representing the rates of substitution between two states (often called the ex-
changeabilities), so that ¢;; = m;s;; Vi # j and s;; = sj;. The equilibrium
distribution is specifically parameterised within the ) matrix. The maximum

number of parameters is:

NN -1 VP (6 £
2 2

R . . .. equilibrium distribution
exchangeabilities accounting for matrix normalisation

This equals 8, 208, and 1889 for nucleotide, amino acid, and codon models, re-
spectively. Non-reversible models are under less constraint than reversible mod-
els, and can have up to N(N — 1) — 1 parameters (again accounting for matrix
normalisation), giving 11, 379 and 3659 parameters for nucleotide, amino acid,
and codon models, respectively.

The Markov processes described so far assume that each site evolves under
the same process, but in real life this assumption is often violated. A common
example is rate variation among sites, potentially caused by varying selective

pressure across sites or codon structure. Another example is selective pressure
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itself, where we are interested in measuring the variation between sites and in
finding sites with particularly high or low selective pressure. A common way to
introduce process variation across sites, but keep site independence, is to describe
the variable of interest at each site as a random draw from a distribution. This
allows each site to have a defined probability of having a certain value of this
variable, independent of its neighbours. Again, this variable is assumed to stay
constant throughout the tree (time homogeneity). For among-site rate variation,
the most commonly used distribution is a gamma distribution (Yang 1993, 1994b).
Work is also being carried out on models which do not assume that sites are

independent. Details of these are given in Section 1.1.

2.1.2 Nucleotide Models

Nucleotide models have an alphabet of four characters and have been extensively
developed and used. They are generally parameterised to take into account bio-
logical features; these parameters are then estimated for each data set individu-
ally. The first, and simplest, nucleotide model developed assumes that the rates
of moving from one state to any other state are equal (Jukes and Cantor 1969);
the probabilities of being in each state are also all equal. In this model, typically
abbreviated as JC or JC69, there are no free parameters.

This was a reasonable starting point, but mutation is a biochemical process
acting on each nucleotide differently, making it likely that some changes are more
probable than others. As the availability of sequence data increased this was
shown to be true, as it was noticed that transitions — substitutions within purines
(nucleotides A and G) or pyrimidines (nucleotides C and T) — occurred more
often than transversions — substitutions between purines and pyrimidines. The
K80 model developed by Kimura (1980), therefore took into account this bias by
incorporating a parameter, x, representing the transition/transversion ratio. The
probabilities of being in each state are still all equal. x is generally estimated
for each specific data set, often by ML, with values greater than one indicating
that transitions occur at a higher rate than transversions, which is a better fit
for most biological data sets (e.g. Brown et al. 1982).

The JC69 and K80 models described so far have equilibrium distributions
with equal base frequencies. In reality many biological sequences have unequal
nucleotide frequencies due to selective or mutational biases, so a model that
incorporates this may better describe evolution. The first model to incorporate
this was F81, developed by Felsenstein (1981), which had three free parameters

to represent the probability of three of the four nucleotides. (A parameter for
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the fourth nucleotide is not required as the probabilities of the four nucleotides
needs to sum to one.) Further models which take into account both unequal base
frequencies and transition/transversion bias were also developed: F84 (included
in PHYLIP from 1984, and later published by Kishino and Hasegawa 1989), HKY
(Hasegawa et al. 1985) and TN93 (Tamura and Nei 1993).

The most general time-reversible model, called the GTR or REV model, has
three parameters to describe the equilibrium frequencies and five exchangeability
parameters to describe the rates of change between characters (Lanave et al. 1984;
Tavaré 1986). This model is often found to be the best model for describing
nucleotide sequences, and is very regularly used (Kelchner and Thomas 2007).
Computationally, of the models described in this section, this is the hardest to
estimate. For N = 4 this is not a problem, neither for speed or robustness of
parameter estimates, but for larger state spaces accurately estimating a general
non-reversible model can become an issue.

All of the models described so far are time-reversible. Non-reversible models
can also be parameterised in a biologically relevant way. For example, the reverse
complement symmetric model accounts for the pairing between DNA strands in
double-stranded organisms by setting the rate of substitution from one base to
another equal to the rate of substitution between the conjugate of those two
bases (Wu and Maeda 1987; Lobry 1995). This model has 8 free parameters, the
same number as GTR, but is non-reversible. The most general non-reversible
nucleotide model has 11 parameters. In my opinion, non-reversible models have
not seen much use as they are computationally and mathematically more difficult
to calculate. In Chapter 4 I discuss how useful they are and whether they should

be used preferentially over reversible models.

2.1.3 Amino Acid Models

Amino acid models may be preferred over nucleotide models as amino acids have
a larger character alphabet (20) and, due to the degeneracy of the genetic code,
there are fewer amino acid changes than nucleotide changes, making amino acid
sequences easier to align. In contrast to the parametric nucleotide models, amino
acid models are generally empirical. That is, they are derived from a large number
of sequence alignments and then assumed to be representative for the data under
consideration, and hence are applied with no, or only a few, new parameters
being estimated. The first models of amino acid change were calculated by using
parsimony to count the number of changes between amino acids in a large number

of sequence alignments (Dayhoff et al. 1978; Jones et al. 1992). If there have
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been multiple changes at any sites then parsimony-based counting methods will
underestimate the number of changes between amino acids. To take into account
multiple hits, ML methods were introduced, and are now the most common way
to estimate models (Adachi and Hasegawa 1996; Whelan et al. 2001; Le and
Gascuel 2008; Dang et al. 2010, 2011).

To improve applicability, models specific to certain protein functions or lo-
cations were built, such as mitochondrial (Adachi and Hasegawa 1996; Yang et
al. 1998), chloroplast (Adachi et al. 2000; Cox and Foster 2013) and secondary
structure models (Goldman et al. 1998). Additionally a method for customis-
ing empirical models to fit a data set of interest was developed, which uses the
exchangeabilities (s;;) from the empirical model but replaces the equilibrium dis-
tribution (7) with the estimated distribution of amino acids from the data set in
question. This can be applied to any of the empirical models, and is generally de-
noted by adding ‘+F’ to a model’s name or acronym (Cao et al. 1994). Recently
an even more customised ‘semi-empirical’ model has been developed which uses
principal component analysis to find the substitution rates which covary the most
among different protein families, and then fits the top principal components to
the data to find the best model for the particular data set (Zoller and Schneider
2013).

All amino acid models described and used so far are reversible. In Chapter 4
I study non-reversible amino acid models for the first time, and assess whether
using non-reversible models significantly improves the fit of amino acid models
to data.

2.1.4 Codon Models

Codons are the nucleotide triplets that encode amino acids. There are 4% = 64
possible codons, but only 20 amino acids, so codons are degenerate, with some
amino acids encoded by six codons, whilst others are encoded by just one or two.
The degeneracy is mainly concentrated in the third codon position, with the
majority of third codon position substitutions being synonymous (not changing
the amino acid). Some first codon position substitutions are also synonymous,
whereas all second codon position substitutions are nonsynonymous.

Modelling evolution at the codon level allows for the genetic code to be taken
into account. This means that different codon positions no longer have to evolve
at the same rate or with the same process. It also means that nonsynonymous and
synonymous changes can be modelled differently. An important consequence of

this, and the initial motivation for the development of codon models, is that rates
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of synonymous and nonsynonymous substitutions can be measured and compared
to determine the level of selection acting on a protein or site. A common assump-
tion is that, as synonymous substitutions do not affect the amino acid, they evolve
neutrally. In this thesis ‘neutral” is used to mean ‘under no selective pressure’,
and is not related to distributions of selection effects being described as neutral
or nearly neutral (Ohta and Gillespie 1996). If a sequence is evolving neutrally
then the same will be true of nonsynonymous substitutions so the probability
of fixation of nonsynonymous substitutions is the same as that of synonymous
substitutions. If w is the relative probability of fixation of a nonsynonymous sub-
stitution to a synonymous substitution, then w = 1 for neutrally evolving coding
sequence. An excess of nonsynonymous substitutions compared to synonymous
substitutions means that the amino acid is changed more often than would be
expected under neutrality (w > 1). This is generally taken to indicate positive
selection. On the other hand a dearth of nonsynonymous substitutions compared
to synonymous substitutions means that the amino acid changes less often than
would be expected, and so is under purifying selection (w < 1).

Positive selection itself has been divided into different types, including a) di-
versifying selection that causes frequent amino acid changes, e.g. an arms race
between a host and a pathogen, b) directional selection that causes a particular
set of amino acid changes to be rapidly fixed within a population, and ¢) balanc-
ing or frequency-dependent selection that causes an increase in variability within
a population if there is a fitness advantage in maintaining a polymorphism (Yang
2006). Such processes of selection can also be categorised by whether they occur
for a short time period, such as directional selection, or whether they are long-
term and occur over the whole of the evolution of the sequences under study.
Searching for w > 1 over a whole phylogeny is particularly useful for detect-
ing long-term diversifying selection; it is not as useful for detecting short-term
processes as these may not have w > 1 over the whole tree.

Codon models were originally developed by Goldman and Yang (1994) and
Muse and Gaut (1994). Codons are modelled using a 61x61 substitution rate
matrix which describes the rate of change between all codons except stop codons.
Stop codons are not included as substitutions to or from them are likely to be
highly deleterious and are therefore unlikely to be fixed. It is assumed that mul-
tiple substitutions do not occur instantaneously; rates of change between codons
which differ by more than one nucleotide are all 0. This is a standard assump-
tion for modelling codon evolution. There is however evidence that incorporating
instantaneous multiple nucleotide changes improves the fit of models (Whelan
and Goldman 2004; Kosiol et al. 2007). In this thesis, following the approach
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of Nielsen and Yang (1998), I assume both synonymous and nonsynonymous
mutations follow an HKY model, with the rate of substitutions proportional to
the equilibrium frequency of each codon 7;, and the rate of transitions s times
higher than the rate of transversions (Hasegawa et al. 1985). It is also possible
to use a GTR model instead (Kosakovsky Pond and Frost 2005; Murrell et al.
2013). Nonsynonymous substitutions occur w times more often than synonymous

substitutions. The () matrix is then given by :

(0 if more than 1 nucleotide substitution required
j if 2 — j is a synonymous transversion
¢ij = m;jk it i — jis a synonymous transition

mjw if ¢ — j is a nonsynonymous transversion

| mjkw if 7 — j is a nonsynonymous transition

where k and w are estimated from the data, i and j are codons, and i # j.
The equilibrium frequency parameters m; can be calculated in a variety of ways.
One way is to estimate the four nucleotide frequencies and then calculate the ex-
pected frequency of each codon based on these (F1x4); alternatively, nucleotide
frequencies can be estimated for each codon position separately, with codon fre-
quencies again estimated from these nucleotide frequencies (F3x4); another way
is to directly estimate the frequency of each codon within a data set (F61). These
methods have 3, 9 and 60 free parameters respectively. In this thesis F61 is used
as it has been shown to give the best fit to real data (Goldman and Yang 1994;
Yang and Nielsen 1998). This model is reversible.

Initially all parameters, including w, were assumed to be constant for all sites
of a protein, meaning that the estimated value of w represented an average over all
sites. Studies using this approach generally found that adaptive evolution (w > 1)
was rare, and most proteins are under strong purifying selection (w < 1) (Endo
et al. 1996). The low number of genes found using these models to be under
positive selection was probably an underestimate (Sharp 1997). In general, if
positive selection acts on a gene, it will not be expected to act on every site. Many
sites will be highly adapted to their function, and hence will be under purifying
selection. The average w value therefore may be less than 1 even if some sites are
under positive selection. To deal with this, methods were developed which allow
w to vary over sites, and to be estimated for each site so that sites under positive
selection could be identified. In Chapter 5, I develop a new method for detecting
sites under positive selection. The introduction to that chapter describes the

history of different methods for detecting positive selection, and gives further
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details on different methodologies. Further details on the uses of codon models

can be found in Anisimova and Kosiol (2009).

2.2 Distance Methods for Inferring Phylogenies

Distance matrix (DM) methods for inferring phylogenetic trees are based on com-
puting pairwise distances and using some criterion to fit these distances to a tree
(Yang 2006). The simplest method to calculate pairwise distances is to count
the differences between two aligned sequences. This does not take into account
the possibility of multiple changes having occurred at the same site and therefore
the distance will always be underestimated. An improvement on this is to use
a distance derived from a Markov model, such as those described above, which
intrinsically takes into account the possibility of multiple substitutions. For the
simplest model, Jukes Cantor, the distance, which can be derived from the prob-
ability matrix, is
d= §log(l — %p)
4 3

where p is the proportion of sites that differ between two sequences. If p > 3/4
this distance is infinite. Derivations of distances for more complicated models
can be found in Yang (2006).

Distance methods aim to find a tree and branch lengths which best fit the
pairwise distances. A large number of methods have been developed: I will
briefly describe a few of these, but further details can be found in Felsenstein
(2004).

Least squares is a common method which aims to find the tree and branch
lengths which minimise the sum of squared differences between the distance on
the tree and the pairwise distances (Cavalli-Sforza and Edwards 1967). The sum
is often weighted by the inverse of the square of the distances to take into account
the fact that larger distances have a higher variance (Fitch and Margoliash 1967).
An alternative method is minimum evolution, which uses least squares to find
branch lengths for each topology but chooses the shortest tree instead of the
least squares tree as the best tree (Rzhetsky and Nei 1992, 1993). For both of
these methods, to guarantee finding the best tree, all possible topologies must be
checked. This is generally not feasible, so heuristic searches are used instead. It
should be noted that, even if the best topology is found, there is no guarantee
that it is also the correct topology.

These methods can be time consuming, and therefore algorithmic approxima-

tions to them were developed. Neighbor-joining (Saitou and Nei 1987) is one very
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popular algorithm that is also often used to find a starting tree for ML analyses
(Yang 2007; Guindon et al. 2010). It is essentially a clustering algorithm which
also calculates branch lengths. Neighbor-joining is surprisingly accurate and very
fast as no tree search is performed; therefore, it is a popular method for quickly
building trees. Comparisons of neighbour-joining and Fitch-Margoliash can be
found in Kuhner and Felsenstein (1994).

In general, distance methods are not as accurate as ML as they only use
information about pairwise relationships. They are, however, much faster and
can be useful for gaining insights into ML as the equations are generally more
tractable. I have used this approach in Chapter 3, to study the placement of long

branches on three taxon trees.

2.3 Maximum Likelihood for Inferring Phyloge-

netic Trees and Model Parameter Values

ML is a long-established method for statistical inference which has been exten-
sively tested and successfully applied to a variety of problems (Fisher 1921, 1925;
Edwards 1972). It is consistent, meaning that as the amount of data tends to
infinity the probability of obtaining the true parameter value tends to one (Wald
1949; Chang 1996; Rogers 1997). This is a desirable property, however it only
holds when the model is true, and does not tell us about what may happen under
model misspecification.

The likelihood value, L, used in phylogenetic inference problems is the prob-
ability of data, usually an alignment, given a tree with branch lengths and the
parameters of a model:

L = P(Data|tree, model)

In phylogenetics, sites are generally assumed to be independent so the likelihood
of an alignment is the product of the likelihoods of each site. Due to the very
small probabilities involved in these calculations the natural logarithm of the
likelihood is usually used. The log likelihood is:

log L = log(P(Dataltree, model)) = Z log(P(x;|tree, model))
i=1

where x; is column ¢ of an alignment and n is the length of the alignment. The
likelihood of data at each site given a tree with branch lengths and a Markov

process model of evolution, described in Section 2.1, can be found using Felsen-
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stein’s pruning algorithm (Felsenstein 1981). The algorithm moves through the
tree from the tips to the root calculating the likelihood as it goes, and signifi-
cantly reduces the computational effort required to calculate the likelihood. For
reversible models, as there is no direction on the tree, the root can be placed
wherever is most convenient.

The aim of ML methods is to find the parameters that optimise the likelihood
for a given data set. These are called the ML estimates (MLEs). Parameters
can include the tree topology, branch lengths, and model parameters, but do
not necessarily include all of these things. For example, when looking for positive
selection the tree topology is often assumed to be known, as it has been found that,
provided the tree topology is a decent estimate of the tree, the exact topology does
not affect parameter estimates greatly (Yang et al. 1994). In general, a Markov
model is chosen and the parameters of the model are found using numerical
optimisation (Yang 2006). Markov models are not generally themselves searched
over, although methods to do this are being developed (Huelsenbeck and Dyer
2004); instead, model parameter and tree optimisation are performed for each
model of interest, and then hypothesis tests are performed to find the best model.
Topology search is carried out by finding the optimal branch lengths of a given
topology using numerical optimisation, and then rearranging the topology, finding
the optimal branch lengths on the new topology, and calculating whether the new
topology has a better likelihood than the old topology. This is repeated until no
improvement can be made. Topology rearrangement is usually performed either
by exchanging nearest neighbours (nearest neighbour interchange) or pruning a
subtree and re-grafting it back onto the tree in a new place (subtree prune and
re-graft). These methods do not necessarily cover all possible trees and therefore
there is no guarantee that the optimal topology will be found (Morrison 2007;
Whelan and Money 2010; Money and Whelan 2012).

Branch length optimisation is much faster for reversible models as we can use
the ‘pulley principle’, the ability to calculate the likelihood from any position on
the tree and the likelihood be unchanged (Felsenstein 1981). For non-reversible
models the direction of evolution along each branch on the tree affects the like-
lihood, so it is not possible to move the root around arbitrarily. Another im-
plication of the pulley principle is that for a reversible model only an unrooted
topology can be inferred, whereas for a nonreversible model inferred topologies
are rooted.

There are a variety of programs available to find the ML tree and parameters.
In this thesis I use PAML (Yang 2007), PhyML (Guindon et al. 2010), and HyPhy
(Kosakovsky Pond et al. 2005).
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2.3.1 Information Content

For the majority of phylogenetic inference problems the number of parameters to
be inferred depends on the model of interest and the number of sequences. As
sequence length increases, the amount of information about the parameters of
interest also increases, until, as the sequences tend to infinite length, the proba-
bility of obtaining the true parameter values tends to one (in other words, ML is
consistent).

In some circumstances, we may wish to infer a parameter for each site. For
example, we may be interested in the level of selection, which we believe will
vary between sites (see Chapter 5). Increasing sequence length still improves the
ability to infer parameters that are shared over all sites, but it does not improve
the ability to make the site-wise estimates. For these, a larger tree is required
to obtain more information, instead of an increase in sequence length. This tree
needs to have either more sequences or a longer total branch length, or potentially
both, such that enough substitutions have occurred to accurately estimate the
parameter of interest if these substitutions were known, and the individual branch
lengths are short enough so that the number of substitutions that have occurred
can be inferred sufficiently accurately. If a tree grows in this fashion then, as
the number of sequences tends to infinity, the probability of obtaining the true

site-wise parameter values will tend to one.

2.4 Hypothesis Testing

Likelihood inference can be used to provide information about the process of
evolution by examining the parameter values and comparing models. As well
as obtaining point estimates of parameters, ML allows us to obtain confidence
intervals around these estimates which describe how sure we are about the value
of the estimate (Yang 2006). For a 95% confidence interval, there is a 95%
probability that the interval encompasses the real value; large intervals indicate
low confidence in the estimate, and small intervals indicate high confidence. These
intervals can also be used to test hypotheses. For example if we have a site-wise
estimate of w of 341 then we can be confident that that site has w > 1 and hence is
under positive selection. Confidence intervals are calculated by finding the values
either side of the ML estimate for the parameter of interest that correspond to
the ML value minus half of the likelihood ratio test (see below) value used for
determining significance (Silvey 1975; Yang 2006).

Likelihood inference can also be used to compare hypotheses (Wilks 1938). If
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we have a null hypothesis Hy, which is nested inside an alternative hypothesis,
H;, such that if certain parameters within H; are restricted Hj is reached, then
we can use a likelihood ratio test (LRT) to compare them. The LRT statistic is
twice the difference between the maximum log-likelihood of the alternative model

and the maximum log-likelihood of the null model:
A = 2(log(L(H,)) — log(L(Ho)))

LRTs allow us to assess whether the more complex alternative model, with fewer
restricted parameters, significantly improves the model of evolution explaining the
data. The more complex model will always give the same or better likelihood,
so we are not just looking for whether the model is better, but for whether it is
significantly better. Under the null, A is Xfc distributed, where f is the difference
in degrees of freedom of the null and the alternative models (Wilks 1938). The
null hypothesis is rejected if the p-value, the probability that a value greater than
or equal to A would be produced by the xfc distribution, is less than or equal to
the significance level, «, of the test.

The significance level, or size, « is also the false positive rate (FPR), the
proportion of times the null is rejected when the null is in fact the true model,
expected for the test if it is repeated multiple times; « is therefore chosen to be
the desired FPR. Another quantity of interest is the power, or the true positive
rate (TPR), the proportion of times the null is rejected correctly if the test is
repeated multiple times. These two quantities are linked, so that reducing the
size also reduces the power of a test. For LRT's, the power is not controlled; often
the aim is to develop a test with the most power for a given size. LRTs are used
in Chapter 4 to compare reversible and non-reversible models.

The Xfc distribution is applicable to LRTs provided the null hypothesis does
not place a parameter on the boundary of the possible region in the alternative
hypothesis. If parameters are on boundaries then an alternative distribution
must be derived (Self and Liang 1987). One example of this is a test for positive
selection, comparing Hy : w = 1 against H; : w > 1; the null hypothesis clearly
has w on the boundary of the parameter space of the alternative. If the true
value conforms to the null then estimates will be distributed around the true
value, meaning that if there were no restrictions on w, half of the estimated
values would be less than one, and half would be greater than 1. Due to the
restrictions, the first half will have w = 1 and hence A = 0, whilst the second
half will have w > 1 and A will be x? distributed. LRT values can therefore

be compared with a 50:50 mixture of a point mass at 0 and a x? distribution
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(Massingham and Goldman 2005). A similar argument and distribution can be
used for testing whether there is among site rate variation (Self and Liang 1987;
Whelan and Goldman 1999; Goldman and Whelan 2000).

Use of the x? distribution for LRTs is only applicable to nested hypotheses,
so if we wish to test non-nested hypotheses then either a distribution needs to
be derived for the particular test, or parametric or non-parametric bootstrapping
can be carried out (Efron and Tibshirani 1993). Bootstrapping is a method for
producing pseudo-replicate data sets which are assumed to follow the distribution
of the null model. The technique was originally introduced to phylogenetics by
Felsenstein (1985), for assessing the uncertainty in a tree topology. Generally 100
data sets are produced and then analysed in exactly the same way as the original
data set. The LRT values for these bootstrap data sets give a distribution of
expected values if the null is correct. LRT values of the original data set are
compared to this distribution to determine significance. Pseudo-replicates can
be produced either by inferring parameters under the null and simulating data
with these parameters (parametric bootstrap) or by re-sampling the data with
replacement assuming that it conforms to the null (non-parametric bootstrap).
In phylogenetics nonparametric bootstraps have been used to test phylogenies
(Kishino and Hasegawa 1989; Shimodaira and Hasegawa 1999) and compare the
fit of amino acid models (Whelan and Goldman 2001), and parametric bootstraps
have been used to assess the adequacy of models of DNA sequence evolution
(Goldman 1993). In Chapter 5 I develop a new test for positive selection which

uses a parametric bootstrap.
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Chapter 3

Maximum Likelihood Inference

of Long Branches

A paper based on the work presented in this chapter has been accepted for publi-
cation in Systematic Biology (Parks and Goldman 2014). The version presented
here is largely the same as the second revised version of that paper, but with an

extended conclusions section.

3.1 Introduction

Amongst the methods for phylogenetic tree reconstruction from molecular se-
quence data, maximum likelihood (ML) is one of the most popular due to its
statistical basis, robustness and the fact that it appears to suffer less from biases.
Additionally, ML is known to be a consistent method if the assumed model is
correct (Chang 1996; Rogers 1997), meaning that as the amount of data tends to
infinity the probability of obtaining the correct tree tends to one. Consistency,
however, is not informative about performance of a method with finite data, and
with finite data ML can struggle, particularly if long branches are present on
the tree. The reasons for this are unknown. ML with the correct model should
be able to deal with parallel substitutions and multiple substitutions at sites
(Chang 1996), phenomena that occur when branches are long, but despite this it
has been reported to be biased towards trees with long branches placed together
(Huelsenbeck 1995).

One of the reasons that biases in ML reconstruction (for example, issues
caused by long branches) are not well understood is that very few analytical
solutions for ML exist, and the solutions that do exist are for small trees and

simple models. This means that ML tree reconstruction is generally carried out
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using numerical maximisation and heuristics. Yang (2000) derived a set of an-
alytic solutions for a three-taxon tree using two-state characters. Since then
further analytic solutions for three-taxon trees with two-state or four-state char-
acters, and four-taxon trees with two-state characters have been derived (Chor
et al. 2001; Chor and Snir 2004; Chor et al. 2006a,b; Chor and Snir 2007). All of
these studies consider trees with a molecular clock, meaning that biases caused
by long tip branches cannot be studied, as it is not possible to have short tip
branches joined to long tip branches. Further analytical solutions are required to
fully understand long branch biases.

Long branches represent a large amount of evolutionary change for which there
are only a few observations. Various effects of long branches on tree reconstruction
have been reported, starting with Felsenstein (1978). Felsenstein studied a four-
taxon tree with two long branches (P) and three short branches (Q) (Fig. 3.1).
He proved that with two-state characters there are combinations of P and Q
for which parsimony reconstruction is inconsistent. This region of branch length
space is now widely called the Felsenstein zone (Huelsenbeck and Hillis 1993).
Since Felsenstein’s paper, conditions for inconsistency of parsimony have been
extended to any number of character states and five different parameters for
branch lengths instead of two (Zharkikh and Li 1992; Schulmeister 2004). Larger
trees have also been examined, with further inconsistency conditions found (Kim
1996).

Figure 3.1: Tree used by Felsenstein to show that parsimony could be inconsistent.
The short branch length is Q and the long branch length is P.

Following Felsenstein’s early work on inconsistency it became widely accepted
that such problems were due to ‘attraction’ amongst long branches. It also be-
came clear that these problems may not be restricted to parsimony only. Numer-
ous simulation studies tested whether the accuracy of other tree reconstruction
methods is affected by the presence of two long branches (Huelsenbeck and Hillis
1993; Kuhner and Felsenstein 1994; Gaut and Lewis 1995; Huelsenbeck 1995).
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One of the most thorough was carried out by Huelsenbeck (1995). Using the
same tree as Felsenstein, but with four-state characters, he tested the consis-
tency, efficiency and robustness of 26 reconstruction methods. This showed that
under model misspecification all methods could suffer from inconsistency, and
that long branch effects seem to be more of a problem with shorter sequences. It
also showed that the presence of long branches does seem to affect ML, although
the effects were not as strong as for the other methods investigated.

The term ‘Long Branch Attraction’ (LBA) has become widely used to describe
long branches being incorrectly placed together on a phylogenetic tree. However,
LBA is not well-defined and statistical inconsistency, model violation and claims
that certain methods are unable to deal with parallelism and convergence have
been variously cited as both definitions and explanations (Philippe and Laurent
1998; Sanderson et al. 2000; Anderson and Swofford 2004). Initial studies on LBA
were theoretical, with data obtained by simulation. However, after the coining
of the term LBA by Hendy and Penny (1989), there was interest in whether it
could affect real data. Conclusive biological evidence has been difficult to find
because the true tree is never known for real data. However, the publication of
a number of papers proposing that LBA can affect real data (Huelsenbeck 1997,
1998) led to LBA being frequently cited as the reason for unexpected phylogenetic
results (e.g. Stiller and Hall 1999; Sanderson et al. 2000; Philippe and Germot
2000; Wiens and Hollingsworth 2000; Qiu et al. 2001; Omilian and Taylor 2001;
Dacks et al. 2002; Stefanovi¢ et al. 2004; Wilcox et al. 2004; Inagaki et al. 2004;
Fares et al. 2006; Barros et al. 2008; Dabert et al. 2010; Bodilis et al. 2011;
Li et al. 2014). Methods to detect LBA have also been widely discussed and
include: finding two long branches together; showing a ‘better’ method doesn’t
place the long branches together; showing the branches are long enough to attract
by simulation; breaking up a long branch; and removing one of the long branches
and reconstructing the tree to see if the other long branch moves (Huelsenbeck
1997; Bergsten 2005; Connor et al. 2010). There is, however, no method that can
guarantee a particular topology has been caused by LBA.

In addition to being poorly defined and difficult to locate, the reasons for
assuming problems to arise from interactions between multiple long branches, or
for naming LBA an ‘attraction’, are not clear. ‘Attraction’ implies that there is
an interaction between long branches and that this interaction causes them to
be placed closer together. However this has never been proven and indeed our
knowledge of the problems engendered by long branches is incomplete. In this
chapter I aim for a greater understanding of the behaviour of ML tree inference in

the presence of individual long branches. I then extend the analysis to the case of
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two long branches, looking for any additional effects related to their interaction.
To do this I need to distinguish between difficulty in placing long branches and
attraction between long branches. If an attraction were to exist then its effects
could be interpreted, and hence measured, in different ways. [ will define two
such ways as ‘long branch joining’ (LBJ) where long branches are incorrectly
joined together on a tree, and ‘long branch closeness’ (LBC) where long branches
are closer together on the reconstructed topology than on the true topology.
Knowledge of whether either of these two phenomena occur will lead to a greater
understanding of the effects of long branches on tree reconstruction. I will focus
on ML with the correct model, which is consistent. I find this more approachable
than looking at model-misspecification; with the wrong model anything could
happen, but under the correct model ML is expected to perform well.

In this chapter I start by looking at the placement of one long branch by
ML. This is important because correct placement of a branch between two nodes
is necessary for all tree reconstruction. I use a three-taxon tree as it is the
simplest possible tree for reconstruction yet gives interesting and counterintuitive
results. Placement of long branches is assessed by simulations followed by ML
tree reconstruction for the simulated data sets. The distribution of placement
of long branches is then studied using analyses of both ML and distance matrix
equations for three-taxon trees. This gives insight into why long branches may
cause problems for tree reconstruction, and allows for partial analytical solutions
of the four-state character, three-taxon tree without a molecular clock. I then
use knowledge about the placement of one long branch to look at the effect of
two long branches. Four-taxon trees are used, as the three possible topologies
are the simplest that allow me to investigate both LBC and LBJ phenomena. I
test for the existence of both LBC and LBJ, allowing me to split any potential
‘attraction’ into two parts and see which occur. This reveals the complexity of the
problem and highlights that further work will be necessary to fully understand
it.

3.2 Methods

3.2.1 Evolutionary Models and Trees

This chapter considers nucleotide sequences evolved under Jukes Cantor (JC)
evolution (Jukes and Cantor 1969; Yang 2006). This is both the simplest model
and shows the properties of ML estimation on which I wish to concentrate. Se-

quences are simulated without insertions or deletions so alignment is not neces-
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sary. Data at each site are assumed to be independent and identically distributed;
the order of the sites therefore does not matter, just the counts of each possible
nucleotide pattern. Unrooted trees are used as JC is reversible and no molecular

clock is assumed; hence a rooted tree cannot be found.

A B
da ds A XXXyX
B xxyxy
dc C XyXXz
C

Figure 3.2: Unrooted three-taxon tree with the five possible site patterns when
considering Jukes Cantor evolution, where z, y, and z are any three different
nucleotides.

For an unrooted three-taxon tree (Fig. 3.2) there are 43 = 64 possible combi-
nations of the nucleotides at a site over the three taxa. These combinations are
called site patterns. In the JC model each nucleotide has equal base frequency
and mutation rate, meaning that many of these site patterns have the same prob-
ability of occurring. In fact, it does not matter which nucleotides are present for
different taxa, just whether the nucleotides are different for the different taxa.
This means that the site patterns can be reduced to just five patterns of interest,
P = {zzx,zxy, vyz,yxx,xyz}, where x, y and z are any three different nu-
cleotides. The pattern zxx thus represents four possible nucleotide combinations
(AAA, CCC, GGG, and TTT), and the remaining patterns represent 12, 12, 12
and 24 nucleotide combinations, respectively. Data can then be represented as
counts of these five different patterns from a sequence alignment. For an align-
ment of length n, these counts will be written as n, for each pattern » € P, and

> n, = n. For a four-taxon tree there are 256 possible site-patterns, which can
repP
be reduced to 15 patterns of interest for JC evolution.

3.2.2 Maximum Likelihood

In order to look for analytical solutions, the likelihood function was derived for a
three-taxon tree using standard methods (Yang 2006). This derivation is shown

in Appendix A.1.
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ML tree reconstruction was also conducted using the baseml program from
the PAML package (Yang 2007). As small trees are investigated a heuristic search
for the ML branch lengths can be performed for each topology individually, and
then compared to find the ML tree. Use of a heuristic search means that results
may be dependent on the starting values used for branch lengths. Additionally
the presence of long branches makes the search more difficult. To improve my
ability to find ML values, baseml was run from five different starting points for
each analysis, and the ML tree was chosen as the tree with the highest likelihood
from these runs. To check that five runs were enough I assessed how often the
results would change if only four runs were carried out. The changes were min-
imal, even for long branch lengths. Baseml was modified to help it find the ML
tree when the likelihood was very flat, and to make sure restrictions on branch
lengths did not stop it from finding the ML tree. If runs of baseml found trees
with different long branch lengths but a very similar likelihood, I hypothesised
that the ML tree in fact had an infinite branch length. This was then tested by
analytically calculating the likelihood of the tree with an infinite branch length
and comparing it with the likelihoods from baseml. A higher analytical likeli-
hood was taken as confirmation that the branch was infinitely long. In this case
there is no information about where the branch should be placed on the tree, so
any placement made by baseml would be artifactual. Therefore for these trees
the branch in question was recorded as being of infinite length and having no
meaningful position on the tree.

To test procedures for artefacts, phylogenetic inferences were repeated using
PhyML (Guindon et al. 2010). Baseml invariably found either the same tree as
PhyML or a tree with a higher likelihood, increasing my confidence in baseml’s
ML estimates for the analyses needed in this paper. Since baseml and PhyML
are optimised for different tasks in phylogenetic inference, no broader conclusions

about the merits of the two programs are drawn.

3.2.3 Distance Matrix Equations

Although I do not study performance of DM methods in this paper I find it
useful to draw on some of these ideas to help understand the performance of ML
methods. Under the JC model, the pairwise distance is D;; = —2log(1 — 3U;;)
where Uj; is the fraction of bases that differ between the two taxa ¢ and j (Yang
2006). For each pair of taxa, U;; can be written as a sum of pattern counts
divided by the sequence length; for example, between taxa A and B of Figure
3.2, Uap = (Nayz + Nayz + Nyaa)/n. If Uy; > 0.75 then the distance between the
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two taxa is infinite, so for a finite data set there is a maximum distance between
two taxa that can be measured before the two taxa are estimated to be infinitely
far apart.

On an unrooted three-taxon tree minimum evolution, neighbor-joining and
both weighted and unweighted least squares methods result in the same branch
lengths, as the distances can be exactly fit to the tree. The branch lengths are:

_ (Dap+ Dac — Dpc) _ (Dap+ Dpc — Dac) _ (Dac + Dpc — Dag)
da = dp = do =

2 2 2
(3.1)

These calculations can result in negative branch lengths which are not biologically
meaningful. Some software therefore require a positivity constraint in order to

guarantee results that are meaningful in a phylogenetic context.

3.2.4 Simulations

For three-taxon trees simulations were run under JC evolution producing 5000
data sets of 300bp sequences, unless otherwise stated. This is a realistic sequence
length for a small protein, and allows me to look at how ML works for limited
data. For four-taxon trees sequence length was increased to 1000bp due to the
use of two long branches. All simulations were conducted using evolver from the
PAML package (Yang 2007).

3.3 One Long Branch on Three-Species Trees

3.3.1 ML Inference

To explore the placement of one long branch on a tree I simulated data from a
three-taxon unrooted tree (Fig. 3.2) with a long branch, and constructed and
examined trees inferred from this simulated data. The three-taxon case is used
as it is the simplest possible; there is only one topology so the only inference
question is the branch lengths. Six different branch lengths were used for d¢
(de = 0.1,0.5,1,1.25,1.5,2). d4 and dp were set to 0.1 to make the distance
from A to B easy to estimate (Fig. A.1) so that I could concentrate on placement
of the long branch. Estimation of d- also behaves as expected, getting harder as
dc increases (Fig. A.2). Unexpected results come from looking at the position
of where the branch to C joins the A-B path (Fig. 3.3). The placement of C
is measured as a fraction along the A-B path. If C is placed on one end of the
A-B path, so that the branch to A has length 0 (d4 = 0), then C is measured as
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being at 0 on the A—B path; if C is placed on the other end, and dg = 0, then C
is measured at 1. Trees with inferred infinite branch lengths are not included in
these plots.

When d¢ is of the same length as the other branches (de = 0.1) then tree
reconstruction is accurate and C is distributed around its original position. As
de increases the distribution spreads over the A-B path and, counterintuitively,
starts to accumulate at the edges of the A-B path and in the centre. For long
dc, 1 expected the placement of C to be uniform over the A—B path, reflecting
the lack of information about the relationship between C and the other taxa, and
that if there was a peak it would be gradual and centered. This was not seen
here.

Note that for these simulations d 4 and dp were kept constant. The same effect
is seen for other values of d4 and dg, although the precise values of d- needed for
the effect to become apparent depends on d4 and dp (results not shown). The
effect is also present for all finite values of n; as n increases the effect is less for
any given combination of da, dg, and dc but it can again be made to appear
by increasing d¢o. Figure 3.4 shows the proportion of data sets giving trees with
branch lengths of zero for increasing do lengths and different sequence lengths.
For a longer sequence length (n = 1000) the proportion of data sets giving trees
with branch lengths of zero for a given value of d¢ is lower than for n = 300; for
a shorter sequence length (n = 100) it is higher. ML is however consistent under
the correct model so for any finite d4, dg, and d¢, as n — oo the estimates will
tend towards the correct values and the effect will disappear.

Faced with the counterintuitive results of Figure 3.3, my next goal is to ex-
plain these distributions. First I will concentrate on the feature of many of the
reconstructed trees having d4 = 0 or dg = 0 when d¢ is large. To understand
this I need to know the features of data sets that cause trees with zero branch
lengths. T use DM methods as an initial approach, followed by an analysis of the
ML equations. Combining these two approaches allows me to find maxima for the
ML equations with zero or infinite branch lengths, and predict quite accurately
when these will be global maxima. This means that for a given data set I can
predict if the tree will have a zero or infinite branch length; for trees where I

predict this I can also derive the branch lengths of the other branches.

3.3.2 Distance Matrix Analysis

The simulated data sets were analysed using DM methods because DM equations

can be easy to interpret and may give intuition into the behaviour shown in Figure
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Figure 3.3: Distributions of the location of the branch leading to C on the A-B
path for trees simulated with do = 0.1,0.5,1,1.25,1.5,2. For each value of d¢,
5000 data sets were run; those that produced a tree with a predicted infinite
branch length are not plotted: this corresponds to 0, 0, 0, 0, 1, and 92 data sets,
respectively. The distributions of d¢c and d4 + dp along with plots of the position
of C against do and d4 + dp are shown in Figures A.1:A 4.
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Figure 3.4: The proportion of data sets giving trees with branches of length 0 for
increasing d¢ lengths and different sequence lengths. As sequence length increases
the proportion of data sets giving trees with branches of length 0 decreases for
a given length of dc. In the main text I consider sequence lengths of 300 and
dc lengths up to 2. For the longer sequence length of 1000, at do = 2, the
proportion of data sets giving trees with branches of length 0 is much lower than
for the sequence length of 300; increasing dc to 2.5 however increases y back to
the level it is at with n = 300 and do = 2. For the shorter sequence length of
100, the same proportion of data sets giving trees with branches of length 0 as
for n = 300 and d¢ = 2 is reached by the time do = 1.6.
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3.3. Equation 3.1 gives the branch lengths of the three-taxon tree obtained using
DM methods. One of branch lengths is zero or negative if the triangle inequality

is violated and one of the following conditions holds:
Dpc > Dap+ Dac Dac > Dap+Dpc Dap > Dac+ Dpc (3.2)

These conditions can be used as predictors for ML results by calculating pair-
wise distances for each data set from its pattern count data (as explained in
Methods) and checking if the inequalities given above hold. If one of the inequal-
ities holds then one of the branch lengths is less than or equal to zero for the
DM method and I predict that the branch length will be zero for ML. Figure
3.5 shows a version of Figure 3.3 where the data sets with predicted zero branch
lengths are plotted in blue and the remaining data sets are in red. This shows
that the accuracy of the conditions is high. Accuracy will be more fully examined
later.

Some inferred trees have infinite branch lengths, making placement of taxon
C impossible. Therefore I am also interested in identifying trees with infinite
branch lengths from DM analyses. Pairwise distances are infinite if U;; > 0.75 (see
Methods). If exactly one pairwise distance is infinite then one of the conditions
shown above (Equation 3.2) holds. This means that with DM methods there
will be one negative branch length and two infinite branches (Equation 3.1). By
comparing this with ML results I find that this corresponds to cases where the
ML tree has one zero branch length, and finite lengths for the other branches.
This can therefore be included as a case where a zero branch length is predicted
if one of the conditions above (Equation 3.2) holds.

If two pairwise distances are infinite, for example Do and Dpgc, then there
can be no knowledge about the placement of one of the taxa, here C, so the
length of its branch will be infinite. For any taxon X, if the other two taxa are Y’
and Z, then I would expect the branch to X to be infinite if Dy x and Dzx are
infinite. If three pairwise distances are infinite then there can be no knowledge
of the relationship of any of the taxa so at least two of the branch lengths should
be infinite. This gives conditions for infinite branches, which again can be used
as predictors for ML results. All predictors are shown in Table 3.1.

The accuracy of these DM-based predictors of ML behaviour was tested using
simulation, comparing ML results with predictions made from the count data. 1
simulated 5000 data sets from the tree in Figure 3.2 with do = 0.1,0.5,1,1.25,1.5,2
and dy = dg = 0.05,0.1,0.2,0.3. The values for d4 and dg were again chosen

to exhibit a range of lengths where estimation would be relatively easy. In these
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Figure 3.5: Stacked histogram showing distributions of the location of the branch
leading to C on the A-B path for trees with de = 0.1,0.5,1,1.25,1.5,2. The
distributions are the same as in Figure 3.3, but have been split so trees predicted
to have zero branch lengths are coloured in blue, and the remaining trees are in
red. Incorrect predictions are those that are blue but not located at 0 or 1 on the
r-axis, or red and located at 0 or 1.

Table 3.1: Predictions for branch lengths of the ML tree using pairwise distances.

Conditions Prediction

Dpec > Dap + D¢ (incl. Do =00) da =0

DACZDAB+DBC (incl. DAC:OO) dB =0

DAB Z DAC + DBC (incl. DAB = OO) dc =0

DAB:OO&DAC:OO dA:OO

Dig =00 & Dpc = o0 dp = 00

Dic =00 & Dpc = de = o0

Dyp=00& Dyc =00 & Dpe = o0 At least two of the branch lengths are infinite
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Figure 3.6: The accuracy of DM conditions for predicting zero branch lengths on
ML trees for different long branch lengths. Four different lengths of A—B have
been used, with d4 = dp throughout. Accuracy is defined as the proportion of
true results, i.e. the number of true positives and true negatives divided by the
total number of results.

simulations the DM conditions for infinite branch lengths matched ML with 100%
accuracy. The accuracy for the zero branch length DM conditions is shown in
Figure 3.6. These conditions are at least 95% accurate for all simulations apart
from dy = dp = 0.3 where they remain more than 90% accurate.

Zero-length branches can be explained by noting that with long branch lengths
data frequently has |Dgc — Dac| > Dap. This occurs because estimates of Dge
and D¢ have high variance if d¢ is large. This then leads to inference of a zero
branch length.

The good prediction accuracy suggests that the DM conditions are closely re-
lated to ML inference. The next section attempts to derive analytic ML solutions

that would give perfect understanding of our counterintuitive findings.
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3.3.3 Maximum Likelihood Analysis

Branch lengths can be derived by finding the global maximum of the likelihood
equation. One approach to do this is to find all of the local maxima and compare
their values to find the greatest. I have not been able to achieve this due to the
complexity of the ML equations. However, I have been able to find all the local
maxima with zero or infinite branch lengths. I can then compare the likelihoods
to find the greatest, and using the DM results I can then predict when this result
is the global maximum. This allows me to predict not only if there is a zero or
infinite branch length, but also the other branch lengths on the tree.

The ML equation for a three-taxon tree is a function of the five pattern counts
and the three branch lengths (see Appendix A.1, Equation A.2). My aim is to
find the three optimal branch lengths for a given set of pattern counts. The
solution space of the ML equation is therefore a three-dimensional region with
each dimension representing a branch length. Branch lengths are restricted to
be non-negative, so the boundaries of the region occur when one or more of the
branches are either zero or infinite. The space representing all solutions with any
zero or infinite branch lengths is therefore the surface of a convex polyhedron,
which has been made compact (i.e. closed and bounded) by the addition of
points at infinity, from now on described as a cube, giving 26 regions (8 points,
12 lines and 6 planes) to investigate. Figure 3.7 illustrates this as a cube where
finite boundaries have been drawn to represent co for ease of understanding. The
interior of the region represents all cases where each of d4, dg and d¢ is positive
and finite.

To solve for local maxima of the likelihood function at the boundaries, I
restrict the ML equations to each of the points, lines or planes on the surface of
the cube and solve for maxima in each region. Standard methods were used to
solve for maxima (Luenberger 1984); the derivations of all of the possible maxima
on boundaries are shown in Appendix A.1. Because I have not found a solution
for all maxima in the interior of the cube I cannot in general determine whether
each maximum will be a local or global maximum; to do this I would have to
compare the likelihood values of all the maxima, including any in the interior.
However, in some special cases I am able to determine the global maximum, and
these are detailed in Table 3.2. The rest of the local maxima are detailed in Table
3.3.

These results correspond to the peaks at the edge of the distributions shown in
Figure 3.3, but they do not account for the peak in the middle of the distribution,

or the gap around it (clearest when dc = 1.5 or 2). To explain this we need to
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(0,00,0)

ds

(0,0,0)
dc

0,0,0
( ) da (0,0,0)

Figure 3.7: The solution space of the ML equation is an infinitely bounded convex
polyhedron. One point (black), one line (blue), one surface plane (yellow), the
interior plane d4 = dp (red), and three lines where two variables are at oo (dotted
line) are highlighted; when the ML equation is restricted to regions such as these
analytical solutions can be found for local maxima.

consider the red plane, d4 = dp, in Figure 3.7. If we require d4 = dg then it
is possible to find an optimum which corresponds to ngy, = nyz.. As two of
the branch lengths are equal this tree is now equivalent to a three-taxon tree
with a molecular clock, so the branch lengths can be derived from the solution
given in Chor et al. (2006a). Examining the ML simulations shows that all of
the data sets in the peak in the middle of the plots have ng,, = ny.,, and that
if Nyyy = NMyze then the branch to C either falls exactly in the middle or on the
edges of the A—B path (Fig. A.5). This corresponds to the optimum at d4 = dp
being either a maximum or a minimum. In comparison, if 1y, and ng, differ
then there are a variety of places where this branch can be placed. From this it
can be deduced that the gap seen on the distribution is due to the fact that if
the data are symmetric then C can either be placed in the middle or on the edge,

whereas when data are not symmetric there are many more options for placement

of C.
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Table 3.2: Global maxima of the ML equations on the boundaries of the solution
space.

Conditions (da,dp,dc) Likelihood Value

Ngge =N (07070) —’I’LlOg(4)

Naga < n/4 (0,0,00) —nlog(16)

Nyyz = Ngyx = Nyze = 0

rew < 4 0,00,0 —nl 16

< _
Poys = Tawy = Nage = 0 Ngar <nf4 (00,0,0) nlog(16)

Ngge > N4 (0,0,—% log(‘m’gigw)) Ngee 108(™522) + (N — Nage) log(

Nggr > N/4 (O,—% 10g(4"“§7;_"),0) Naze 10g(H522) 4 (N — Nz ) log(

Nyze > N4 (% log(‘“‘wgi;_"),o,O) Nzee 10g(™522) + (N — Nage) log(

n=—NMgzx

12n

N—Ngxx

12n

n=—NMgazx

12n

)

)

)

All results shown so far are for the JC model. Studies on real data generally
use a more complicated model such as the GTR model (Tavaré 1986). The
simulations and tree reconstructions described above have been repeated using
the GTR model with realistic parameters (Murphy et al. 2001) (Fig. A.6). Again
for long branch lengths many trees have zero branch lengths. However, there is
no sharp peak and gap in the middle of the A-B path; I conclude that this is
caused by the symmetric nature of the JC model, which is not present in the
GTR model.

3.3.4 Combined ML and DM Analysis

Combining the ML and DM analyses allows for a more complete understanding
of the distributions in Figure 3.3. DM analysis has allowed me to predict whether
the tree will have an infinite or zero branch length; in these cases, ML analysis
can be used to derive the other branch lengths of the tree. Therefore a possible
workflow is as follows (Fig. 3.8): first, check for the known global maxima. If
none of these is found then DM analysis can be used to predict whether the tree
has a zero or infinite branch length (to the described accuracy in Fig. 3.6). If
a zero or infinite branch length is predicted then the relevant ML solution can
be used to find it. Otherwise a numerical optimisation program must be used to

find the global maximum.
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Figure 3.8: Workflow for using the ML and DM results to find the maximum
likelihood solution for a three-taxon tree.



3.3.5 Conclusions

Combining the analyses, Figure 3.3 can now largely be explained. This expla-
nation can be used to split the results into separate subsets, as in Figure 3.5.
The conditions given can be used to predict which subset a new data set will be-
long to (Fig. 3.8). An intuitive explanation can also be constructed for the trees
with zero-length branches. By comparison with DM methods it can be seen that
trees would be reconstructed with negative branch lengths. However, ML tree
reconstruction does not permit negative branch lengths and hence trees are in-
stead given zero branch lengths in these cases. These negative branch lengths are
obtained because of the high variance involved in estimating long branch lengths.

I further analysed whether the variance involved in estimating long branches
could explain this phenomenon. For distance methods it is possible to estimate
the variance of the estimates of d4, dp, and do as a function of the sequence
length and the three branch lengths (see Appendix A.2). I am most interested in
the first two of these, as these are the ones most often inferred as zero.

If d 4 is assumed to be normally distributed then it is possible to estimate the
proportion of times that d4 is inferred to be less than or equal to zero. The same
analysis can be repeated for dg, comparing the estimated proportions with the
proportion of times that either DM or ML methods inferred that d4 or dg was
zero (Table 3.4). These predictions are close to the values for both DM and ML,
and are slightly closer to the DM values. This is expected as they are derived
from the variance of the distance estimates. The predictions tend to be slightly
smaller than the proportions found in the simulations. This could be because
of the approximations in the derivation of the variance (see Appendix A.2), or
alternatively it could indicate that the distribution is not quite normal. This
would not be surprising as, although the counts of differences between sequences
may well be normally distributed, the Jukes Cantor distance involves a subsequent

logarithmic transformation.

Table 3.4: Proportion of trees with zero branch lengths for different methods

dc  Predicted Found using DM Found Using ML

0.1 0 0 0
0.5  0.0002 0 0
1 0.0224 0.0262 0.0264
1.25 0.0842 0.0998 0.1034
1.5 0.1996 0.2192 0.2202
2 0.4930 0.5064 0.5220

In summary, analysis of the variance of individual branch length estimates

43



is able to give a good prediction of the frequency of occurrence of zero-length

branches, suggesting that this could be an important explanatory factor.

3.4 Four species tree

Long branch attraction (LBA) is normally discussed when an (unexpected) topol-
ogy with two long branches grouped together is obtained following tree recon-
struction. This means LBA is generally only considered for trees with two long
branches where there are multiple different possible topologies. To allow analysis
of these situations, I now focus on four-taxon trees with two long branches. Two
different forms of LBA have already been defined: long branch closeness (LBC)
and long branch joining (LBJ). These will now be investigated to gain an insight

into what any ‘attraction” might be.

3.4.1 LBC

LBC is defined as long branches being closer together on the constructed topology
than on the true topology. To investigate this I simulated four-taxon data sets
from the tree in Figure 3.9a and applied ML to reconstruct the two three-taxon
trees in Figure 3.9b, and the best four-taxon tree (one of Fig. 3.9c—f). This allows
me to assess how the placement of a long branch is affected by the presence of
another long branch. On the three-taxon trees only one long branch is present so
no attraction could have occurred.

If there were an attraction then I would expect the long branches (Y and Z)
to be closer on the four-taxon tree than on the three-taxon tree. To investigate
this the relative position of Y and Z on the inferred trees has been calculated. To
find the relative position on the three-taxon trees the position of the branches to
Y and 7 are calculated as fractions along the W—X path of their respective trees,
as previously; the relative position, z, is then the difference between these two
fractions (Fig. 3.9b). For each four-taxon tree the positions are again calculated
for Y and Z as fractions for each topology and the relative position ¥ is recorded
(Fig. 3.9cf). For topologies 3.9d and 3.9f, y = 0 is recorded as the branches to
Y and Z fall in the same place on the W-X path. All simulations were performed
as described in Section 3.2.4. The length of the W-X path is kept constant at
0.1 with Y and Z evenly spaced between W and X.

Figure 3.9g shows distributions of the relative position of Y and Z for the
three-taxon trees (z-axis) against that for the four-taxon tree (y-axis) when the

length of the branches to Y and Z is 1.5. The points are coloured according to
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Figure 3.9: a The four-taxon tree used for simulations. The path between W and
X is always of length 0.1 with Y and Z evenly spaced along it. The simulated
data are used to construct the ML three-taxon trees (W,X,Y) and (W,X,Z), b,
and the ML four-taxon tree (one of c—f). Distances x and y, as indicated in
b—f, measure the inferred distance between the branches to taxa Y and Z. g
The relative position of Y and Z on the W—X path on the three-taxon trees (-
axis) versus that on the optimal four-taxon tree (y-axis). Lengths of 1.5 are used
for branches to Y and Z; equivalent results are seen for other lengths. h The
proportions of different topologies obtained for different lengths of Y and Z.
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the topology of the inferred ML four-taxon tree. Also indicated is the line z = y;
points on this line have the same relative position on the three and four-taxon
trees. If topology 3.9¢, the correct topology, underwent LBC then the black
points would lie below this line. Similarly, the points for topology 3.9e, a wrong
topology with the long branches not joined to one another, would lie above this
line. As can be seen these points are not distributed as would be expected for
LBC; in fact there is a small asymmetry in the opposite direction to that which
would be expected under LBC. This shows that the branches do not get closer
together; if anything they get slightly further apart. This asymmetry becomes
significant (Binomial, p < 0.05) for topology 3.9c once the long branches are of
length 1.5. For topology 3.9e this asymmetry is significant (Binomial, p < 0.05)
earlier, at a branch length of 0.75. For topologies 3.9¢ and 3.9e the positions of Y
on the three-taxon tree are also very similar to their positions on the four-taxon
tree (Fig. A.7; correlations of 0.96 and 0.97, respectively). The equivalent can
be shown for the position of Z (results not shown). These results clearly show
that for topologies 3.9c and 3.9e there is no attraction and no LBC occurs. This
is the case for any Y and Z lengths (results not shown). I have also explored the
possibility that instead of long branches becoming closer together, short branches
become closer together. This can be analysed analogously to LBC, and it can be

shown that there is also no Short Branch Closeness (results not shown).

3.4.2 LBJ

LBJ is defined as long branches being incorrectly joined to one another on a
tree. To investigate this I measured the proportion of different ML topologies for
different long branch lengths (Fig. 3.9h). For short branch lengths the results
are as expected with the majority of the data sets having the correct topology.
As the long branch length increases the proportion of the correct topology (3.9¢)
decreases, and the proportions of the other topologies increase, with the topology
with the long branches placed together (3.9d) increasing in proportion more than
topology 3.9e. For branch lengths longer than 2, topology 3.9d continues to
increase whereas topology 3.9e starts to decrease. Finally topology 3.9d levels off
at ~60% of the trees with all the other topologies levelling off at ~13%. This
shows that for very long branch lengths there is a strong bias towards placing
the long branches together, and that for infinite branch lengths instead of getting
each topology chosen randomly, topology 3.9d would be chosen over half of the
time. This shows that LBJ is occurring.

The details of these results are dependent on both sequence length and the
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length of the W-X path. If sequence length is increased then longer branch
lengths are required to see the patterns shown here: however, with long-enough
branch lengths they will still occur. However, for any length of branch to Y
and Z, if sequence length is increased enough then the correct topology will be
reached 100% of the time, as ML phylogenetic inference is consistent. The final
proportions of the topologies are dependent on the length of the W-X path;
however, the existence of the bias is not removed by changing the W-X path
length.

As with the three-taxon tree problem, the simulations and tree reconstructions
shown above have been repeated using the GTR model with realistic parameters
(Murphy et al. 2001) (Fig. A.8). Again LBC does not occur (results not shown)
but for long branch lengths LBJ does occur. However, longer branch lengths are
required for LBJ to occur with GTR than with Jukes Cantor. This is probably
because, although on average the bases are mutating at the same rates, in the
GTR model some rates will be slower than average, and some faster. This means
that saturation will not be reached by all sites at the same time, so at long
branch lengths there will still be information about the tree in some of the sites.
Connecting this with the concept of effective sequence length (Nasrallah et al.
2011), the length of an ‘ideal’ sequence required to get the same behaviour as a
real sequence, indicates that effective sequence length may be model dependent.
It is important to note that this does not tell us which model would perform
better if there were any model misspecification, as would likely be the case in the
majority of empirical studies.

I find the extent of the phenomenon of LBJ surprising. It is important to note
here that when two quantities can tend to infinity, the order in which limits to
infinity are taken can be important. The extent of LBJ is affected by both the
sequence length and the long branch length, and the outcome is controlled by
the order in which these approach infinity. If P, ;(7") is the probability that ML
recovers tree 7" (any tree, including T') from n sites generated on T', where L is

the long branch length, then if sequence length is taken to infinity first then:

lim lim P, (T) =1

L—00 n—o0

If instead the order of the limits is reversed then:
lim lim P, (T)=c<1

n—o00 L—o00

(If limits are taken simultaneously then P, 1,(T') converges to ¢ < 1 unless n grows
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exponentially faster than L, in which case P, (T") converges to 1 (Martyn and
Steel 2012). This convergence to a value less than 1 is what is seen in Figure
3.9h, where for long branch lengths the correct tree is only obtained about 13%
of the time. In order to understand this phenomenon it would be useful to obtain
bounds on c. It is possible to show that, in the limits, the probability of obtaining
topology 3.9¢ and topology 3.9e is the same, and hence ¢ < 1/2 (see Parks and
Goldman (2014), Supplementary Methods). This is still much larger than the
13% seen in our simulation. If tighter bounds could be obtained on ¢ then it

could significantly improve our understanding of LBJ.

3.4.3 Conclusions

The addition of an extra taxon to a tree increases the number of possible wrong
trees which could be inferred, and stochastic error means that they will be inferred
sometimes. I have shown that when long branches are not joined to one another
they do not appear to attract, so there is no LBC. However the proportion of time
long branches join is dependent on branch length, and biases towards trees with
long branches placed together get worse as branch lengths increase. These results
show that LBJ does happen and is related to the existence of long branches, but
it is caused neither by inconsistency or attraction. ‘Long branch joining’ may be

a better term than ‘long branch attraction’.

3.5 Conclusions and Future Work

In this chapter I have shown that placing one long branch is difficult for ML,
even with the correct model. Counterintuitively, there is a bias towards the tips
of the three-taxon tree. Consideration of DM and ML methods has led to insights
as to why this bias exists, as well as predictions and ML solutions for trees with
zero and infinite branch lengths.

The phenomenon previously denoted by LBA has been analysed for small
trees and two distinct analysable phenomena distinguished: LBC and LBJ. LBC
is defined as long branches being closer together on the constructed topology than
on the true topology. LBJ is defined as long branches being incorrectly joined
together on a tree. It has been shown that LBC does not exist on four-taxon
trees, and that the long branches do not interact with each other when they are
not placed together on a tree. However LBJ does exist and is the same effect
as found previously (Huelsenbeck and Hillis 1993). As LBC does not exist, the

phrase LBA, which has come to be used for this effect, does not seem appropriate.

48



The reason for LBJ is still an open question.

An explanation for LBJ would be a significant step forward in understanding
the problems caused by multiple long branches, and devising techniques to over-
come the problems. One possible avenue of research would be to use a similar
approach to that used to understand three species trees, by comparing the results
of DM and ML analyses. For three-species trees this is simplified by the fact that
there is only one topology. Unfortunately this does not seem to work as well
on four-species trees because as branch length increases the best distance-based
topology increasingly becomes different to the ML topology.

An alternative approach is to consider what happens when long branch lengths
are infinite. If the true branch lengths are infinite then there is approximately a
50% chance that the ML estimate will be finite, and a 50% chance that it will be
infinite. It may then be possible to predict the proportions of different topologies
based on whether branch lengths are estimated as finite or infinite. This approach
appears to be promising, as some branch length combinations do regularly yield
the same topology, and deserves further study.

The results shown here have been obtained with long branch lengths and
limited amounts of data, which raises the question of whether it is likely that any
of these effects will be seen in real data. It is difficult to make direct comparisons
from the results shown here to papers citing LBA because real data will not
conform to a specific evolutionary model, and is likely to be significantly more
complicated than the models examined here. Additionally, empirical studies all
use more than three taxa. The effects described in this chapter were seen for
single long branches as short as 1 (expected substitution per site), well within
the bounds of many existing studies. For the cases with two long branches, LBJ
only becomes a real problem when the long branches are of length 2 or greater.
For these lengths it would be difficult to align the sequences. However, real
sequences have much more complicated evolution than that assumed here, and
there is no way of dismissing LBJ as a possible problem for real data.

Previously a large number of tests for LBA have been suggested. My results
indicate that these tests may not all be appropriate. For example, one such
method is based on removing one of the long branches and then repeating the
reconstruction. If the long branch maintains its original position then this was
taken to indicate LBA had not taken place (Pol and Siddall 2001). However, I
have shown that even one long branch is not necessarily expected to be placed
correctly, suggesting this test may not be adequate. Another method proposes
detection of LBA by comparing results using a phylogenetic inference method
that suffers less from LBA (Huelsenbeck 1997), but my finding that even ML
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with a correctly specified model can suffer from LBA (in fact, LBJ) indicates
that care should be taken to ensure methods shown to be robust to this problem
are used.

My study shows that even one long branch may be placed incorrectly and in
an unexpected way by ML on problems as simple as three or four-taxon trees with
a correctly specified substitution model. Although not in itself informative about
behaviour on larger trees, this gives cause for concern when analysing trees with
even one very long branch, and highlights the fact that investigations involving
larger trees are needed, as currently not much is known (Kuhner and Felsenstein
1994; Pol and Siddall 2001; Kiick et al. 2012). It would be interesting to see how
the results of this chapter scale up and whether LBJ and LBC occur on larger

topologies.
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Chapter 4
Reversibility

A paper based on the work presented in this chapter is under review at Systematic
Biology. The version presented here is largely the same, with a slightly altered
Methods section, a case study using non-reversible models (de Beer et al. 2013),

and an expanded Discussion and Future Work section.

4.1 Introduction

The first evolutionary model described for nucleotide substitutions assumed that
the rates of change between all nucleotides were equal, and therefore had no
parameters to estimate (Jukes and Cantor 1969). This assumption was progres-
sively relaxed, with parameters introduced to describe biological features of the
data (e.g. Kimura 1980; Felsenstein 1981; Hasegawa et al. 1985; Tamura 1992;
Tamura and Nei 1993). One assumption that is generally still retained is that of
time reversibility, with almost all evolutionary models commonly used in phylo-
genetic analysis a subset of the general time reversible model (GTR, sometimes
also denoted REV) (Lanave et al. 1984; Tavaré 1986; Yang and Goldman 1994).
A model is time reversible if, at equilibrium, the amount of change from char-
acter ¢ to character j is the same as the amount of change from character j to
character ¢ (Norris 1998). This means that it is not possible to determine the
direction of a process. In phylogenetics, the assumption of reversibility is made
for the sake of convenience. It makes the estimation of probability matrices math-
ematically easier (Kelly 1979; Golub and Van Loan 1996), speeding up likelihood
calculations. It also reduces computational effort as, when using likelihood-based
inference (such as maximum likelihood or Bayesian inference) under a reversible
model, it is possible to calculate the likelihood from any place on the tree (the

“pulley principle” of Felsenstein 1981). Both of these things make it easier and
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faster to estimate models, trees and branch lengths under a reversible model.
When computational power is limited this is a distinct advantage.

While the assumption of reversibility makes likelihood calculations easier, it
is without biological justification. Furthermore, there is evidence that the evolu-
tionary process is not reversible: for example, the increased rate of change of C in
CpG sites (Coulondre et al. 1978). If a non-reversible model fits the data better
then, aside from a greater understanding of evolution, its use may improve the
accuracy of inferred tree topologies and branch lengths and of downstream anal-
yses such as searches for positive selection. In theory non-reversible models can
also be used for tree-rooting, whereas reversible models cannot as the direction of
the process is unknown. It has, however, been shown that in general alternative
methods for tree-rooting perform better (Huelsenbeck et al. 2002; Yap and Speed
2005).

Yang (1994a) was the first to explore the use of non-reversible models and
test whether they fit data better than reversible models, concluding that “The
use of the [non-reversible] model does not appear to be worthwhile” (Yang 1994a,
p. 105). However, that study analysed only two small alignments of closely re-
lated nucleotide sequences; since then, further studies have indicated that non-
reversible models may be a significant improvement over reversible models (Squar-
tini and Arndt 2008; Baele et al. 2010; Jayaswal et al. 2010; De Maio et al.
2013a,b). These studies still only cover either a small number of data sets (Baele
et al. 2010; Jayaswal et al. 2010) or a small number of species (Squartini and
Arndt 2008; De Maio et al. 2013a,b) and leave open the question of whether non-
reversible models should be preferred over reversible models. In practice, almost
everyone still uses reversible models due to their simplicity and speed, and the
fact that very few of the widely-used tree reconstruction programs implement
non-reversible models; in short, for reasons of convenience.

The majority of the studies so far have considered only nucleotide data, despite
the fact that amino acid data are often preferred for building trees. No non-
reversible amino acid models have been explored and codon models, commonly
used to study selective pressures in proteins, also tend to be reversible (Anisimova
and Kosiol 2009), with only one paper estimating non-reversible codon models
(De Maio et al. 2013a). Non-reversible amino acid and codon models have been
avoided probably because fitting such a large number of parameters is challenging
both computationally (Boussau and Gouy 2006) and mathematically (Golub and
Van Loan 1996). In this chapter I look for the first time at non-reversible amino
acid models.

Analysis of non-reversibility requires measures that quantify it, as well as
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statistical tests of whether data are significantly better fit by a model that is
reversible or not. Quantification of non-reversibility has not been greatly dis-
cussed before, despite the fact that a measure of non-reversibility would be very
useful. The need for quantification is illustrated by a suggestion that “highly non-
reversible” models may be useful for tree rooting (Huelsenbeck et al. 2002, p. 39)
despite the fact that it is unclear what ‘highly non-reversible’ means. Quantifi-
cation may also be useful for downstream analyses using non-reversible models.
I develop a number of measures of reversibility and look at how they relate to
each other and to tests for non-reversibility.

Testing for non-reversibility has, on the other hand, been discussed exten-
sively. This can be split into two main ideas; testing whether a non-reversible
model fits the data better than a reversible model, for example with an LRT
(Yang 1994a), or testing whether a model itself is non-reversible. The former ap-
proach is a standard mathematical method for testing nested models, commonly
used in phylogenetics for deciding whether a more complicated model should be
preferred over a simpler one (Yang 2006) (see Section 2.4). The statistic used in
this test, the likelihood ratio, is a measure of the strength of evidence for non-
reversibility in the data. Figure 4.1 shows reversible and non-reversible models,
inferred by maximum likelihood (ML), for two alignments: one where the non-
reversible model is significantly better than the reversible model, and one where
the non-reversible model is not significantly better.

The latter approach, testing a single model for non-reversibility, has been de-
veloped on models derived from pairs of sequences (Saccone et al. 1990; Rzhetsky
and Nei 1995; Eyre-Walker 1999; Ababneh et al. 2006) and on a single phylo-
genetic branch connecting an ancestral node with a more recent one (Squartini
and Arndt 2008). The measures used in these tests could in principle be used for
quantification of non-reversibility, but currently this is not possible as either the
measures only apply to pairwise comparisons (Saccone et al. 1990; Rzhetsky and
Nei 1995; Eyre-Walker 1999; Ababneh et al. 2006) or there are multiple indices
which cannot be easily combined into one measure (Squartini and Arndt 2008).

I develop, compare and discuss measures for quantifying non-reversibility, and
suggest the most useful. Contrasting them to LRTs allows me to explore the
relationship between the strength of evidence for non-reversibility and levels of
non-reversibility. These assessments are performed on both nucleotide and, for
the first time, amino acid data, and cover a much larger range of data sets than
previous studies. This allows me to draw conclusions about the applicability of

non-reversible models for nucleotide and amino acid alignment data sets.
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PFO0003

Reversible

Non-reversible

Figure 4.1: Probability flux (m;Q);;) ML estimates of reversible and non-reversible
models for two alignments: PF00003, where the non-reversible model was not
significantly better than the reversible model; and PF00009, where it was. The
fluxes of the reversible models are symmetric, by design.
model for PF00003 is close to being symmetric, with values very similar to the
reversible model. The non-reversible model for PF00009, on the other hand, is

PFO0009

A C G T

A 0.077 0.114 0.085
c 0.110
G 0.114 0.072 0.042

T 0.085 0.110 0.042

A C G T

A 0.101 0.107 0.074
C 0.116
G 0.121 0.059 0.051

T 10.099 0.099 0.037

much less symmetric: compare (e.g.) the A-C and C-A substitutions.
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4.2 Methods

4.2.1 Alignments

To create a data set of nucleotide multiple sequence alignments (MSAs) I selected
the first 400 MSAs with more than four sequences, greater than 100 nucleotide
sites, and greater than 60% of reliably aligned sites from Pandit, a database of
MSAs for protein domains over a wide range of species along with associated trees
(Whelan et al. 2006). This filtering was carried out to remove small or low-quality
MSAs where it would not be possible to estimate substitution rates accurately,
using similar criteria to Zoller and Schneider (2013). T also used 100 gene sequence
alignments spanning the range from slow- to fast-evolving genes from 38 mam-
mals, sampled from a genome-wide set of mammalian gene alignments with an
associated rooted tree derived from the Mammalian Genome Project (Lindblad-
Toh et al. 2011) and augmented using other mammalian genomes from release 63
of the Ensembl database (Flicek et al. 2011) by Jordan (2011).

To create a data set of amino acid MSAs I selected the first 200 MSAs in
Pandit with more than four sequences, greater than 100 amino acid sites, and
greater than 60% of reliably aligned sites. Amino acid models are much more
difficult to build computationally, both due to the amount of time they take
to estimate and the large number of parameters required to be estimated. For
these reasons fewer amino acid alignments were used than nucleotide alignments.
Amino acid versions of the 100 alignments of genes across 38 mammals used for
the nucleotide data set were also selected. Summary information about the MSAs
used can be found in Table 4.1, and a full list of data sets used is provided in

Appendix B.

4.2.2 Trees

Trees for each Pandit alignment were taken from the Pandit database. These
were produced by building trees with a variety of different methods including
PhyML, BioNJ and FastME, and then choosing the tree with the best likelihood
(Whelan et al. 2006). For the mammal data sets I use the tree in Jordan (2011),

pruned to the species present in each alignment.
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For non-reversible models rooted trees are required. The trees in Pandit are
rooted arbitrarily. While ideally the optimal root position would be found by
trying every possible position of the root and picking the position with the highest
likelihood, this is computationally very expensive. Instead, I tried two possible
rootings, midpoint rooting and the arbitrary rooting in Pandit, and chose the
one with the higher likelihood. Comparing the results from these two different
rootings shows that position of the root does not make a big difference to any
of the conclusions (results not shown). The mammal data were included in the
study in order to study some trees where the root is known with confidence,
although it should be noted that the mammal trees tend to be shorter and cover
fewer species than the Pandit data sets. Further information about the trees used
can be found in Table 4.1.

4.2.3 Substitution Models

In this chapter I use general reversible and non-reversible models, represented
by instantaneous rate matrices () and stationary distributions 7, as described in
section 2.1.1. A model is reversible if it satisfies the detailed balance equations,
miQij = m;Qj;, for all i and j (Norris 1998). For reversible models, for i # j,
the elements @;; can be written as m;5;; where the S;; satisfy S;; = Sj;. The
general reversible and non-reversible nucleotide models have 8 and 11 parameters,
respectively, and the general reversible and non-reversible amino acid models have
208 and 379 parameters, respectively. All models are normalised so that the
expected number of substitutions per site at equilibrium, >, > i miQij, is equal
to 1.

4.2.4 Maximum Likelihood Estimation

For each MSA, I find the models that are the best fit, under the constraint of
reversibility and without that constraint. I use ML to do this, by optimising the
likelihood on the corresponding topology (assumed to be correct), with choice of
rootings (where appropriate) and maximizing over nuisance parameters such as
branch lengths. This yields a ML reversible model Q¢T® (with equilibrium distri-
bution 7%7%) and a ML non-reversible model Q¥ (with equilibrium distribution
7VR). These calculations are carried out independently for each MSA. T used Hy-
Phy for all optimisations (Kosakovsky Pond et al. 2005), with nucleotide models
verified using baseml in PAML (Yang 2007). For each MSA, HyPhy was run from
five different starting points to confirm the inference of the best model. If, for any

MSA, HyPhy could not converge on both a reversible and non-reversible model
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then that MSA was not used (see Tab. 4.1). This usually corresponded to MSAs
where the alignment had many gaps. HyPhy was chosen as it is the only program
I know of that can calculate stationary non-reversible models for nucleotide and
amino acid alignments. I also tried using Xrate (Klosterman et al. 2006), which
can calculate non-reversible models for both alignment types; however, it turned
out that it cannot calculate stationary non-reversible models unless the desired

stationary distribution is known in advance.

4.2.4.1 Computational Issues

Obtaining models that could be reliably confirmed to be optimal if a program
was re-run proved to be challenging, particularly for amino acid models. To
try to get the best model, as well as trying many starting positions, I adjusted
parameters within baseml and HyPhy that are used to decide when the best
model has been found. During this process I also encountered a number of bugs
in HyPhy which caused it to either not finish optimising or to output clearly
wrong answers. Although the bugs I have encountered have been fixed (with
very helpful assistance provided by Sergei Kovakovsky-Pond), this illustrates that
optimising non-reversible models, particularly on small amino acid data sets, is

a very difficult problem.

4.2.5 Quantification of Non-reversibility

Four different measures of non-reversibility are described below. These are calcu-
lated using the elements of one or both of the ML reversible and ML non-reversible
models Q¢TR and QVE.

4.2.5.1 Deviation from Detailed Balance

_ NR ANR NR NR
Va = § § |7T1 ii Ty jS
i J

j<i

Here, non-reversibility is being quantified by a measure of how far the ML
non-reversible model is from satisfying the detailed balance equations. If the
model is reversible, then V4 = 0; otherwise 0 < V4 < 1. This was previously

suggested as a measure of non-reversibility by Huelsenbeck et al. (2002).
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4.2.5.2 Distance Between Q™? and the Closest Reversible Model by
Probability Flux
Vg = mm Z Z |7TNR NE _ 7 S45]

55, i

J#Z
Here, the values of the variables m; and S;; (constrained such that S;; = Sj;)
that minimise V5 define the reversible model that is closest to QM. If the distance
is zero then the model is reversible. Despite being motivated differently, it can
be shown that this measure is the same as the deviation from detailed balance:
Vi = V4.

To see this we can expand the summation giving

. NR NR NR NR
Vi = HlAISVIl E E - WZW]SZJ| + |7T jio Wjﬁisjil)
i, 945
]<z B
: NR NR NR NR
= min E E — mimSy| + |7 QT — mimSisl)
Wi,Sig
]<z -

because S;; = Sj;.

By the triangle equality,
ZZ (xR NR_WIWJSlJ‘_i_'WNR ;\{R_ﬂ-iﬁjSU’ ZZ‘WNR NR _ NRQ%R
g<1, ]<z

The quantity on the left is bounded below by V4, proving that Vg > V4.

To prove V4 = Vp, it remains to show that there always exists a reversible
rate matrix for which this lower bound is attained. Such a matrix is given by
Qi; = m;S;;, where m; = 1/n for all i and each S;; = Sj; is chosen to satisfy either

Y RQNE < mim;Siy < wRQNE or wNRQNRE > mim; Sy > wNRQNE. Then for each

pair i,j:
NR ANR NR ANR _ |-NRANR NRNR
ke sz — mm;Sij| + |7Tj sz’ — mim;Sij| = |m; Qij - T jS
and hence V4 = V. We therefore focus on Vj4.

4.2.5.3 Distance Between QV® and Q%%

VC_ZZ| QoTR

J?él
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Non-reversibility can also be measured as the distance between the ML non-
reversible and reversible models. If the data set is best described by a reversible
model, then the ML reversible and non-reversible models will be the same and
Ve = 0. If the evolution of the data set is better described by a non-reversible
model then Vg > 0.

4.2.5.4 Distance Between QMF and Q¢TE by probability flux

V), = Z Z |7TZ]VRQ£;{R G’TRQGTR
Lo
The distance between the ML reversible and non-reversible models can also be
calculated by comparing the probability fluxes m;Q;;. As above, this measure is 0
if the evolution of a data set is best described by a reversible model, and greater
than 0 otherwise. Under some conditions, Vp = V4, but this is not always true.

Again, this can be seen by expanding the terms in the summation

VD — ZZ NR NR GTRQGTRl 4 ‘ﬂ_NR NR GTRQGTR )

_ Zg NR NR GTRQGTRl 4 ‘WNR NR _ GTRQGTR)
]<Z
=y, ij<1| TVRQNR _ pNRQNR|  if (xNRQNR > pGTRQGTR » nNRQNR)
or (TVRQNR > qGTRQGTR » rNRQNR) i
>3 Z |7T VEQNR — mNEQNE|  otherwise

If for each i < j there exist values x;; such that mY* Q" < x;; < 7VFQNF or

]'L
QN > x> wVRQR, then Vp = V4. Otherwise, Vp > V. For normalised
matrices, this measure ranges from 0 to 2.

4.2.6 Significance Testing

LRTs were carried out to compare the non-reversible and reversible models. The
LRT statistic for non-reversible evolution for an alignment, A, is twice the differ-

ence in log-likelihood between the ML non-reversible and ML reversible models:

A= 2(log(LNR) — log(LGTR)>

This statistic is then compared to the x3 distribution, where the degrees of

freedom d is given by the difference between the number of free parameters in the
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two models. For nucleotide data, the non-reversible model has 11 parameters and
the reversible model has 8 parameters, so attained values of A are compared to
X3. For amino acids, the non-reversible and reversible models have 379 and 208
parameters, respectively, so A is compared to x%,,. For brevity, I refer to MSAs
for which the non-reversible model is significantly better than the reversible model

as ‘non-reversible MSAs’; otherwise, I refer to them as ‘reversible MSAs’.

4.3 Results

4.3.1 What is the Relationship Between the V Measures?

The three measures V4, Vo and Vp were calculated for each MSA. The mea-
sures show high correlation (Fig. 4.2), with the correlation between V4 and Vp
the greatest. This is expected as V4 and Vp are often identical (see Section
4.2.5.4). These correlations show that, despite being derived from different ma-
trices and parameter combinations, the measures are capturing similar effects.
The correlations are lower for the amino acid MSAs, probably due to the higher
variance associated with inferring a greater number of parameters in each amino

acid model.

4.3.2 What is the Relationship Between the Measures of
Non-reversibility and the LRT?

Next I explored how these measures of reversibility relate to the LRT statistic A
(Tab. 4.2 and Fig. 4.3). As the three measures are highly correlated, I focus on V.
Non-reversible MSAs are shown in red and yellow (for Pandit and mammal data,
respectively), and reversible MSAs are shown in black and blue. Histograms on
the right of the plots show the distribution of V4 for non-reversible and reversible

MSAs. Similar plots for the other measures can be found in Appendix B.

Table 4.2: Correlation between the V measures and the LRT statistic A for
nucleotide and amino acid data.

Nucleotides Amino Acids

A Scaled A A Scaled A
Va 0.259 0.887 0.711 0.766
Ve 0.259 0.877 0.700 0.647
Vp 0.259 0.887 0.700 0.773

The measures defined in this paper are estimates of the strength of non-

reversibility for a certain data set, whereas A quantifies the evidence for non-
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Figure 4.2: Relationships between V4, Vi and Vp for nucleotide MSAs (a-c;
grey backgrounds) and amino acid MSAs (d-f; white backgrounds). Each point
corresponds to one MSA. Pandit MSAs are red if they are significantly better
described by a non-reversible model and black otherwise. Mammal MSAs are
yellow if they are significantly better described by a non-reversible model and
blue otherwise. Correlations for a-f are 0.990, 0.999, 0.990, 0.821, 0.998 and
0.839, respectively.
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Figure 4.3: Relationship between the LRT statistic A and V4 for nucleotides (top,
grey background) and amino acids (bottom, white background). Each point cor-
responds to a MSA: Pandit MSAs are red if they are significantly better described
by a non-reversible model and black otherwise; mammal MSAs are yellow if they
are significantly better described by a non-reversible model and blue otherwise.
Histograms on the right show V4 for MSAs found to be significant (red) or non-
significant (black). Corresponding plots with Vi and Vp are shown in Figures
B.1 and B.2.
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reversibility. These are not expected to be the same, and indeed this expectation
is confirmed by my results (Tab. 4.2 and Fig. 4.3). For both the nucleotide and
amino acid data sets, the distributions of V4 for non-reversible and reversible
MSAs overlap greatly. For nucleotides there is also a low correlation (0.259)
between A and Vj, with the range in V4 values large for low A values, but
decreasing as A increases (Fig. 4.3). For the amino acid data sets the correlation
is higher (0.711), but with fewer non-reversible MSAs, and again there are many
reversible MSAs with similar or higher V4 values than non-reversible MSAs. For
both nucleotide and amino acid alignments there are a number of MSAs that have
low A, and thus are not significant using a x? test, but high V4, meaning that
the optimal non-reversible model is far from reversible but there is not significant
evidence in the data to prefer the non-reversible model. This could occur when
the alignment and/or tree are very short, making the estimation of the models
less accurate.

I expect the ability to detect non-reversibility using an LRT to depend on the
strength of non-reversibility (V4) and the information content of the sequence
alignment. The quantity of information in a sequence alignment is proportional
to the length of the alignment, and also depends on the tree (topology and branch
lengths) relating the sequences. The information content of a tree is not a well-
understood quantity (Geuten et al. 2007), but the number of sequences and total
tree length are possible proxies. I tested both of these, and found that my intuitive
idea of the information content of trees was best-represented by the number of
sequences (results not shown). Therefore, I used it as a proxy in this study.

To explore how the relationship between measures of non-reversibility and
the LRT is affected by variation in these factors, I simulated reversible sequences
for a variety of trees and sequence lengths and then calculated non-reversibility
measures and LRT statistics for these data sets. I illustrate these simulations
using two trees taken from the Pandit data set (32 species and 154 species)
and using the reversible nucleotide model inferred from Pandit MSA PF00003.
For each topology I simulated 100 data sets using sequence lengths of 100, 1000
and 5000. Figure 4.4a shows the relationship of the inferred V4 and A for these
simulations. Since the simulation substitution model was reversible, the true value
of V4 should be 0. As sequence length increases, the inferred values of V4 get
smaller, getting closer to 0. Vj is also smaller for the larger tree (more sequences;
also greater tree length) . This is as expected as adding more sequences, or longer
sequences, increases the accuracy of model inference.

These simulations illustrate that the signal for non-reversibility contains com-

ponents attributable to both the inferred level of non-reversibility and the infor-
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Figure 4.4: a The LRT statistic A against inferred V4 for data simulated under
a reversible model for a 32 species tree (dots) and a 154 species tree (plus signs)
with sequence lengths of 100 (black), 1000 (red) and 5000 (blue). The vertical
line shows the 5% cut-off point for x32; only 5% of the points should be above
this line. This is approximately true for our simulations. The horizontal dashed
line shows V4 for the matrix used for simulation; as the matrix is reversible
V4 = 0. b Scaled A against V4 for the same data as in a. A is scaled by the
inverse of information content, estimated as the product of sequence length and
sequence number. c—d show the equivalent of a—b, using a non-reversible model
for simulation. As sequence length and tree size increase, so does A; the LRT
finds all MSAs to be non-reversible, apart from 54% of the least informative (32
species tree, sequence length 100) data sets (c). The value of V4 for the matrix
used for simulation is 0.121 (horizontal dashed line). As sequence and tree length
increase, inferred values of V4 converge to the correct value.

65



mation content of the MSA. To clarify the distinction further, I scaled A by the
inverse of information content (measured as the product of sequence length and
sequence number, as described above). The scaled A represents the signal of non-
reversibility per sequence site, and shows a simple monotonic relationship with
inferred V4 value across all of our simulation conditions (Fig. 4.4b). I repeated
the simulations using the non-reversible nucleotide model inferred from Pandit
MSA PF00009 (see Fig. 4.1) and similar features are seen (Fig. 4.4c—d).

The aim of scaling the LRT statistic is to capture the evidence of non-
reversibility per nucleotide or amino acid, which I hope is relatively independent
of the effects of the tree. Indeed, when looking at real data, the scaled A does cor-
relate well with the measures (see Tab. 4.2, Fig. 4.5, B.1 and B.2). This confirms
that it is possible to separate the effects of the strength of the signal (Vy4) from
the total amount of evidence for non-reversibility, and reinforces my belief that
there is a place for both tests of the presence of non-reversibility, and measures

of non-reversibility itself.

4.3.3 Do Non-reversible Models Describe the Evolution-

ary Process Better than Reversible Models?

For nucleotide MSAs, 68% of the Pandit MSAs and 45% of the mammal MSAs are
significantly better described by a non-reversible model (Fig. 4.3). Fewer of the
mammal MSAs are significant, probably because on average both the trees and
the alignments are smaller (Tab. 4.1). Analysing the Pandit MSA codon positions
independently shows that 53% are significant for the first codon position, 52%
for the second position and 63% for the third position. This corresponds to more
MSAs being significantly better described by a non-reversible model when more
change is expected. These results conflict with previous recommendations that
non-reversible models are not important (Yang 1994a).

This is the first time non-reversible amino acid models have been studied.
13% of the Pandit amino acid MSAs and none of the mammal amino acid MSAs
are significantly better described by a non-reversible model (Fig. 4.3). The fact
that fewer MSAs are significant for amino acids than for nucleotides can in part
be attributed to the facts that the amino acid alignments are on average 1/3 of
the length of the nucleotide alignments, and the amino acid alphabet is much
larger meaning that there are many more parameters to estimate. All of the
MSAs that are detected as non-reversible for amino acids are also non-reversible
for nucleotides. My results indicate that for large alignments or more divergent

amino acid data sets, non-reversible models may be valuable.
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Figure 4.5: Relationship between scaled A and V4 for nucleotides (top, grey back-
ground) and amino acids (bottom, white background). Plots are as in Figure 4.3,
except A is now scaled by the inverse of the information content, as approximated
by the product of sequence length and sequence number, minus the number of
gaps. Analogous comparisons with Vi and Vp are shown in Figures B.3 and B.4.
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4.4 A Case Study Using Reversible and Non-

reversible Models

Whilst T was working on the use of non-reversible models I got involved in a
project with Tjaart de Beer on comparing mutations in the healthy human popu-
lation, taken from the 1000 Genomes (1kG) Project (The 1000 Genomes Project
Consortium 2010), with mutations known to cause disease (from OMIM, Am-
berger et al. 2009). This project has been published (de Beer et al. 2013). Below
I present my work on the project, which focuses on building models of evolution
in humans using the 1kG data and comparing these with other empirical models.
The full paper can be seen in Appendix B.3.

The 1kG Project Consortium aimed to catalogue at least 95% of human DNA
variants (with a frequency of occurrence of > 1%) found worldwide, providing
a rich set of single nucleotide polymorphisms (SNPs) known to occur in healthy
individuals. To understand the features of this set of SNPs in humans I built
instantaneous rate matrices for both amino acids and codons, and compared
them with previous empirical models (such as those described in Sections 2.1.3
and 2.1.4). Generally, instantaneous rate matrices are built from between-species
data, and hence it is assumed that they are modelling the result of mutation
and selection. The 1kG data is within-species data, so I expect that, due to the
time-scale and the relatively weak selection in human populations (Lohmueller
et al. 2008), selection will not have had a great effect, meaning that the model
will mainly represent the mutation process. There will however be some effect of
selection, as SNPs which are lethal, or have been fixed (or lost) very quickly, will
not be present in the data.

Rate matrices were built by counting SNPs and then converting the matrix of
counts into an instantaneous rate matrix using methods described in Kosiol and
Goldman (2005). As I am interested in human evolution I want to capture only
SNPs occurring within the human lineage (i.e. since divergence from the most
recent common ancestor of the 1kG sample). Since the relationship structure
within each sub-population is not clear, a conservative method is to count SNPs
that occur only in one sub-population. Each SNP is counted only once. This
method also allows me to determine the direction of each SNP, as the allele present
in all of the other sub-populations, which is very likely to be the ancestral allele,
is known. The use of directed changes means that the inferred instantaneous rate

matrix can be non-reversible.
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4.4.1 Amino Acid Models

For amino acids this procedure produces a non-reversible model with V4 = 0.32.
This value of V4 is higher than that of any of the amino acid models built in this
chapter, indicating that the 1kG model is strongly non-reversible. To investigate
properties of the 1kG model I compared it with matrices calculated for nuclear
genes (Dayhoff et al. 1978; Jones et al. 1992; Lio and Goldman 1999; Whelan et
al. 2001; Le and Gascuel 2008; Zoller and Schneider 2013), mitochondrial genes
(Adachi and Hasegawa 1996; Yang et al. 1998; Abascal et al. 2007; Rota-Stabelli
et al. 2009), chloroplast genes (Adachi et al. 2000; Cox and Foster 2013), and
separately for the exposed and buried residues of globular proteins (Goldman
et al. 1998). As these models can have up to 379 parameters, they can each be
considered to be a point in 379 dimensional space. This is difficult to visualise and
therefore I used principal component analysis (PCA) to reduce the dimensionality
and display the matrices in a lower-dimensional space that captures the main
variation between the matrices.

Model comparison can be carried out using: (a) the ();; values themselves,
(b) the exchangeability parameters S;; (recall S;; = Q;;/m; see Section 2.1.1),
or (c) the probability flux m;Q;;. I tested these three possible parameterisations
and found that they yield similar results; therefore, I only show results using Q);;
(Figure 4.6). The 1kG model is the only model which is non-reversible. To check
that any differences between the 1kG model and other models are not caused by
this fact, I also calculated and included a reversible version of the 1kG model.

The first principal component clearly separates the two 1kG models (reversible
and non-reversible), which are placed very close together, from all of the previ-
ously calculated models. The second principal component then spreads models
out based on whether the alignments used to build them are made up mainly of
exposed or buried domains, with the mitochondrial models on one end built from
nearly all membrane proteins, and models built from only exposed regions of pro-
teins at the other end. I have also added the Pandit reversible and non-reversible
models, discussed earlier in this chapter, to the plot. The paired reversible and
non-reversible points fall close together, showing that including direction does
not make as big a difference as the characteristics of the protein families. Models
from individual families form a cloud around the models derived from collections
of nuclear proteins, further underlining the difference between the 1kG models

and the between-species models.
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Figure 4.6: The first two components of a PCA of instantaneous rate matri-
ces. Matrices included are 1kG (with and without assuming direction), nuclear
(WAG (Whelan et al. 2001), JTT (Jones et al. 1992), LG (Le and Gascuel 2008),
PAM (Dayhoff et al. 1978), tm126 (Lid and Goldman 1999), PCMA (Zoller and
Schneider 2013)), mitochondrial (mtREV24 (Adachi and Hasegawa 1996), mt-
Mam (Yang et al. 1998), mtArt (Abascal et al. 2007), mtZoa (Rota-Stabelli et
al. 2009)), chloroplast (cpREV (Adachi et al. 2000), cpREV64 (Cox and Fos-
ter 2013)), exposed (alpha helix, beta sheet, coil, turn) (Goldman et al. 1998),
buried (alpha helix, beta sheet, coil, turn) (Goldman et al. 1998), and Pandit
(50 protein domains, with or without assuming direction) (Whelan et al. 2006).
Principal components 1 and 2 represent 34% and 20% of the variance respectively.
All other principal components represent 9% or less of the variance each.
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4.4.2 Codon Models

I expect that one difference between the 1kG models and the other models is the
amount of selection which can have occurred. To explore this idea I calculated a
codon model for the 1kG data, using the same counting method as for the amino
acid data, however including both synonymous and non-synonymous changes.
This allows me to calculate a value of w for the 1kG data, which is 0.8. This
agrees with my expectation that the model should be close to selection-free.
Figure 4.7 shows the rates of change from one codon to another, dependent on
whether (a) the change is in a CpG, (b) the change could be to a CpG but that
CpG crosses two codons so it is not possible to tell from this data, or (c) the change
does not affect a CpG. CpG changes have a much higher rate of change, with
potential CpG changes also having a higher average rate than changes which do
not affect CpGs. This is as expected as it is known that CpG dinucleotides in DNA
tend to mutate at rates 10-50 times higher than other nucleotides. Interestingly
this effect cannot be seen in other empirical codon matrices such as CodonPAM
(Schneider et al. 2005), calculated by counting changes in a large number of
alignments, or ECM (Kosiol et al. 2007), calculated using ML on a large number

of alignments (results not shown).

4.4.3 Conclusions

In this subsection I have estimated a non-reversible model for human evolution
from 1kG data and shown that this model is different to previously calculated
between-species models. It is striking that a simple PCA analysis distinguishes
the 1kG data so well, and that the second dimension is also easily interpreted.
This suggests that there is scope in the future to extend this sort of analysis to
better understand the effects of selection and of protein environment on evolu-
tionary trends. While non-reversibility is not as big a difference as these other
effects, the model has a higher V4 value than any of the pandit data sets analysed.

By calculating codon models I have investigated the possibility that the dif-
ferences between the models are due to the lack of selective pressure in the 1kG
model. This confirmed that the model does not contain much selective pres-
sure. It also indicated that the CpG mutation rate is much higher than other
mutation rates. This is a directional effect, present for both synonymous and
non-synonymous SNPs; and so explains the non-reversibility of the amino acid
model. This CpG effect is not seen in other empirical codon models, possibly
indicating that CpG mutations occur at a very high rate and then are selected

out, so that the effect is not seen as strongly when looking across multiple species.
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Figure 4.7: Dependence of mutation rates on the change in CpG status.
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This could also explain why the V4 value for the within-species 1kG data is higher

than those for the between-species Pandit data sets.

4.5 Discussion and Future Work

I have shown that non-reversible models may well be useful to provide a better
model for evolution, particularly for nucleotide sequences. These better models of
evolution improve our understanding of the processes of molecular evolution and
could improve downstream analyses. Over 60% of the nucleotide MSAs in this
study were significantly better described by a non-reversible model. Considering
the facts that the power to detect non-reversibility depends on sequence length
and that the MSAs used in this study were in general fairly short, this is a
strong indication that non-reversible models may well be worth considering for
nucleotide studies.

In general, for amino acid analyses, a new model is not built for each MSA;
instead, empirical models built from large sets of sequence alignments are used
(Whelan et al. 2001). This is because accurate reversible models are difficult to
build for small amino acid MSAs due to the large number of parameters that need
to be fitted. Non-reversible models are even more difficult to fit, due to computa-
tional issues in addition to the fact that they have nearly twice as many param-
eters. Currently, all of the standard empirical amino acid models are reversible.
In this study, despite only using small MSAs, LRTSs significantly favoured non-
reversible models for some amino acid MSAs. For this reason it may be worth
considering investigating non-reversible amino acid models derived from large
numbers of sequence alignments.

Using the 1kG data I have derived non-reversible amino acid and codon mod-
els. These models are built from within-species data instead of between-species
data, and therefore are expected to model mainly the mutation process, with only
a small effect of selection. PCA showed that the 1kG amino add model is indeed
very different from other instantaneous rate matrices, and the 1kG codon model
confirmed that the model is close to being neutral. The codon model revealed a
very strong CpG effect in the mutation data, which may explain the high level of
non-reversibility in the amino-acid model.

I have compared three different measures of non-reversibility with the LRT, it-
self a measure of the significance of a non-reversible model over a reversible model.
The measures of non-reversibility correlate strongly with one-another, showing
that they capture similar information on non-reversibility. They correlate less

strongly with the LRT statistic A, as expected, showing that the amount of non-
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reversibility can be distinguished from our ability to detect non-reversibility. My
preferred measure is the deviation from detailed balance, Vy, as this captures the
most intuition about reversibility. It quantifies the deviation from the equations
that define reversibility, as well as being interpretable as a measure of the distance
between a non-reversible model and the closest reversible model. In addition, its
calculation only requires the ML non-reversible model to be estimated.

In this chapter I have presented the evaluated value of the measure of non-
reversibility as the ‘true’” amount of non-reversibility in a data set, whereas in
fact it is an estimate, as the ML model used to calculate it will typically be an
estimate. To assess the accuracy of the value of the measure, and to determine the
variance, a bootstrap could be performed on the data, with the measure calculated
for each bootstrap sample. A confidence interval could then be constructed,
perhaps allowing a new way to test for whether the data set is non-reversible. In
a traditional setting this would be done by testing whether the value indicating a
reversible model, here 0, is included in the confidence interval. As 0 is the lower
bound of the measure, it is unlikely that it will be reached, even if the model is
truly reversible, so an alternate method would need to be developed to perform
this test.

As well as improving the model of evolution, one reason for using non-reversible
models would be in hope of improving the branch lengths and topology of inferred
trees. The focus of this chapter has been to assess and analyse the quantification
and significance of non-reversibility. Because of this, and due to the computa-
tional expense of finding the optimal topology, only one topology was analysed
for each alignment. This means I have not explored the extent to which non-
reversible models improve tree estimation. I have compared the branch lengths
estimated using the two models, and found that the branch lengths of inferred
trees are not greatly changed by the use of a non-reversible model (results not
shown). These results indicate that it is unlikely that tree estimation will be
greatly affected by using non-reversible models although it is not possible to say
what would happen on larger data sets.

These results may indicate that for biologists interested mainly in divergence
patterns, non-reversible models are unnecessary. However, often the process itself,
and hence the parameters within the model, are of interest. For example, in
the case study in Section 4.4, a motivation for building models of mutations
that occur in healthy individuals, and those that are known to cause disease,
is to be able to compare these models in order to help predict whether newly
found mutations are disease-causing. Having a more accurate model of both of

these processes is important to help with predictions. Another example is within
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cancer cells, where modelling the mutational process may help us understand
the development of different cancers. Alexandrov et al. (2013) built models for
different cancer processes, and then inferred patterns of mutations which were
attributed to different mutagenic processes. The specific parameters of interest in
these models are the rates of change between bases; as there is no biological reason
for expecting them to be reversible they are modelled non-reversibly. Another
area where we are interested in the process itself is within healthy somatic cell
lineages, where modelling the processes of genome change between successive
generations of normal cells can help us reconstruct and understand development
and ageing (Behjati et al. 2014).

One subject raised in the Introduction of this chapter was that of not knowing
what “highly non-reversible” means. The adoption of a standard measure such
as V4 would make it possible to define cut-offs for different levels of reversibility
using the distribution of the measures for significant data sets found in this paper
(Fig. 4.3) and knowledge of what might be observed by chance (Fig. 4.4). It
should be noted, however, that LRTs should still be used to check for significant
evidence of non-reversibility, as the size of the effect and the significance are not
the same thing.

I have looked at the most general formulation for non-reversible models, where
there are the maximum number of parameters. Analogous to the study of special
cases of the nucleotide GTR model, such as those of Jukes and Cantor (1969),
Kimura (1980), Felsenstein (1981), Hasegawa et al. (1985), Tamura (1992) and
Tamura and Nei (1993), it may of course be possible to find non-reversible models
that are significantly better than reversible models, but which have fewer free
parameters. An example of a non-reversible model for nucleotide sequences with
fewer parameters is the reverse complement symmetric model which accounts for
the pairing between DNA strands in double-stranded organisms by setting the
rate of substitution from one base to another equal to the rate of substitution
between the conjugate of those two bases (Wu and Maeda 1987; Lobry 1995).
This model has fewer parameters than the general non-reversible model (and,
indeed, the same number as the GTR model). This may be enough to model
non-reversible evolution in organisms with double-stranded DNA.

One issue in the use of non-reversible models is the availability of software
that can estimate them. For nucleotide sequences, baseml in PAML (Yang 2007),
HyPhy (Kosakovsky Pond et al. 2005) and nhPhyML (Boussau and Gouy 2006)
can estimate non-reversible models. Of these, only nhPhyML is designed to
perform tree search. For amino acid sequences, only HyPhy can estimate non-

reversible models and there are no programs that can estimate non-reversible
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models and perform tree search. This problem does not just affect estimation
programs: jModelTest2 (Darriba et al. 2012), a popular program used to test
models and choose the best model for each MSA, also does not include a non-
reversible model. My results show that, to understand the process of evolution,
non-reversible models are often better. Further work needs to be carried out to

improve our ability to do this.
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Chapter 5
Positive Selection

At the time of writing this thesis, the work presented in this chapter is being

prepared for submission to Molecular Biology and Evolution.

5.1 Introduction

Detecting protein sites under positive selection is a key question in biology, as
positively-selected sites are good candidates for the causes of species differences,
or for functional, or medical, significance. For example, tests have been used to
find sites which may be in an evolutionary arms race (Yang et al. 2000); to find
sites under positive selection in mammals, helping to improve our understand-
ing of mammal evolution (Lindblad-Toh et al. 2011); in combination with other
methodology to help select sites of possible phenotypic effect (Conde et al. 2006);
or to find sites in HIV which have evolved differently in different populations
(Kosakovsky Pond et al. 2006a).

In the study of protein-coding DNA sequence, selective pressure is frequently
inferred by consideration of the ratio of the rates of fixation of nonsynonymous and
synonymous mutations. Synonymous substitutions do not change the amino acid,
and are often assumed not to affect the fitness of the protein and to be selectively
neutral. If nonsynonymous changes are also selectively neutral, they will be fixed
at the same rate, so the nonsynonymous/synonymous ratio (w, otherwise known
as dy/dg) will be 1. If nonsynonymous substitutions improve the fitness of the
protein, meaning that they occur more often than synonymous substitutions, then
w > 1, suggesting positive selection has occurred. If nonsynonymous substitutions
reduce the fitness of the protein then w < 1, suggesting purifying selection.

A number of methods have been proposed for estimating w in an aligned set

of inter-species protein-coding sequences. Initial methods focussed on counting
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nonsynonymous and synonymous changes between pairs of sequences (e.g. Li
et al. 1985; Nei and Gojobori 1986). These had the limitation that only two
sequences could be analysed at a time, and that w was assumed to be the same
for all the sites of an entire gene sequence. These limitations were overcome
by the development of methods that took into account the phylogeny (Goldman
and Yang 1994; Muse and Gaut 1994) and allowed w to vary between sites (‘site
models’) (Nielsen and Yang 1998; Suzuki and Gojobori 1999; Yang et al. 2000).
These methods also allow users to perform statistical tests of the level of selection.
Further methods have been developed that allow for w to be different on certain
branches of the phylogeny, either having one w value for a whole gene (‘branch
models’) (Yang 1998) or allowing for site-wise variation as well as lineage variation
(‘branch-site models’) (Yang and Nielsen 2002).

In this chapter I focus on using site models to test for sites evolving under
positive selection throughout a gene phylogeny. These models are useful for de-
tecting diversifying selection, the fixation of a succession of amino acid changes
(see Section 2.1.4). They assume that codons evolve independently without any
context-dependent effects, and often also that synonymous substitutions are neu-
tral and all occur at the same constant rate. The first assumption is unrealistic;
however, as with nucleotide and amino acid models, it is very difficult to relax
(see Section 1.1). The second assumption is held in the majority of models used
to detect positive selection. This assumption is known to be violated in many
cases, for example due to codon usage bias (Sharp and Li 1987), but this violation
may not always be large. For example, in mammals, codon bias is known to be
weak (Plotkin and Kudla 2011). It is also known that certain regions of genes
will be under different levels of bias (Plotkin and Kudla 2011); these regions can
therefore be analysed separately. While the relaxation of some of the more re-
strictive assumptions could be a fruitful area for further research, the detection
of site-specific selection over phylogenies has been successful and useful based on
existing models and methods, and the work I will describe increases their utility
by improving the statistical power of existing hypothesis testing approaches. Two
main modelling approaches have been developed for site models: random effects
likelihood (REL) models, and fixed effects likelihood (FEL) models.

5.1.1 REL Models

REL models infer a gene-specific distribution for w, from which each site is as-
sumed to be drawn independently (Nielsen and Yang 1998; Kosakovsky Pond
and Muse 2005; Murrell et al. 2013). A popular example of this is the method
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introduced by Nielsen and Yang (1998), implemented in the codeml program in
PAML (Yang 2007). In a two-part procedure, the appropriateness of a model in-
corporating positive selection is tested by performing an LRT between two nested
models, only one of which allows for positive selection. One possible such pair
are the models M8A and M8, which describe the distribution of w over sites as a
mixture between a beta distribution (allowing only w € [0,1]) and a point mass
either at w = 1 (neutral evolution, model M8A) or at any value > 1 (positive
selection, M8; Swanson et al. 2003). If the LRT is significant in favour of the
model permitting positively selected sites, Bayes Empirical Bayes posterior prob-
abilities of each site being positively selected are then checked and can be used
to infer individual sites evolving under positive selection (Yang et al. 2005).

A fast approximate Bayesian REL method, FUBAR, has been developed by
Murrell et al. (2013). This method does not assume that the synonymous substi-
tution rate is constant over sites, and instead estimates the rates of nonsynony-
mous and synonymous change at each site and assesses whether the nonsynony-
mous rate is greater than the synonymous rate.

In both of these methods specific sites are determined as being under positive
selection if their posterior probability is higher than a given threshold. There is
no formal control of the FPR from using posterior probabilities, although for any
chosen threshold there will of course be some FPR. By analogy to the terminology
used in statistical hypothesis testing, it is convenient in what follows to describe
methods based on posterior probabilities as conservative if they appear to sacrifice

power because of having a lower false positive rate than might be acceptable.

5.1.2 FEL Models

In FEL models, w is inferred independently for each site (Kosakovsky Pond and
Frost 2005; Massingham and Goldman 2005). LRTs are then carried out on each
site, comparing the hypotheses Hy : w = 1 and H; : w > 1. One such method,
SLR (Massingham and Goldman 2005), assumes codons evolve independently
under a continuous-time Markov process of single-nucleotide substitutions, as
described in Section 2.1.4. The tree topology, branch lengths, equilibrium codon
frequencies and the transition-transversion rate ratio are assumed to be constant
over all sites and are estimated using all of the sites under the null model of
neutrality (i.e. all sites have w = 1). These parameters are then held constant
while site-wise likelihoods are calculated for the null model (w = 1) and the
alternative model (w > 1).

To test for positive selection, a site-wise LRT of the null distribution, Hy : w =
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1 against the alternative H; : w > 1 is performed. The site-wise LRT statistic for
this test is 1)
A =2log {m]
where [(w) is the site-wise likelihood, and & is the w > 1 which maximises [(w).
This is compared to a 50:50 mixture of a x? distribution and a point mass at 0
(Self and Liang 1987) (denoted ¥? as in Goldman and Whelan 2000). Further

details can be found in Massingham and Goldman (2005).
SLR assumes synonymous substitution rates are constant over sites; however

it is possible to let them vary, as in Kosakovsky Pond and Frost (2005).

5.1.3 Comparing REL and FEL Models

FEL models have the advantage over REL models that they do not make as-
sumptions about how the level of selection varies along sequences, but they have
the disadvantage that knowledge about the whole w distribution cannot be used
to determine whether each site is under positive selection. Studies to date have
shown existing REL and FEL methods perform fairly similarly (Massingham
and Goldman 2005; Kosakovsky Pond and Frost 2005). However, they are all
statistically conservative, having a lower false positive rate (FPR) than expected
(Anisimova et al. 2002; Massingham and Goldman 2005; Yang et al. 2005; Murrell
et al. 2013). Consequently the power, or true positive rate (TPR), is lower than
could be achieved, meaning that many positively selected sites may be missed at
any given nominal FPR. A less conservative method could allow us to find these

sites.

5.1.4 Why is SLR Conservative?

In this chapter I develop a new site-wise test, the gSLR test, inspired by the
SLR method of Massingham and Goldman (2005), which is less conservative and
achieves higher power. To motivate this new test we need to understand why SLR
is conservative. In SLR, hypotheses Hy : w = 1 and H; : w > 1 are assessed for
each site. This is done by comparing the LRT statistic with ¥?. When data that
conform to the null hypothesis H, are considered, this test has the appropriate
FPR (Massingham and Goldman 2005). Typical proteins, however, do not consist
of all neutral sites, but have many sites under purifying selection. Figure 5.1a
illustrates this, showing the distribution of w estimated from a genome-wide scan
of 38 mammals (Jordan 2011). More than 90% of these sites have estimated
w < 1. This is clearly different from the null (Hy : w = 1) assumed by the SLR
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Figure 5.1: a The distribution of w estimated from a genome wide scan of 38
mammals (Jordan 2011). b Cumulative frequencies of the LRT statistic for the
null distribution of SLR (red) and for simulated data sets with the w-distribution
shown in Figure 5.1a, but without any positive selection (no sites with w > 1;
blue). The horizontal line crosses the curves at the 5% FPR, corresponding to
LRT statistics of 2.7 for the SLR null (red dashed line) and 0.065 for a typical
gene data set (blue dashed line).
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test.

How does the difference between the null distribution of the test and the
w-distribution of the data affect the test? Figure 5.1b shows the cumulative
frequency of LRT statistics for data simulated under the null hypothesis and data
simulated with the w-distribution of the mammal data set shown in Figure 5.1a,
but without any positive selection (no sites with w > 1). This latter distribution is
representative of the sites of a typical gene not under positive selection. The large
difference between these two distributions clearly indicates that for a typical gene
data set, the y? distribution is not optimal for performing the site-wise LRTs. For
the null distribution, a critical value of 2.7 for the LRT statistic corresponds to an
FPR of 0.05. For a typical gene data set this LRT statistic corresponds to a much
lower FPR of 0.005, and to achieve an FPR of 0.05 the LRT statistic threshold
can be reduced to 0.065. Stated another way, if a null hypothesis threshold of 2.7
is used on a typical gene data set then all sites with an LRT statistic between
0.065 and 2.7, which could be inferred as positively selected without raising the
FPR above 0.05, will not be. Consequently the test will be conservative, with any
positively selected sites with an LRT statistic between 0.065 and 2.7 remaining
undetected. Another way of looking at this is shown in Figure C.1.

In short, SLR is conservative because its null distribution does not fit typical
data. In this chapter I develop a new method, the gSLR test, in which I have
altered the null distribution so that it may fit the observed data. Point esti-
mates of w are unaltered, but statistical significance is determined using either
a parametric bootstrap, or a y?-mixture. In order to control the FPR even in
unfavourable situations, I also develop diagnostics to decide when this new test is
appropriate. I show that it is applicable to a large proportion of protein sequence

alignments, and often doubles the statistical power available with SLR.

5.2 gSLR Test

5.2.1 gSLR Test Statistic

SLR is conservative because the null distribution does not account for the large
proportion of sites in most genes that are under purifying selection. To improve
the power of the test, I change the null hypothesis to recognise that site-wise w
values may be less than 1. In other words I alter the test so that, instead of
comparing hypotheses Hy : w = 1 and H; : w > 1, I compare Hy : w < 1 and
H, : w > 1. This change means that instead of comparing a simple hypothesis

(the distribution of the data is fully specified) with a composite hypothesis (the
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distribution of the data is not completely specified), I am comparing two compos-
ite hypotheses. I therefore use the generalised likelihood ratio (gLR; Wilks 1938)
instead of the likelihood ratio used in the SLR method (see Methods). Wilks’s
gLR statistic, d,, compares the maximised likelihood of the null model to the

likelihood maximised over both the alternative and null models:

0, = 2log Supwe[o,oo)l(w) = 2log UQ)
! SUPye(0,1] l(w) [(@o)

where @ is the w € [0,00) that maximises the site-wise likelihood I(w), and @y

maximises [(w) over w € [0, 1]. If & < 1 then necessarily wy = w and d, = 0.

5.2.2 Parametric Bootstrap Test of Significance

In order to decide whether a certain value of d, is significant I need to know how
probable that value is under the null hypothesis. Because for my new test statistic
the null distribution is dependent on the w-distribution of the specific data set
being analysed, it must be determined independently for each data set. Cox
(1961) proposed that, because under the null hypothesis the best explanation of
the data is that parameters of interest take their maximum likelihood (ML) values,
these values can be used to calculate the distribution of d, when a more-general
result is not available. This method was tested and found to be satisfactory by
Cox (1962) and Lindsay (1974a,b). In practice it can be performed using Monte
Carlo methods as shown by Goldman (1993); in a phylogenetic context this is
generally called a ‘parametric bootstrap’ (Felsenstein 1988, also see Section 2.4).

Following the usual procedures for SLR (Massingham and Goldman 2005), an
ML value of w for each site is estimated under the null hypothesis (the values
@p). To determine the distribution of gL.R statistics if this distribution were true,
I discretise the wy-distribution into 10 equal width bins and simulate 100 data
sets with this wy-distribution using EvolverNSsites (Yang 2007). Simulations are
performed using the tree, k value and equilibrium codon frequencies inferred from
the original data (see Section 5.1.2). Site-wise gLR statistics are estimated for
all bootstrap samples, and the value of ¢, from the original data set compared
to these to determine significance. If there were gaps in the original alignment
then the same pattern of gaps is mapped onto each of the bootstrap alignments,
so that the bootstrap samples do not contain more data than the original data
set (Goldman et al. 1998).

This method can be time-consuming as it involves simulating 100 new data

sets, and estimating branch lengths and site-wise w values for each of these data
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sets independently. Therefore, I have developed an alternative approach which

does not require bootstrapping.

5.2.3 x2-Mixture Distribution Test of Significance

Note that the SLR distribution of a 50:50 mixture of x% and point mass at 0 is
the correct distribution for the special case of the new test that the data do in
fact conform to the null of SLR (w = 1). This ¥? distribution arises because in
this case half of the data have @ < 1 and hence 6, = 0, and the other half will
have @ > 1 and ¢, > 0. The distribution of ¢, in the first half is a point mass at
zero; for the second half, d, will be y?-distributed because d, in the new test is
the same as the LRT statistic in SLR. (see Section 5.1.2). The 50:50 mixture \7 is
therefore appropriate to give the probability of a certain value of J, under the null
model when the data conforms to the null of SLR (Massingham and Goldman
2005).

In general in the new test, data do not conform to the null of SLR, but have
many sites under purifying selection. Therefore I no longer expect half of the
distribution to have §, = 0 and half to be x?-distributed: I now expect more than
half the sites to have 6, = 0. I can therefore construct a mixture distribution that
is % a point mass at 0 and (100 — 2)% a x? distribution, where z is estimated
from the data as the percentage of samples which have w < 1. The attained value

of d, can then be compared with this distribution to determine significance.

5.2.4 Confidence Intervals

An alternative way of thinking about significance tests is to look at the confidence
interval (CI) around the estimated w value for a site (see Section 2.4). For
example, for tests at the 5% FPR level, I wish to estimate a CI so that there
is a 95% probability that the interval encompasses the real w value at that site.
When testing for positive selection, if the confidence interval includes w = 1 then
the test is not significant; if the lower bound of the confidence interval is greater
than 1 then the test is significant. Both the parametric bootstrap and y2-mixture
variants of the gSLR test give disciplined ways of altering the critical LRT value
used to determine significance, and it is possible to alter the confidence intervals
of w estimates to reflect this.

Application of standard likelihood theory (see Silvey 1975; Yang 2006, and
Section 2.4) to the original SLR test means that Cls are calculated by finding
the values either side of w that correspond to the ML value minus half of the

LRT value used for determining significance, which for a 95% confidence interval
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is 1.35 (Massingham and Goldman 2005). The region between these contains
those w values that could not be distinguished from the ML estimate at the 5%
significance level. Analogously, for the gSLR test I use the same procedure but
replace 1.35 with half of the 95% point of the distribution under the null in the
new test being used. Note that, as I am testing for w > 1, the lowest possible

lower bound of the confidence intervals is 1.

5.2.5 Limitations and Diagnostics

If the w-distribution estimated from the data is different from the true w-distribution,
the new test may not have a controlled FPR. Fortunately, two situations in which
this can occur can be identified from the data; any data sets so identified can be
analysed using a test known to have a controlled FPR, such as SLR.

The first case where FPR can become inflated occurs when trees are short.
In this case there will have been limited time for substitutions to occur, meaning
that many sites will have no nonsynonymous changes. For these sites w = 0, even
though the real value of w may be higher. The w-distribution will therefore be
shifted to the left. When parametric bootstrap samples are simulated using this
w-distribution there will be further sites where w # 0 but @ = 0 (see Fig. 5.2a).
This shifting of the w-distributions to the left (Fig. 5.2a) causes the FPR of the
bootstrap variant of the new test to be higher than intended.

Short trees also cause problems for the y?-mixture variant of the gSLR test.
When most sites have no changes, then any sites with nonsynonymous changes
tend to have a very high @ (see Fig. 5.2a). The site-wise w-distribution will have
a large peak at 0, a few sites with 0 < @w < 1, and some sites with w > 1. 24, for
the sites with & > 1 is not x3-distributed; in fact, the x3 distribution is too far
to the left and the FPR again is higher than desired.

To identify data sets where trees are too short I can use the fact that many
sites will then incorrectly have @ = 0. I propose that data sets with too high a
proportion of sites with @ = 0 may be analysed using SLR instead of the new
test. Discussion of how a threshold can be chosen for this is given in Section
5.3.1.

The second case of a potentially inflated FPR only affects the parametric
bootstrap variant of my test and occurs if the data are close to the SLR null
distribution (w = 1 for all sites). This is very rare in real data, but if many
sites in a data set have w = 1 then approximately half will have @ > 1, and half
w < 1. However, under the null hypothesis that w < 1, half of the sites will have
w < 1 and half @ = 1. This is very different from the real distribution, being
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Figure 5.2: Two examples of possible true w-distributions, along with their
estimates under the null and the estimated distribution of the resulting boot-
strap, showing pathological conditions in which the three distributions can differ.
a When the tree is short many more of the sites will have w = 0 in the estimated
distribution (middle) than in the real distribution (left); this will be further ex-
aggerated for the bootstrap (right). Any sites with nonsynonymous changes will
tend to have inflated w, and hence there may be some sites with «w > 1 in the es-
timated (middle) and bootstrap (right) distributions, even if there are none with
true w > 1 (left). b If all sites are neutral (left) then the estimated distribution
under the null will have approximately half of the sites with & = 1 and half with
@& < 1 (middle). When the bootstrap is then carried out there will be more sites
with @ < 1 than with @ > 1 (right).
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shifted to the left (Fig. 5.2b). When bootstrap samples are produced based on
this w-distribution, they will have more sites with w < 1 than with w > 1; there
will therefore be more than half of the sites with gLR statistics d, = 0, and fewer
than half with ¢, > 0. Again this shift to the left causes the FPR to be inflated.
This effect will decrease as more species are added to the tree and tree length is
increased, but the perfect result of a 5% FPR will only occur when site-wise @
estimates are perfect (see Section 2.3.1).

The proportion of sites with @ > 1 can be used to determine whether a given
data set is similar to the null of the SLR test. The y2-mixture variant can then
be used as an alternative to the bootstrap variant, as its FPR is unaffected by
data being close to the SLR null distribution (w = 1 for all sites) and it is very
similar to the original SLR test in these circumstances. Again, discussion of how

a threshold can be picked for this is given in Section 5.3.1.

5.2.6 Workflow for the gSLR Test

The workflow for the new test for positive selection, along with diagnostics to
decide whether the new test or the original SLR method should be used, is shown
in Figure 5.3. w is estimated for each site in the data set and the value of the short
tree diagnostic is determined. If the diagnostic is satisfied then, depending on
time constraints and other preferences, the y?-mixture or the bootstrap variant
is chosen. If the bootstrap variant is desired then another diagnostic must be
checked to ensure that the @w-distribution is appropriate for the test. If so, the
bootstrap variant can be performed. If the first diagnostic is not satisfied then
the original SLR test can be used; if the second diagnostic is not satisfied then

the y2-mixture variant can be used instead of the bootstrap variant.

5.2.7 False Discovery Rate Correction

In this chapter I concentrate on creating a test which is both powerful, having a
high TPR, and controlled, meaning that the user-defined FPR does not exceed a
pre-specified value. As with previous papers (Nielsen and Yang 1998; Anisimova
et al. 2001, 2002; Wong et al. 2004; Massingham and Goldman 2005; Murrell
et al. 2013), performance is assessed by focussing on the FPR and TPR.

In practice, detection of sites with a user-defined expected false discovery rate
(FDR), rather than a user-defined FPR, may be desired, e.g. if performing a
genome-wide scan. A number of FDR correction methods have been developed
(e.g. Benjamini and Hochberg 1995; Storey 2003; Efron 2010). I have tested these

and find that on our simulations they yield largely the same results (results not
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Figure 5.3: Workflow for the new test

shown). Benjamini-Hochberg FDR correction (Benjamini and Hochberg 1995)
is used in this chapter to illustrate different methods’ performance under FDR

constraints.

5.3 Results

I assessed the new gSLR test in a range of simulations, aiming both to investigate
how it performs on w-distributions similar to those in real proteins and to check
the FPR is controlled, including in difficult situations. The distributions used
were: (A) the M8 model from codeml with py = 0.9432, w = 2.081, p = 0.572,
and ¢ = 2.172 (as in Anisimova et al. 2001, 2002; Massingham and Goldman
2005); (B) the distribution of Figure 5.1a, derived empirically by fitting a large
number of categories to w values of mammal alignments used in Jordan (2011);
(C) a mixture distribution taking the value w = 0.5 with probability 0.75 or else
w = 1.5 (as in Massingham and Goldman 2005); (D) a mixture distribution taking
the value w = 1 with probability 0.9432 or else w = 2.081 (as in Massingham and
Goldman 2005, cf. case A); and (E) the null model for SLR of a point mass at 1
(as in Massingham and Goldman 2005).

Cases A and B were chosen to represent realistic examples of positive selection.
Codeml is expected to perform particularly well on case A as a beta distribution

is the assumed model for models M8A and M8. Case C was chosen as a problem
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known to be difficult for all tests; cases D and E were chosen to represent the most
difficult cases for the bootstrap variant of the new test, which are when the data
are close to neutral (see Section 5.2.5). In case D, there are positively selected
sites that I hope to be able to distinguish from a more conserved background; in
case E, representing pure neutral evolution, there are none.

Twelve different trees were used for simulations, comprising four different
topologies, each with three different branch length scalings. Three of these topolo-
gies were taken from previous studies of positive selection as useful examples of
a range of possible situations; a 44-species tree was also included so that power
on large trees could be tested. On each topology, branch lengths were scaled to
make a small, medium and large version of the tree, with scalings taken from
previous papers where available. Figure 5.4 shows the four different topologies
with the medium version of branch lengths for each topology indicated; Table 5.1
shows the tree length scalings used for the different topologies.

Simulations were performed using evolverNSsites (Yang 2007) to produce se-
quences with a length of 200 codons. For all simulations, a transition-transversion
rate ratio of 2 was used. Provided sequences are sufficiently long to accurately es-
timate topology, branch lengths, equilibrium codon frequencies and the transition-
transversion rate ratio, sequence length does not affect accuracy of SLR, so it was

not varied (Massingham and Goldman 2005).

Table 5.1: Tree lengths in units of substitutions per site for the three different
sizes of the four topologies.

Small Medium Large
6-species (.11 1.1 11
12-species  0.202  2.02 20.2
17-species  2.10 8.43 16.86
44-species  2.85  11.42 22.84

I compare the performance of the new gSLR test with the original SLR test
(Massingham and Goldman 2005), codeml using comparisons of model M8A and
model M8 (Swanson et al. 2003; Yang 2007), and FUBAR (Murrell et al. 2013).
The new test and the original SLR test are designed to identify sites under pos-
itive selection with an FPR chosen by the user: sites are inferred to be under
positive selection based on p-values of LRTs. Codeml and FUBAR calculate the
posterior probability that a site is under positive selection; a posterior probability
threshold is then used to infer positively selected sites. Posterior probabilities and
p-values are not equivalent; I follow standard procedures for each approach and

have selected commonly used cut-offs of 0.05 for p-values, and 0.95 for posterior
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Figure 5.4: Trees used in analyses: a Artificial 6-species tree (Anisimova et al.
2001; Massingham and Goldman 2005), b 12-species tree of 2-hydroxyacid de-
hydrogenase (Massingham and Goldman 2005), ¢ 5-globin tree for 17 vertebrate
sequences (Yang et al. 2000; Anisimova et al. 2001), d 44-species tree used by the
ENCODE project (Birney et al. 2007; Nikolaev et al. 2007). Branch lengths were
scaled to make a small, a medium and a large version of each tree: tree lengths
are shown in Table 5.1. Branch lengths shown here are the medium version of
each tree.
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probabilities.

Figures 5.5-5.7 show the FPRs, TPRs, and the number of data sets which
passed the diagnostics for the new tests, for the 12 trees under each of the five
different selection scenarios. Focusing first on simulation cases A and B (Fig.
5.5) we note that FPRs are higher for both variants of the new test than for any
other methods, as expected, but remain below 5% as desired. The power (TPR) is
greatly improved for all trees where the new test is used, often doubling. Power is
lower for case B than for case A because many of the sites are under weak positive
selection in case B, whereas in case A all positively selected sites are under fairly
strong positive selection. The y2?-mixture and bootstrap variants of the new test
give similar increases in power, with the y?-mixture tending to be slightly more
conservative than the bootstrap. Both variants perform better than SLR, which
performs better than codeml; all of these methods perform better than FUBAR.

Cases C and D were chosen as difficult cases; they are not, however, very
realistic. In case C both variants of the new test again have a controlled FPR
below 5% but higher than other tests (Fig. 5.6). There is an increase in power
over other tests, although the increase is less than before. In case D, both variants
of the new test and SLR perform equally well, having a controlled FPR and good
power (Fig. 5.6). Again all are better than codeml and FUBAR. Case E (Fig.
5.7) shows that, when there are no positively selected sites to find, the new test
is still controlled.

With only a few slight exceptions in the most difficult cases, the new gSLR
test’s FPR is controlled in all cases studied. The suggested diagnostic tests suc-
cessfully guard against cases where the new tests could fail: for the two very short
trees (6-small and 12-small) they almost always indicate that SLR should be used
in preference to either variant of the new test. For all other trees the y-mixture
variant can be used all the time. The bootstrap variant could always be used for
the realistic simulations (cases A and B), provided the tree is not too short. It is

excluded more as data sets become more similar to the null of the SLR test; for
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cases D and E, the bootstrap variant is almost never used.

5.3.1 Diagnostics

As described earlier, my new method comprises a modified test for positive se-
lection along with diagnostics to distinguish when the chosen variant of the new
test is appropriate for use with a data set, and when an alternative should be
used instead. There are two situations when the FPR of the test might be higher
than desired: when the tree is very short and hence the alignment contains in-
sufficient information to estimate site-wise w accurately, or when data are close
to neutral. The former affects both variants for choosing significance, and the
latter affects only the bootstrap variant. My aim is to choose diagnostics and
cut-offs that return the FPR of the test to the correct value, whilst not removing
an excessive number of data sets that already have an appropriate FPR. In this
way, the new test improves power on as many data sets as possible whilst still
having a controlled FPR.

To identify data sets with trees that are too short I used the data from sim-
ulations A, B and C on all of the 12 trees, as I knew these data were not close
to neutral, and hence high FPRs would not be caused by the underlying w-
distribution in the data sets. I looked at different ways of summarising the data
that might be informative about the tree being too small. Examples include the
proportion of sites with @ > 0, the ratio of the proportion of sites with @ > 0
in the bootstrap and original samples, and the ratio of the proportion of sites
with @ = 1 in the bootstrap and original samples. The summary statistic that
best separated data sets on short trees from those on larger trees, and could be
carried out without time-consuming bootstrap sampling, was the proportion of
sites with @ > 0 (results not shown). The cut-off chosen was 0.2, meaning that
at least 20% of the sites need to have @ > 0 for the new test to be used (see Fig.
5.8a). This cut-off applies to both the bootstrap and the x?-mixture variants of
the new test.

To identify data close to neutral I used data from all of my simulations, but
removed any trees identified to be too short by the first diagnostic. Again I looked
at a variety of ways of summarising the data that would be informative about
whether the data was close to neutral (data not shown). The most useful statistic
was the proportion of sites with @ > 1, where a cut-off of 0.35 gave best results
(see Fig. 5.8b).
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Figure 5.8: a Proportion of sites with w > 0 plotted against the FPR of the
bootstrap variant of the new test, for w-distributions A, B and C. Each point
corresponds to a simulated data set, with colour and shape indicating the tree
that data set was simulated on. The small trees (6-species small and 12-species
small) have very low proportion of sites with @ > 0 and can also have very high
FPRs. Based on this plot, 0.2 was chosen as a cut-off which splits the small
trees where the tests can have too high FPRs from larger trees. The shaded
area contains the few remaining data sets not eliminated at this threshold where
the FPR is too high. An equivalent plot can be produced for the y*-mixture
variant; the same threshold is appropriate. b Proportion of sites with w > 1
plotted against the FPR of the bootstrap variant, for all data sets that passed
the short tree diagnostic. Each point corresponds to a simulated data set, with
colour indicating the w-distribution used in that simulation. As the proportion
of sites with @ > 1 increases so does the FPR. A threshold of 0.35 was chosen.
Again, the shaded area contains data sets not eliminated by the cut-off where the
FPR is too high.
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5.3.2 False Discovery Rate Correction

Figure 5.9 shows results from my simulations after FDR correction is applied to
SLR and the new gSLR test, at an FDR threshold of 5%. FDR correction is
not required for codeml and FUBAR, as a posterior probability threshold of z
guarantees that the FDR is less than or equal to 1 — z, provided that the posterior
probabilities are correct (Wong et al. 2004). By this criterion, both variants of
the new test perform roughly similarly to codeml. On large trees these methods
all perform better than the original SLR method or FUBAR.

5.3.3 Real Data

Although I have taken care to devise diagnostic tests to identify difficult cases
where the gSLR test could fail, my approach is designed to be applicable to many
data sets. To illustrate this I have checked how many of the mammal protein
alignments from the data set described earlier (Jordan 2011) could use the new
test. 10% of the proteins would not pass the short tree diagnostic, and a further
0.5% have an @-distribution that is inappropriate for the bootstrap variant. This
means that the bootstrap variant of the new test can be used on 89.5% of the
proteins (14042 out of 15712), and the y?-mixture variant can be used on 90%
of the proteins (14111 out of 15712), potentially increasing power and allowing
more positively selected sites to be found. Recall that when the new test cannot
be applied it is still possible to use SLR.

As a further example, I show the application of both the new gSLR and old
SLR tests to a mammalian alignment of CD22, a regulatory molecule that pre-
vents the over-action of the immune system and the development of autoimmune
diseases (Hatta et al. 1999). Using the original SLR test 63 sites are found to be
under positive selection. With the new test, using either the y2-mixture or the
bootstrap variants, this is increased to 89 sites. (After Benjamini-Hochberg FDR
correction, these figures are reduced to 16 and 23, respectively.) Figure 5.10 shows
100 amino acids of the alignment along with the corresponding phylogenetic tree.
The track under the alignment shows @ for each site when no restrictions are
put on w (black bar), along with the confidence intervals around w derived using
SLR and the new test using the y-mixture distribution to determine significance.
This illustrates that the new test finds more sites to be under positive selection,

and has tighter confidence intervals.
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TPR

gSLR + gSLR + Codeml
Case A SLR bootstrap X>-mixture M8avs M8 FUBAR
Small 0.0000 0.0000 0.0000 0.0014 0.0021
6-species tree  Medium 0.0083 0.0268 0.0174 0.0410 0.0620
Large 0.0000 0.0072 0.0000 0.0007 0.0000
Small 0.0039 0.0039 0.0039 0.0050 0.0128
12-species tree  Medium 0.0270 0.1274 0.1071 0.1514 0.1136
Large 0.0000 0.0241 0.0000 0.0210 0.0044
Small 0.0185 0.1209 0.0911 0.1256 0.1131
17-species tree  Medium 0.0582 0.2663 0.1880 0.3328 0.2342
Large 0.0216 0.2665 0.1509 0.3632 0.2147
Small 0.0763 0.2561 0.2311 0.3055 0.1595
44-species tree Medium 0.3881 0.7519 0.7058 0.7480 0.3488
Large 0.4768 0.8318 0.7772 0.8318 0.4077
Case B
Small 0.0006 0.0006 0.0006 0.0000 0.0011
6-species tree Medium 0.0016 0.0096 0.0061 0.0042 0.0226
Large 0.0000 0.0041 0.0000 0.0000 0.0000
Small 0.0027 0.0027 0.0027 0.0029 0.0051
12-species tree  Medium 0.0134 0.0340 0.0341 0.0268 0.0486
Large 0.0000 0.0116 0.0000 0.0044 0.0022
Small 0.0179 0.0400 0.0350 0.0337 0.0507
17-species tree  Medium 0.0211 0.0920 0.0631 0.1012 0.0873
Large 0.0225 0.0998 0.0637 0.1134 0.1027
Small 0.0339 0.0676 0.0708 0.0820 0.0719
44-species tree  Medium 0.1202 0.2186 0.2025 0.2654 0.1605
Large 0.1250 0.2562 0.2192 0.3450 0.1373
Case C
Small 0.0016 0.0016 0.0016 0.0002 0.0014
6-species tree  Medium 0.0016 0.0034 0.0020 0.0006 0.0094
Large 0.0000 0.0076 0.0000 0.0004 0.0007
Small 0.0008 0.0008 0.0008 0.0002 0.0018
12-species tree  Medium 0.0044 0.0056 0.0048 0.0060 0.0162
Large 0.0008 0.0134 0.0018 0.0159 0.0082
Small 0.0028 0.0092 0.0055 0.0031 0.0140
17-species tree  Medium 0.0070 0.0218 0.0145 0.0308 0.0383
Large 0.0060 0.0338 0.0192 0.0477 0.0430
Small 0.0089 0.0125 0.0122 0.0120 0.0175
44-species tree  Medium 0.0395 0.0900 0.0748 0.1835 0.0561
Large 0.0843 0.2224 0.1580 0.3870 0.0982
Case D
Small 0.0043 0.0043 0.0043 0.0025 0.0023
6-species tree Medium 0.0042 0.0051 0.0042 0.0063 0.0217
Large 0.0000 0.0000 0.0000 0.0110 0.0055
Small 0.0062 0.0062 0.0062 0.0073 0.0018
12-species tree  Medium 0.0150 0.0150 0.0156 0.0278 0.0397
Large 0.0082 0.0082 0.0115 0.0079 0.0304
Small 0.0101 0.0102 0.0087 0.0272 0.0309
17-species tree  Medium 0.0426 0.0424 0.0384 0.0267 0.0580
Large 0.0815 0.0824 0.0826 0.0457 0.0903
Small 0.0419 0.0419 0.0419 0.0316 0.0374
44-species tree Medium 0.2502 0.2502 0.2489 0.2053 0.1417
Large 0.3995 0.4010 0.4018 0.3311 0.1625

Figure 5.9: TPR after FDR correction has been applied to the site-wise tests.
Shading is as in Figure 5.5. FPRs are not shown; they are all below 0.0015.
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5.4 Discussion

In this chapter I have shown that some current tests for positive selection lack
power, and therefore positively selected sites may be going undetected. I have
presented a new test for positive selection, which has higher power than SLR but
maintains a controlled FPR. This method alters the null hypothesis of SLR to
take into account the fact that most sites in a protein are negatively selected. It
also uses diagnostic tests to check when it is inappropriate for proteins, and there
is a good alternative test, SLR, that can be used in these situations. This method
therefore still has the advantages of a FEL method, in that assumptions do not
need to be made about how the level of selection varies along the sequences,
whilst also having the advantage of the REL method in that knowledge about
the whole distribution can allow us to decide whether each site is likely to be
under positive selection.

In practice, particularly if wishing to apply this method to a genome-wide
scan, FDR correction may be desired. I have shown that after straightforward
FDR correction the new method presented here performs well, and is a great
improvement over SLR with FDR correction. FUBAR does not require any cor-
rection, but tends to have lower power. On a per-gene basis, codeml performs
similarly to the method introduced here; however, it is not clear how FDR cor-
rection should be performed for (e.g.) genome-wide analysis with codeml, due to
its combination of both gene-wise LRTs and Bayesian posterior probabilities.

It is known that, in general, methods for detecting positive selection struggle
with power on short trees (e.g. Anisimova et al. 2001). There has not been a
good way to detect when trees are too short, and so it has been difficult to know
whether an absence of inferred positively selected sites was because there were
none to find, or because the tree was too short and uninformative. My method
includes a diagnostic test to decide when trees are too short. This diagnostic
is not applicable only to my new method; it could be used in conjunction with
other tests to identify when the tree may be too short to permit enough statistical
power to find positive selection.

Both variants of the new test often double statistical power compared to SLR.
The y?-mixture variant tends to be more conservative than the bootstrap, but
is significantly faster to apply as simulations are not required. This may make
it more readily applicable, particularly for large alignments. As the new method
takes into account the distribution of w over sites in order to determine whether
sites are under positive selection, it will have the correct FPR, and good power,

for any possible real w-distributions.
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Chapter 6

Conclusions

In this thesis I have presented three projects focused on better understanding or
improving methodology for maximum likelihood phylogenetic inference. A link
between these projects is that they are all fundamentally related to the fact that,
whilst maximum likelihood will accurately reconstruct the tree and parameters
of interest given the correct model and infinite data, in real life studies we always
have finite data. This can manifest as a problem in a number of ways.

The issue of finite data can be clearly seen when long branches are present
on a tree. In Chapter 3 I showed that, for a given number of sequence sites,
on a three species tree, as the length of one branch is increased, that branch is
inferred with increasing probability to join at the tips of the other branches. If
sequence length is increased this feature decreases in prevalence, increasing again
if branch length is further increased. If both sequence length and branch length
are increasing, the relative rate becomes important in order to infer whether this
feature will occur.

Distance matrix methods also infer the location of long branches to be at
the tips of other branches, often agreeing with maximum likelihood, allowing
equations describing when this occurs for distance matrix methods to be used to
make predictions for maximum likelihood. The inference of long branches at the
tips appears to be at least partly explained by the high variance of branch length
estimates when one branch is long.

On a four species tree, with two long branches, if sequences were of infinite
length then placement would again be accurate. With realistic length sequences,
however, I showed that, although there is no attraction between long branches,
long branches are placed together preferentially. Therefore, I suggest that the
phenomenon previously called Long Branch Attraction should be renamed to the
more appropriate Long Branch Joining. Unfortunately, this joining has not been

explained. Future work could focus on finding an explanation for this, as this
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could allow for the development of methods to detect Long Branch Joining using
quartets.

The results presented here on long branches hold for small trees with simple
models that are known to be correct. This is a gross simplification of real life,
making it difficult to infer how these phenomena might manifest themselves in
real studies. One way of getting closer to this understanding would be to analyse
the placement of one long branch, and investigate the existence of Long Branch
Joining and Long Branch Closeness, on larger trees.

The theme of issues caused by finite data carries over to the work of Chap-
ter 4, where non-reversible models were investigated as an alternative to reversible
models. If we had infinite data we would be able to accurately build complicated
models; with finite data, however, we need to worry about the accuracy of param-
eters being estimated, and whether new parameters significantly improve model
fit. Chapter 4 also changes focus, from thinking about what can be done with
existing models (a theme picked up again in Chapter 5) to improving the models
themselves. This is important as, in real life studies, while we know models will
always be incorrect, we want them to describe the most important features of the
data.

I showed that nucleotide data sets are often better described by a non-reversible
model, whereas the corresponding amino acid data sets are not. This is probably
because, for amino acid models, switching from a reversible model to a non-
reversible model involves the introduction of 171 new parameters. This does not
necessarily mean that the true amino acid model is reversible, just that more
data is needed to get a sufficient increase in fit of the model for the non-reversible
model to be chosen over a reversible model. In practice, the majority of amino
acid data sets will be of a similar size to the ones used here, so these results
indicate that non-reversible models may not be justified for modelling amino acid
evolution.

To be able to take advantage of the improvement in fit given by non-reversible
models it needs to be practical to build them. Currently this is not the case, as
only a few of the common phylogeny inference software include them as options
and they are also not present in model testing software. In the future the focus
should be on making non-reversible model inference more practical and available,
so that better models can be inferred.

Chapter 5 moves on to the problem of accurately finding sites under positive
selection. Again, a finite data issue arises: instead of sequence length, problems
are now caused by tree size (although sequences long enough to accurately infer

a tree and other model parameters are required). As described in Section 2.3.1,
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if the number of sequences is taken to infinity in a suitable fashion, then it would
be possible to accurately reconstruct w, the parameter describing the relative
fixation probabilities of non-synonymous and synonymous mutations, for each
site and test whether it is greater than 1 with high power. However with small
trees, power is reduced. The method presented here attempts to improve power
by taking into account the fact that many sites are under purifying selection, and
hence the null distribution of current site-wise tests is not correct for most real
alignments. The modified site-wise generalised likelihood (gSLR) test I propose
is effective, often doubling or tripling power whilst keeping the false positive rate
under control.

These three projects highlight the complexities of maximum likelihood esti-
mation of trees and parameters with finite data, and the need for continued work

on the fundamentals of phylogenetic inference.
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Appendix A

A.1 Finding Solutions to the Likelihood Equa-

tion

The log-likelihood of a tree is given as

LogL = Z n, log (pr)

reP Ur

where P is the set of pattern counts, p, is the probability, n, the observed
number of occurrences of pattern r € P, and v, is the number of different nu-
cleotide combinations which are in the form of the pattern r € P. The prob-
abilities p, are functions of the branch lengths and the topology. The term,
vy, 18 present because within the likelihood function we require the probability
of a specific nucleotide combination, not the probability of a group of combi-
nations. On a three-taxon tree there is one topology and five possible patterns,
P = {zzz, xxy, vyr, yre, vyz}, where z, y and z represent any three different nu-
cleotides. For a tree with branch lengths d4, dp, and d¢ (Fig. 3.2), the pattern

probabilities are:

Dass = % ( 1 3¢ §(datds) 4 3o-3(datde) | g,-3(dstde) 4 6ef§(d,4+d3+dc)>
Dray = 2 ( | 3 4(atdp) _ p~3(datde) _ - dldptdo) _ 2€—g(dA+dB+dc>>

Py = 2 (1 ~datdp) | 3o-3datde) _ ~A(dp+de) _ 26—%(dA+dB+dC)>

Dyes = 1% (1 —3(datdp) _ ,—3(datdc) + 3~ 3(dBtde) _ 2€—§(dA+dB+dc)>

Days = 2 (1 o 3datds) _ g—ddatde) _ —d(dptde) | 26*%(dA+dB+dc)> (A1)
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The log-likelihood function is then:

2=

+ Ngay log

—_

g
+ Ngye log G s(dat+dp) 4 g,— L(datde) _ p~4(dptde) _ 9p—4(datdp+d

1 — ¢~ 3(datds) _ e_%(dA'i‘dC) + 36—%(d3+dc) — ¢~ 3(da+dp+dc)

=

( (

( (
+nymlog<6i( 3

(3 (

+ Ny log o

(A.2)

I have not been able to solve this equation over the whole solution space.
Instead I have solved it on all of the boundaries (Fig. 3.7). To solve for maxima
on the boundaries I restrict the likelihood equation to the boundary of interest
and solve for optima. I then classify the optima to find when they are maxima.

In the following section all optima on boundaries are determined.

Optima with Zero Branch Lengths

All Branch Lengths Zero

Firstly consider the point (da,dp,dc) = (0,0,0) (Fig. 3.7). This has two values
depending on the pattern counts, either L = —oo or L = —nlog(4). The former is
clearly a minimum and occurs when there is any difference between the sequences.

The latter occurs when
Ngge =N Ngzy = Naye = Nyza = Ngyz = 0 (A3>

In this case the only probability that affects the likelihood value is p,.,. The
maximal likelihood value occurs when p,,, = 1, which occurs when all of the
branch lengths are zero. This point is therefore the global maximum when all the
sequences are the same.

In summary, (da,dp,dc) = (0,0,0) is the global ML solution in the case

Nzee = Nn. Otherwise it is not a maximum.
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Two Branch Lengths Zero

The next possibility is that two branch lengths are zero. Assume those two
branch lengths are ds and d¢; this corresponds to the blue line on Figure 3.7.
If nyys = Nyzw = Nygy = 0 there is an optimum at (da, dp, dc) = (0, 00,0) with
L = —nlog(16). This is a local maximum if n,,, < n/4. This can be seen by
looking at the gradient of the likelihood function on the line d; = dy = 0 as it
approaches oo.

If instead n,., > n/4 then there is a critical point at

3 MNppr — N
= = ——1 _— =
dA 0 dB 1 og < 3n ) dc 0

with

L = ngga log (njzm> + (1 = Ngra) log (%)

This is a local maximum as both gradients on the d4 and de boundaries are

negative and the Hessian in dp is

0L ~ n(n— Ny )?
ad3% N Mgz (M — Ny

which is always negative when n,,, > n/4.

These are also the global maxima if 1,4y, = Nyzy = Mgy = 0. This can be seen
by going through all the other possible optima for this set of pattern counts and
comparing the likelihood values. In this case it is possible to solve for optima
inside the solution space (i.e. d; > 0 for i = A, B, ') and find that there are no
real maxima when either n,,, > 0 or ng,, > 0. This means it is possible to find
all of the optima and compare the likelihood values to find out which one(s) are
the global maxima. If the above conditions on the pattern counts are not met
then L. = —oo for any length of d¢.

Using the symmetry of the likelihood equations, similar optima to those above
can be found for the cases ngy. = ngzy = Naye = 0 and ngy, = Nyge = Ngye = 0.

In summary, (0,0, 00) is the global ML solution if n,y, = 1y, = N4y, = 0 and
Nyge < N/4 I ngy = Nypy = Nggy = 0 and ng,, > n/4, (0,0, —%log(‘m’fg—;%)) is
the global ML solution. Otherwise there is no maximum. By symmetry there are
three possible maxima, one on each of the three lines (1, = Ny = Naye = 0,

Nayz = Nygg = Nazy = 0, Ngys = Nygy = Nagy = 0), but only one of them can occur
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at a time.

One Branch Length Zero

Next take d4 to be a zero branch length and the other distances to be greater than
zero. This corresponds to the yellow shaded plane on Figure 3.7. If ngg, +ngqy >

n/4 and Nggy + Ny, > n/4 and % < 0 then there is an optimum at

3 AN — Nygy — Naay) 3 AN — Nggy — Nays)
= = —— — de =—-1 1-
dys =0 dp 1 log <1 ™ ) c 1 og ( ™

In this case,

(nzx:p + nx:py) (nmﬁz + nmy:p)) + nmcy log ((nmzx + nzxy)(n — Nggz — nmy:p))

L= Mg log ( 4n? 1202

Nyzx + nzy:p)(n — Ngzz — nxzy)
12n2

+FNgys lOg ( (

(Tl — Nggx — nmyw)(n — Nz + nxmy)
36n?

_'_(n — Nggy — nmxy - nxyx) IOg <

As this optimum is on a boundary (d4 = 0) there is no requirement for the
gradient in the d4 direction to be zero; it just needs to be non-positive. This is
then the highest local point in this direction as we move away from the boundary.
The gradients in the dg and d¢ directions do however still need to be zero. The
Hessian can then be used in just these two variables to classify the optimum.
By checking the Hessian matrix with respect to dg and do we can see that the

eigenvalues are both negative so this critical point is always a local maximum:

n(n — 4ng., — 4nmy)2

g(nmmx + nmxy)(n — Nggx — nmmy)

A= —

n(n — ANgpy — ANy, )?

9(”5638:1: + na:yx)(n — Nggx — nccyx)

Ay = —

By the symmetry of the likelihood equations there are also two more optima;

one where dg = 0, and one where do = 0.
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1 — Hn—nawe—naay) ), _% log(1 — 4(n—nzzs—Nays)

In summary (0, —3 log( )) is a local

3n 3n
maximum if 7., + Ny > n/4 and ngey + Naye > n/4 and [jTLA < 0. Otherwise

there is no maximum here.

From the conditions given above it can be seen that if we consider the three
quantities o = Mgy + Naay, B = Nage + Naye, a0d ¥ = Nggy + Nyee, then if one
of these is less than or equal to n/4, there can only be one maximum with one
of the three branch lengths equal to zero. However if «, 5,7 > n/4 it is possible
for there to be a maxima on each of the three planes where one of the branch
lengths is 0. There is one particular case where there are two maxima each
with a different branch being equal to zero. This can occur when two of the
three pattern counts which compare y in one sequence against x in the other two,
(€.8. Ny, Nayz, Nyzs) are the same. There is then an optimum that has two branch
lengths the same. So if ng,, = 14y, then there is an optimum where d4 = dp = a,
where a is defined by the particular pattern counts. This optimum can be either
a maximum or a minimum. In the case that it is a minimum then, due to the
symmetry of the likelihood equation, there are two local maxima, each with one
branch length zero and with the same likelihood value: (da, dg,d¢) = (0, 2a, d¢)
and (da,dp,dc) = (2a,0,dc).

Optima with Infinite Branch Lengths

Two or Three Branch Lengths Infinite

Now consider the ‘lines’ of the solution space where two branch lengths are infinity
(dotted lines on Fig. 3.7), and the ‘point’ connecting these lines where all of
the branch lengths are infinity. These are all always extrema (either maxima
or minima) of the likelihood function and all have the same likelihood value,
L = —nlog(64), depending only on the length of the sequences, but they are not
all always local maxima. It is not possible to determine whether these points are
maxima or minima, so it is necessary to consider them as possible maxima until

another local maximum with a larger likelihood value is found.
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One Branch Length Infinite

The final optimum is when there is just one infinite branch. If ng,, +ny.. > n/4

and Nygy + Nays + Mgy, > 0 then there are extrema when

da = o0 dB+dc:—leog 3n

3 <4(nmxa3 + ny:c:r) - n)

with

N —Ngge — nyacac

48n

Nyze + nywx)

In this case it is not possible to derive a solution for dg or de separately,
meaning that there is a line of extrema here. Again it is not possible to determine
whether these are maxima, so they must be regarded as possible maxima until
an optimum with a higher likelihood is found. Due to the symmetry of the three-
taxon tree it is easy to work out a similar equation for when dg = oo or d¢g = oco.

(Nezctnycz)—n

In summary (oo, —% 10%(4 3n

is a line of extrema if N4y + Nypy > n/4.

4(”3:969; +ny;m:)_n )
)

)=, 1), where 0 < pp < —3 log( o
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A.2 Calculating the Variance of the Distance

Estimate of a Branch Length

Expected value of ﬁij

The estimated JC distance between sequence i and j is

A 3 4 .
A 3 4.
B(Dy) =B(~3in(1 ~ 5p,)
3 4

(Bulmer 1991; Tajima 1993). As the JC model is assumed to be the true model

A .4 can be rearranged to obtain

3 _ip..
pw :Z(l — € 3DZ]) <A6)

From equations A.5 and A.6 the expectation of lA?Z»j is

E(D;;) ~ D;; (A7)

Expected value of d;

The expected value of any branch length, cZZ», on the tree in Figure 3.2 is approx-

imately equal to the branch length itself. For example:

A

1 . . R
E(da) =E(5(Dap + Dac — Dgc))

2
1. . )
=5(E(Dap) + E(Dac) — E(Dpc))
1
2§(DAB + Dac — Dpe)
ZdA

110



Variance of d;

The variance of any branch length, d;, is then a function of the variance and

covariances of the D;; terms. For example:

—_

Var(dy) =Var(Z(Dap + Dac — Dge))

O |

1 A N .
:ZVCZT(DAB + DAC — DBC’)
1 ~ A ~ ~ ~ ~
:Z(Var(DAB + Dac) + Var(Dpe) — 2Cov(Dag + Dac, Dpe))
1 A A .
:Z(Var(DAB) +Var(Dac) + Var(Dpc)

—+ QCOU(ZA)AB, [)AC) — QCOU(ZA)AB, DBC) — QCOU(ZA)AC, DBC))

To calculate this both the variance of the D;; terms and the covariances between
them are needed. The variance of a JC distance, when the sequence is of length

n, is

A pi; (1 — pij)
VCLT _D —_——
(D) = n(1 — 3pij)?

(Bulmer 1991; Tajima 1993). Substituting in equation A.6 we obtain

3 4 4
(e3P —1)(e3Pi 4 3)

Var(Dy;) ~ Ton

The covariance between ﬁij and ﬁik is the variance of the length of the branch
shared by the paths between both sets of sequences (Nei and Jin 1989; Rzhetsky

and Nei 1992). Substituting these into the expression for the variance gives:

Var(dA) ZGT((Q%(dA+dB — )( % (dat+dp) + 3) + (e%(dA‘i’dC) _ 1>(e§(dA+dc) + 3)
n
- (eslirle) — 1) (eanie) 4 3)) 4 a(esh —1)(e3 () +-3)
— 2(e3p) — 1)(e30@8) 1 3) — 2(e3(dc) _ 1)(e3(9) 4 3))

Equivalent formulae can be derived for the other two branch lengths on the three-
species tree. The derivations of these formulae involve approximations. The
accuracy of these approximations increases with sequence length and reduces as
branch length increases. As d4 = 0.1, which is short, F (CZ 4) should be accurate.

However, the formula for the variance may contain slightly more error.
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A.3 Supplementary Figures
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Figure A.1: Distributions of estimated values of d4 + dp for trees simulated
with do = 0.1,0.5,1,1.25, 1.5, 2. Kolmogorov-Smirnoff tests with multiple testing
correction indicate no significant differences between these distributions.
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Figure A.2: Distributions of estimated values of d¢ for trees simulated with do =
0.1,0.5,1,1.25,1.5,2. Note that the estimates appear unbiased, with variance
increasing as the value of d¢ increases.
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estimated values of d4 + dp for trees simulated with do = 0.1,0.5,1,1.25,1.5, 2.
There is no relationship between the two variables.

114



dc:0.1

3 4 5
|

Estimated dc
2
1

0.0

T T T T T
0.2 0.4 0.6 0.8 1.0

Position along A-B path

dc:l

3 4 5
|

Estimated dc
2
1

Position along A-B path

dc: 1.5

3 4 5
|

Estimated dc
2
1

Figure A .4:

Position along A-B path

The location of the branch leading to C on the A-B path against
estimated values of d¢ for trees simulated with do = 0.1,0.5,1,1.25,1.5,2. There

Estimated dc

Estimated dc

Estimated dc

3 4 5

2

3 4 5

2

3 4 5

2

is no relationship between the two variables.

115

dc =0.5
A EIA | AN <) -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Position along A-B path

de=1.25

P

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Position along A-B path

Position along A-B path




e L1 IR P

o
o _
N
o
o
o
o
o
o
o
®o o
ocom
8 — o000 o
@oo 00
OGEEEL® O o
CEESPEBDOTNEEDO O O 00
% o
>
c ano
I o L R —
% o 0 000  CHNEEEE———
< o o
= eaEss———O@m» © 0 00
——— GO O CO o o
o
o
00 CNDOEEENE——E—
00 EnDCmOERESOoTMmS
00 @ DD D CumE
o © GWo® GO oD
— o @ ®
| o oo
o
o
o
o
o
o
o
o o
AN [}
|
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Position along A-B path

L

Figure A.5: ngy, — nye, against location of the branch leading to C on the A-B

path.

116



dc =0.1 dc =0.5
2000 - 2000 -
1500 - 1500 -
5 5
3 1000 - 3 1000 -
o o
500 - . 500 -
0- 0- *
I I I I I I I I I I
000 025 050 075  1.00 000 025 050 075  1.00
Position along A-B path Position along A-B path
dC =1 dc =1.25
2000 - 2000 -
1500 - 1500 -
5 5
3 1000 - 3 1000 -
o o
500 - 500 -
et Lt
0- 0-
I I I I I I I I I I
000 025 050 075  1.00 000 025 050 075  1.00
Position along A-B path Position along A-B path
dc =15 dC =2
2000 - 2000 -
1500 - 1500 -
5 5
3 1000 - 3 1000 -
o o
500 - 500 - I I
0- L‘J 0-
I I I I I I I I I I
000 025 050 075  1.00 000 025 050 075  1.00

Position along A-B path Position along A-B path
Figure A.6: Distributions of the location of the branch leading to C on the A-B
path for trees with do = 0.1,0.5,1,1.25,1.5,2. These simulations were run using

the GTR model for simulation and tree reconstruction with parameters taken
from Murphy et al. 2001.
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Figure A.7: Position of Y on inferred three-species trees versus position of Y on
inferred four-species trees for data simulated on tree 3.9a with long branch length
1.5. Points coloured according to the ML reconstructed topology shown in Figure
3.9. The position of Y was measured as a fraction along the W-X path. In the
case of topology 3.9d, as the branch to Y does not directly meet this path, the
position along the W-X path where the middle branch joins is used.
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Figure A.8: The proportions of different topologies obtained for different lengths
of Y and Z. These simulations were run using the GTR model for simulation and
tree reconstruction with parameters taken from Murphy et al. 2001.
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Appendix B

B.1 Supplementary Figures
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Figure B.1: Relationship between the LRT statistic A and Vg for nucleotides
(top, grey backgound) and amino acids (bottom, white background). Each point
corresponds to a MSA. Pandit MSAs are red if they are significantly better de-
scribed by a non-reversible model and black otherwise. Mammal MSAs are yellow
if they are significantly better described by a non-reversible model and blue oth-
erwise. Histograms on the right show V¢ for MSAs found to be significant (red)
or non-significant (black).
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Figure B.2: Relationship between the LRT statistic A and Vp for nucleotides
(top, grey backgound) and amino acids (bottom, white background). Each point
corresponds to a MSA. Pandit MSAs are red if they are significantly better de-
scribed by a non-reversible model and black otherwise. Mammal MSAs are yellow
if they are significantly better described by a non-reversible model and blue oth-
erwise. Histograms on the right show Vp for MSAs found to be significant (red)
or non-significant (black).
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Figure B.3: Relationship between scaled A and V¢ for nucleotides (top, grey
backgound) and amino acids (bottom, white background). Plots are as in B.1,
except A is now scaled by the inverse of the information content, as approximated
by the product of sequence length and sequence number, minus the number of

gaps.
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Figure B.4: Relationship between scaled A and Vj for nucleotides (top, grey
backgound) and amino acids (bottom, white background). Plots are as in B.2,
except A is now scaled by the inverse of the information content, as approximated
by the product of sequence length and sequence number, minus the number of

gaps.
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B.2 Dataset Lists

B.2.1 Pandit Data

A list of the Pandit data sets used in this study. This data is available from
http://www.ebi.ac.uk/research/goldman /software /pandit

Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00001 Yes Yes 1299 64
PF00002 Yes Yes 1128 32
PF00003 Yes No 876 29
PF00005 Yes Yes 999 60
PF00007 Yes No 336 20
PF00008 Yes No 153 55
PF00009 Yes Yes 1290 208
PF00011 Yes Yes 345 34
PF00012 Yes Yes 2064 33
PF00013 Yes No 279 421
PF00014 Yes No 240 126
PF00015 Yes Yes 855 10
PF00016 Yes No 960 16
PF00017 Yes Yes 327 54
PF00018 Yes No 195 60
PF00019 Yes Yes 354 21
PF00020 Yes No 150 35
PF00021 Yes Yes 327 42
PF00022 Yes Yes 1167 20
PF00024 Yes Yes 456 101
PF00025 Yes Yes 603 19
PF00026 Yes Yes 1548 21
PF00027 Yes Yes 426 349
PF00028 Yes Yes 387 57
PF00029 Yes Yes s 15
PF00030 Yes No 285 33
PF00031 Yes Yes 327 40
PF00032 Yes No 348 9
PF00033 Yes Yes 636 8
PF00034 Yes Yes 393 26
PF00035 Yes No 231 76
PF00038 Yes Yes 1131 30
PF00039 Yes No 126 7
PF00040 Yes No 126 15
PF00041 Yes Yes 360 89

124




Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00042 Yes Yes 501 34
PF00043 Yes Yes 471 58
PF00044 Yes Yes 630 108
PF00045 Yes No 174 68
PF00046 Yes No 213 179
PF00047 Yes No 279 79
PF00048 Yes No 225 103
PF00049 Yes Yes 528 26
PF00050 Yes No 198 33
PF00051 Yes No 255 23
PF00052 Yes Yes 450 9
PF00053 Yes No 216 67
PF00054 Yes Yes 519 16
PF00055 Yes No 792 7
PF00056 Yes Yes 525 28
PF00057 Yes No 186 50
PF00058 Yes No 171 27
PF00059 Yes Yes 408 42
PF00060 Yes Yes 1275 43
PF00061 Yes Yes 558 132
PF00062 Yes Yes 384 11
PF00063 Yes Yes 2868 23
PF00064 Yes Yes 1458 7
PF00066 Yes No 126 10
PF00067 Yes Yes 1677 49
PF00068 Yes Yes 414 14
PF00069 Yes Yes 1419 51
PF00070 Yes Yes 390 127
PF00071 Yes No 687 60
PF00072 Yes Yes 474 53
PF00073 Yes Yes 939 44
PF00074 Yes Yes 426 11
PF00075 Yes Yes 738 51
PF00076 Yes No 240 75
PF00077 Yes Yes 381 37
PF00078 Yes Yes 1191 145
PF00079 Yes Yes 1269 39
PF00080 Yes No 609 23
PF00081 Yes No 273 22
PF00083 Yes Yes 1851 48
PF00084 Yes No 276 78
PF00085 Yes Yes 366 47
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00086 Yes No 252 19
PF00087 Yes No 243 7
PF00088 Yes No 150 26
PF00089 Yes Yes 1065 65
PF00090 Yes No 186 30
PF00091 Yes Yes 855 119
PF00092 Yes Yes 888 179
PF00093 Yes No 297 19
PF00094 Yes Yes 645 68
PF00095 Yes No 204 76
PF00096 Yes No 105 168
PF00097 Yes No 222 63
PF00100 Yes Yes 1209 82
PF00101 Yes Yes 384 45
PF00102 Yes Yes 1353 111
PF00103 Yes Yes 711 17
PF00105 Yes No 240 25
PF00106 Yes No 654 261
PF00107 Yes No 648 107
PF00108 Yes Yes 873 19
PF00109 Yes Yes 1041 168
PF00110 Yes No 1182 15
PFO00111 Yes Yes 369 188
PF00112 Yes Yes 1101 154
PF00113 Yes Yes 894 11
PF00114 Yes Yes 465 20
PFO00115 Yes Yes 1572 23
PF00116 Yes Yes 408 31
PF00117 Yes Yes 876 131
PF00118 Yes Yes 1875 40
PF00119 Yes Yes 594 27
PF00120 Yes Yes 1020 103
PF00121 Yes Yes 849 54
PF00122 Yes Yes 1011 102
PF00124 Yes Yes 930 12
PF00125 Yes No 255 69
PF00126 Yes No 255 1627
PF00127 Yes No 387 19
PF00128 Yes Yes 2019 51
PF00129 Yes Yes 543 24
PF00130 Yes No 225 43
PF00131 Yes No 240 14
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00133 Yes Yes 2442 20
PF00134 Yes Yes 582 149
PF00135 Yes Yes 2667 118
PF00137 Yes No 210 35
PF00138 Yes No 171 43
PF00139 Yes Yes 687 13
PF00140 Yes No 117 62
PF00141 Yes Yes 1797 293
PF00142 Yes Yes 846 15
PF00143 Yes Yes 579 17
PF00145 Yes Yes 1638 27
PF00146 Yes Yes 1032 24
PF00147 Yes Yes 816 10
PF00148 Yes Yes 1704 31
PF00150 Yes Yes 1539 63
PF00151 Yes Yes 1137 14
PF00153 Yes Yes 456 202
PF00154 Yes Yes 987 26
PF00155 Yes No 1578 47
PF00156 Yes Yes 723 126
PF00157 Yes No 234 10
PF00158 Yes Yes 852 289
PF00160 Yes Yes 573 20
PF00161 Yes Yes 1053 17
PF00162 Yes Yes 1590 25
PF00163 Yes Yes 339 19
PF00164 Yes Yes 441 15
PF00165 Yes No 150 88
PF00166 Yes Yes 381 48
PF00167 Yes Yes 498 27
PF00170 Yes No 195 21
PFO00171 Yes No 1848 118
PF00172 Yes No 156 27
PF00174 Yes Yes 783 13
PF00175 Yes Yes 447 71
PF00176 Yes Yes 1530 22
PF00177 Yes Yes 555 18
PF00178 Yes No 276 14
PF00179 Yes Yes 17 72
PF00180 Yes Yes 1392 23
PF00181 Yes No 282 60
PF00182 Yes Yes 711 15
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00183 Yes Yes 1713 10
PF00184 Yes No 240 10
PF00185 Yes Yes 561 19
PF00186 Yes Yes 771 16
PF00187 Yes No 132 17
PF00188 Yes No 849 289
PF00189 Yes No 282 24
PF00191 Yes No 243 170
PF00193 Yes Yes 315 8
PF00194 Yes Yes 858 11
PF00195 Yes Yes 696 20
PF00196 Yes No 174 30
PF00197 Yes Yes 618 9
PF00198 Yes Yes 870 78
PF00199 Yes Yes 1224 18
PF00200 Yes Yes 333 85
PF00201 Yes Yes 1548 14
PF00202 Yes Yes 1236 17
PF00203 Yes No 246 20
PF00204 Yes Yes 705 63
PF00205 Yes Yes 561 22
PF00206 Yes Yes 1035 19
PF00207 Yes Yes 333 58
PF00208 Yes Yes 990 126
PF00209 Yes Yes 1926 12
PF00210 Yes Yes 612 92
PF00211 Yes Yes 744 20
PF00212 Yes Yes 315 12
PF00213 Yes Yes 540 20
PF00214 Yes No 126 9
PF00215 Yes Yes 1206 87
PF00216 Yes Yes 318 76
PF00217 Yes Yes 825 6
PF00218 Yes Yes 846 20
PF00219 Yes No 288 11
PF00221 Yes Yes 1551 8
PF00224 Yes Yes 1161 11
PF00225 Yes Yes 1944 92
PF00226 Yes Yes 309 264
PF00227 Yes Yes 807 178
PF00229 Yes Yes 513 52
PF00230 Yes Yes 1005 17
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00231 Yes Yes 1029 18
PF00232 Yes Yes 1707 14
PF00233 Yes Yes 765 7
PF00235 Yes Yes 480 14
PF00236 Yes No 291 8
PF00237 Yes Yes 420 20
PF00238 Yes Yes 426 18
PF00239 Yes Yes 501 16
PF00240 Yes No 267 85
PF00241 Yes Yes 495 15
PF00242 Yes Yes 1269 6
PF00243 Yes Yes 381 7
PF00244 Yes Yes 726 15
PF00245 Yes Yes 1833 18
PF00248 Yes Yes 1206 63
PF00249 Yes No 300 196
PF00250 Yes Yes 420 21
PF00251 Yes No 1647 19
PF00252 Yes Yes 444 16
PF00253 Yes No 171 20
PF00255 Yes Yes 354 12
PF00256 Yes No 102 88
PF00257 Yes Yes 1188 24
PF00258 Yes Yes 720 91
PF00260 Yes No 216 18
PF00261 Yes No 711 8
PF00262 Yes Yes 1167 11
PF00263 Yes Yes 1044 54
PF00264 Yes Yes 1224 13
PF00265 Yes Yes 573 13
PF00266 Yes Yes 1152 14
PF00267 Yes Yes 1269 15
PF00268 Yes Yes 897 13
PF00269 Yes No 186 7
PF00272 Yes No 102 13
PF00273 Yes Yes 558 43
PF00274 Yes Yes 1059 11
PF00275 Yes Yes 1518 33
PF00276 Yes No 291 12
PF00277 Yes Yes 336 6
PF00278 Yes Yes 660 55
PF00280 Yes No 195 7
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00281 Yes No 183 16
PF00282 Yes Yes 1221 12
PF00284 Yes No 120 14
PF00285 Yes Yes 1233 20
PF00286 Yes Yes 429 15
PF00287 Yes Yes 1032 11
PF00289 Yes Yes 405 18
PF00290 Yes Yes 849 21
PF00291 Yes Yes 1308 96
PF00292 Yes Yes 378 6
PF00294 Yes Yes 1212 T
PF00295 Yes Yes 1170 15
PF00296 Yes Yes 1119 15
PF00297 Yes Yes 918 14
PF00298 Yes No 213 13
PF00301 Yes No 162 33
PF00302 Yes Yes 618 11
PF00303 Yes Yes 1152 18
PF00304 Yes No 177 39
PF00305 Yes Yes 2094 17
PF00306 Yes Yes 633 149
PF00307 Yes Yes 453 196
PF00308 Yes No 1017 12
PF00309 Yes No 147 29
PF00310 Yes No 1737 59
PF00312 Yes No 264 7
PF00313 Yes No 225 38
PF00314 Yes No 645 5
PF00316 Yes No 1140 14
PF00318 Yes No 666 20
PF00319 Yes No 153 10
PF00320 Yes No 135 75
PF00324 Yes No 1863 28
PF00325 Yes No 102 12
PF00326 Yes No 840 72
PF00327 Yes No 165 12
PF00329 Yes No 237 55
PF00330 Yes No 1593 11
PF00331 Yes No 1533 53
PF00332 Yes No 999 13
PF00333 Yes No 204 11
PF00334 Yes No 405 11
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00335 Yes No 1086 67
PF00338 Yes No 291 15
PF00339 Yes No 615 51
PF00340 Yes No 462 16
PF00342 Yes No 1566 9
PF00343 Yes No 2241 8
PF00344 Yes No 1188 17
PF00345 Yes No 447 20
PF00346 Yes No 825 6
PF00347 Yes No 285 131
PF00348 Yes No 867 16
PF00349 Yes No 717 15
PF00351 Yes No 996 6
PF00352 Yes No 318 54
PF00354 Yes No 627 9
PF00355 Yes No 399 157
PF00358 Yes No 399 14
PF00359 Yes No 465 13
PF00360 Yes No 546 9
PF00361 Yes No 1056 31
PF00362 Yes No 1332 17
PF00363 Yes No 291 13
PF00364 Yes No 228 47
PF00365 Yes No 939 12
PF00366 Yes No 213 14
PF00367 Yes No 105 18
PF00368 Yes No 1299 21
PF00370 Yes No 801 12
PF00372 Yes No 1044 9
PF00373 Yes No 630 8
PF00374 Yes No 1746 11
PF00375 Yes No 1419 12
PF00376 Yes No 150 361
PF00377 Yes No 396 7
PF00378 Yes No 528 12
PF00379 Yes No 219 68
PF00380 Yes No 408 9
PF00381 Yes No 261 11
PF00382 Yes No 222 10
PF00383 Yes No 618 61
PF00384 Yes No 2424 30
PF00385 Yes No 267 181
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00386 Yes No 483 49
PF00387 Yes No 384 8
PF00388 Yes No 462 13
PF00389 Yes No 315 175
PF00390 Yes No 597 55
PF00391 Yes No 429 90
PF00392 Yes No 192 26
PF00393 Yes No 990 56
PF00394 Yes No 657 71
PF00395 Yes No 177 85
PF00396 Yes No 129 14
PF00398 Yes No 1020 21
PF00401 Yes No 153 20
PF00403 Yes No 219 126
PF00405 Yes No 1050 8
PF00406 Yes No 573 20
PF00407 Yes No 486 35
PF00408 Yes No 342 16
PF00410 Yes No 516 20
PF00411 Yes No 372 11
PF00412 Yes No 222 40
PF00415 Yes No 204 7
PF00416 Yes No 396 13
PF00417 Yes No 291 24
PF00418 Yes No 105 11
PF00419 Yes No 630 24
PF00420 Yes No 417 194
PF00421 Yes No 1575 17
PF00423 Yes No 1884 13
PF00424 Yes No 405 12
PF00425 Yes No 978 27
PF00426 Yes No 2370 7
PF00427 Yes No 450 23
PF00428 Yes No 357 24
PF00429 Yes No 2343 15
PF00430 Yes No 396 25
PF00431 Yes No 474 30
PF00432 Yes No 177 70
PF00434 Yes No 987 8
PF00435 Yes No 348 79
PF00436 Yes No 390 74
PF00437 Yes No 1053 23
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Pandit ID | Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
PF00438 Yes No 303 12
PF00439 Yes No 282 66
PF00440 Yes No 147 108
PF00441 Yes No 537 61
PF00444 Yes No 114 7
PF00445 Yes No 795 62
PF00447 Yes No 624 7
PF00448 Yes No 666 56
PF00449 Yes No 378 11
PF00450 Yes No 2052 81
PF00452 Yes No 336 14
PF00453 Yes No 333 12
PF00454 Yes No 1449 45
PF00455 Yes No 705 14
PF00456 Yes No 1029 12
PF00457 Yes No 612 11
PF00458 Yes No 171 14
PF00462 Yes No 396 36
PF00463 Yes No 1620 7
PF00464 Yes No 1206 12
PF00465 Yes No 1257 14
PF00466 Yes No 318 26
PF00467 Yes No 132 225
PF00468 Yes No 132 5
PF00469 Yes No 753 18
PF00471 Yes No 174 8
PF00472 Yes No 420 35
PF00474 Yes No 1341 8
PF00475 Yes No 450 11
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B.2.2 Mammal Data

A list of the mammal data sets used in this study. Alignments were created from

a genome-wide set of mammalian gene alignments with an associated rooted
tree derived from the Mammalian Genome Project (Lindblad-Toh et al. 2011)
augmented using other mammalian genomes from release 63 of the Ensembl
database (Flicek et al. 2011) by Jordan (2011). Data sets are available from
http://www.ebi.ac.uk/goldman-srv/Reversibility /

Gene ID Gene Name Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
ENSG00000164898 CTorf55 Yes Yes 240 27
ENSG00000136518 ACTL6A Yes No 600 38
ENSG00000038295 TLL1 Yes Yes 1800 37
ENSG00000165219 GAPVD1 Yes Yes 1920 36
ENSG00000163710 PCOLCE2 Yes Yes 720 36
ENSG00000184903 IMMP2L Yes Yes 240 29
ENSG00000157554 ERG Yes Yes 720 34
ENSMUSG00000004268 | Emgl Yes No 360 32
ENSG00000168772 CXXC4 Yes No 480 6
ENSG00000154945 ANKRD40 Yes No 480 29
ENSG00000050748 MAPK9 Yes Yes 600 34
ENSG00000177565 TBL1XR1 Yes No 720 34
ENSG00000206579 XKR4 Yes Yes 1440 25
ENSG00000147099 HDACS8 Yes Yes 480 33
ENSG00000161594 KLHL10 Yes No 960 36
ENSG00000140750 ARHGAP17 Yes No 1320 36
ENSG00000071189 SNX13 Yes Yes 1200 36
ENSG00000103460 TOX3 Yes Yes 840 38
ENSG00000161835 GRASP Yes Yes 720 26
ENSCAFG00000023168 HMGN2Q_CANFA | Yes No 120 5
ENSG00000171227 TMEM37 Yes Yes 360 25
ENSG00000169856 ONECUT1 Yes Yes 600 26
ENSG00000136367 ZFHX2 Yes Yes 3840 20
ENSG00000166526 ZNF3 Yes Yes 720 30
ENSG00000134490 C18orf45 Yes Yes 480 35
ENSG00000204952 FBX047 Yes Yes 600 35
ENSG00000143032 BARHL2 Yes No 480 36
ENSG00000110514 MADD Yes Yes 1800 37
ENSG00000197956 S100A6 Yes Yes 120 24
ENSG00000099326 MZF1 Yes Yes 1200 25
ENSG00000136738 STAM Yes Yes 720 38
ENSG00000103091 WDR59 Yes Yes 1440 37
ENSG00000109911 ELP4 Yes No 1080 32
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Gene 1D Gene Name Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
ENSG00000198517 MAFK Yes Yes 240 28
ENSG00000064835 POU1F1 Yes Yes 600 36
ENSG00000196104 SPOCKS3 Yes Yes 600 31
ENSG00000169375 SIN3A Yes No 1440 38
ENSG00000198937 C6orf129 Yes No 360 32
ENSG00000143702 CEP170 Yes Yes 2160 29
ENSG00000112246 SIM1 Yes Yes 960 38
ENSG00000175514 GPR152 Yes Yes 840 19
ENSG00000163902 RPN1 Yes Yes 720 30
ENSG00000163214 DHX57 Yes Yes 1560 35
ENSG00000147408 CSGALNACT1 Yes No 840 38
ENSG00000173597 SULT1B1 Yes Yes 360 27
ENSG00000087301 TXNDC16 Yes Yes 1080 35
ENSG00000151062 CACNA2D4 Yes Yes 1560 30
ENSG00000154065 ANKRD29 Yes Yes 1080 35
ENSG00000079393 DUSP13 Yes Yes 600 24
ENSG00000116353 MECR Yes Yes 600 38
ENSG00000117090 SLAMF1 Yes No 720 33
ENSG00000185689 C6orf201 Yes Yes 480 31
ENSG00000162618 ELTD1 Yes Yes 1200 37
ENSG00000237521 ORTE24 Yes Yes 480 6
ENSG00000137825 ITPKA Yes No 720 22
ENSG00000064313 TAF2 Yes No 1440 36
ENSG00000067533 RRP15 Yes Yes 600 32
ENSG00000167037 SGSM1 Yes Yes 2760 35
ENSG00000117069 ST6GALNACSH Yes Yes 480 29
ENSG00000168818 STX18 Yes No 600 32
ENSG00000143479 DYRK3 Yes Yes 720 33
ENSG00000134463 ECHDC3 Yes Yes 480 32
ENSG00000005238 KIAA1539 Yes No 600 31
ENSG00000157343 Céorf81 Yes Yes 600 32
ENSG00000144730 IL17RD Yes Yes 1080 35
ENSG00000148019 CEP78 Yes Yes 1560 36
ENSG00000168758 SEMA4C Yes Yes 1080 34
ENSG00000225190 PLEKHM1 Yes Yes 1680 26
ENSG00000151835 SACS Yes Yes 4800 35
ENSG00000167751 KLK2 Yes Yes 480 5
ENSG00000131459 GFPT2 Yes Yes 960 37
ENSG00000196678 ERI2 Yes No 960 35
ENSG00000167880 EVPL Yes Yes 2280 33
ENSG00000136717 BIN1 Yes Yes 1200 31
ENSG00000196878 LAMB3 Yes Yes 1440 32
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Gene 1D Gene Name Nucleotides? | Amino Acids? | Sequence Length | Sequence Number
ENSG00000213123 TCTEX1D2 Yes Yes 360 20
ENSG00000107611 CUBN Yes Yes 4560 37
ENSG00000152049 KCNE4 Yes No 360 36
ENSG00000162066 AMDHD2 Yes No 1080 34
ENSG00000130021 HDHD1 Yes Yes 480 20
ENSG00000121895 TMEM156 Yes Yes 600 37
ENSG00000156127 BATF Yes No 240 33
ENSG00000184207 PGP Yes No 480 12
ENSG00000105429 MEGFS8 Yes Yes 3720 30
ENSG00000172464 OR5AP2 Yes No 360 15
ENSG00000131398 KCNC3 Yes Yes 1560 12
ENSG00000165389 Cl4orf147 Yes No 120 23
ENSG00000079557 AFM Yes No 1080 27
ENSG00000126259 KIRREL2 Yes Yes 1080 31
ENSG00000175920 DOKT7 Yes Yes 1200 28
ENSG00000144712 CAND2 Yes Yes 1920 28
ENSG00000167077 MEI1 Yes Yes 2040 35
ENSG00000132768 DPH2 Yes No 600 31
ENSG00000188582 PAQR9 Yes No 480 24
ENSG00000105254 TBCB Yes Yes 360 34
ENSG00000160505 NLRP4 Yes Yes 1440 19
ENSG00000105518 TMEM205 Yes Yes 240 26
ENSG00000133401 PDZD2 Yes Yes 5400 35
ENSG00000196943 Cl4orf21 Yes Yes 840 35
ENSG00000130827 PLXNA3 Yes No 2400 32
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B.3 Paper

Discerning the difference between disease-associated variants and variants ob-
served in healthy individuals is a key step in predicting whether new variants could
be harmful. In this paper we compared disease-associated variants from OMIM
(Amberger et al. 2009) with variants found in the 1000 Genomes Project (The
1000 Genomes Project Consortium 2010), looking both at the overall distribution
of variants, and their placement on proteins. I worked on producing a model of
evolution in humans using the 1000 Genomes data, and comparing it with other

models.
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Abstract

The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since
the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is
asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect
preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes
arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure
constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins
(82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to
functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions
in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated
variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid
exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other.
Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the
mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction
of the effects of specific variants in humans.
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exploring their structural characteristics and preferences. The
reports from the 1000 Genomes Consortium [1,2] have focused on
genome and nucleotide variation, and other papers consider
mutations in association with a specific disease (e.g. cancer) [3].

Introduction

With the release of the 1000 Genomes Project (1 kG) data [1], it
has become feasible to study human protein variation on a large
scale. The main aim of the 1 kG project was to discover and
characterize at least 95% of human DNA variants (with a

Various databases such as the Online database of Mendelian

frequency of occurrence of >1%) found in multiple human
populations across the world. Five main populations were sampled
with ancestry in Europe, West Africa, the Americas, East Asia and
South Asia. The project has provided a rich set of synonymous
(sSNPs) and non-synonymous (nsSNPs) variants for 1092 individ-
uals from diverse populations. It is estimated from the 1 kG data
that each individual will, on average, differ from the reference
human genome sequence at 10,000-12,000 synonymous sites in
addition to 10,000-11,000 non-synonymous sites [1]. As these
nsSNPs change the amino acid sequence of the protein, the
changes have the potential to affect the structure and function of
the corresponding proteins. The 1000 Genomes Project data set is
valuable in that it is large and not derived from a disease cohort
but rather seeks to capture variants found in a disparate set of
healthy individuals. This can be used to characterise differences on
average between disease-associated and benign mutations (or at
least mutations not known to be associated with disease) as well as

PLOS Computational Biology | www.ploscompbiol.org

Inheritance in Man (OMIM, [4]), the UniProtKB human
polymorphism set (Humsavar, [5]) and the Human Gene
Mutation Database (HGMD, [6]) collect information on inherited
diseases associated with variants. The Humsavar database
contains disease-associated variants from the literature and
OMIM. OMIM currently contains information on approximately
10,200 nsSNPs associated with diseases (December 2011) and
Humsavar about 23,500 disease-associated nsSNPs. Most of the
phenotypical effects and their molecular origins are not well
established, so predicting the functional effect of a single amino
acid variant is of great medical interest. The main methods assume
that mutations in highly conserved residues cause disease and thus,
by using alignments to homologous sequences and residue
similarity, the severity of the variant can be gauged. More
advanced methods include information derived from protein
structures (such as solvent accessibility, free energy changes,
environment specific substitution tables and functional annota-
tions) to improve the accuracy (see review by [7]). The advantage
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Author Summary

In this paper we compare the differences between ‘natural’
and disease-associated amino acid variants at both
sequence as well as structural levels. We used data from
the 1000 Genomes Project (1 kG), the OMIM database and
UniProtkB Humsavar. The results highlight the complex
interplay of features from the level of the DNA up to
protein sequence and structure. The codon CpG dinucle-
otide content plays a large role in determining which
amino acids mutate. This in turn affects the mutability of
amino acids and a clear difference was seen between non-
disease and disease variants where amino acids that are
naturally very mutable show the opposite trend in the
disease-associated data. The current results show evidence
for some selection, mainly in that the variants occur
slightly more often on the surface of the protein and are
much less likely to be annotated as functional than
expected by chance. However we should note that even
the best definition of functional, taken from structural
data, is limited. Even with these caveats, it is clear that the
1 kG variants eschew functional residues as defined here, a
trend which is surprisingly even stronger in the OMIM
data.

of using a 3D approach for prediction is that the consequence and
characteristics of the variant can be studied in its specific
environment in the protein. This provides a level of information
beyond a sequence or a sequence alignment [8]. If there are
ligands present, the interaction between the mutated amino acid
and the ligand can be studied. This has been successfully applied
to various individual proteins on a case-by-case basis [9,10]. In
total over 30 different programs to predict the effects of these
variants have been published, including Condel [11], SNAP [12],
SDM [13], PolyPhen [14], VEP [15], SIFT [16,17] and SNP&GO
[18]. Most of these algorithms can only predict whether a specific
variant will be neutral or deleterious for the protein with various
degrees of accuracy, although measuring accuracy is challenging
in the absence of a good benchmark.

To allow the accurate prediction of functional effects of SNPs,
we need a thorough understanding of why amino acids mutate in
humans. Various groups have worked on the effect of the
mutations and numerous studies have been done on small specific
sets of proteins [8,19-22]. Blundell and co-workers have found
that the local environment around an amino acid plays a large role
in the effect that selection has on a mutation in a specific position
[21]. This has led to the development of environment specific

Amino Acid Mutation Characteristics

substitution matrices [23,24] that incorporate structural con-
straints. Subramanian and Kumar [25] did a detailed analysis on a
set of 8,627 disease-associated mutations and found that disease-
associated mutations tend to occur on inter-species conserved
residues. The common factor between these studies is that they try
to understand the effect that selection and structural constraints
have on disease vs non-disease states in selected sets of proteins.
Very few studies have tried to unravel the underlying cause for
mutation patterns seen in human proteins. With this work we aim
to elucidate why certain amino acids mutate more and try to
understand the underlying mechanisms present in the mutation
process. We gather the data for all the amino acid mutations found
in the 1000 Genomes Project to characterise their sequence and
structural properties, providing a benchmark background against
which to compare the disease-associated nsSNPs in OMIM and
Humsavar.

Results

The 1000 Genomes Project data were queried to retrieve all the
nsSNPs, which were filtered to include only those that occurred in
a single population (see methods). This ensures that only the more
recent mutational events in human evolution are included and
simplifies counting. In addition variants at a single site were only
counted once even if they occur in multiple individuals, since such
clusters are assumed to represent a single variation event that has
been inherited in the other individuals. For 3D analysis only
human proteins, for which complete structures are available, were
included to ensure accurate analysis of 3D features. For solvent
accessibility calculations, a monomer subset was also generated to
avoid problems with uncertain multimeric states and validate our
findings on the larger dataset. Homology models based on close
relatives were used to extend the data set and see if the trends
observed in the experimental structures were preserved. Table 1
summarizes the five data sets created and used in this study.

The amino acid exchange matrix derived from the 1000
Genomes Project dataset

Figure 1 shows the amino acid exchange matrix generated from
the ~106,000 nsSNPs found in the 1 kG data. Amino acid
mutations requiring two or three base changes are not defined in
this dataset due to technical reasons. The 1 kG matrix exhibits
several interesting features, most of which reflect the genetic code
and the differential mutability of various codons. All possible single
base changes are observed. The matrix is not symmetrical as a
result of the differences in frequency of occurrence of amino acids
as well as differences in their mutabilities [26,27]. As expected

Table 1. The different datasets constructed and used in this study and their composition.

Data set Protein chains nsSNPs Description

1 kG 19,058 106,311 A data set containing all the 1 kG variants filtered by population.

OMIM 19,058 10,151 A protein sequence based set containing OMIM variants for all reviewed
UniProt human proteins.

Humsavar 19,058 23,846 A set based on human disease polymorphisms from UniProt.

3D 2,139 10,628 A protein 3D structure based set consisting of 1 kG variants for proteins that
have a complete structure in the PDB.

Monomer 325 1,461 A subset of the 3D set containing only proteins identified as being monomeric.

Model 2,630 13,037 A set based on human ModBase homology models where sequence coverage

and identity are between 90-100%.

doi:10.1371/journal.pcbi.1003382.t001
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Amino Acid Mutation Characteristics

To
From | R K D E N Q s G H T A P Y v M c L F I W | Tot. |Mut

738 0 0 0 4630 | 553 761 | 4125 | 247 0 216 0 0 7 3420 | 467 0 137 | 2695 | 18060 | 0.0308
R 39 0 2 0 81 59 372 83 30 0 7 2 0 39 125 112 0 7 82 1104 |0.0019
1151 0 843 689 346 0 0 0 300 0 0 0 0 87 0 0 0 84 0 3500 |0.0058
K 23 1 303 75 27 1 0 0 17 2 0 0 0 29 0 0 1 12 1 492 10.0008
0 0 855 | 1994 0 0 780 419 0 153 0 378 379 0 0 0 0 0 0 4958 (0.0100
D 0 1 45 52 0 0 206 26 1 66 0 30 34 0 0 0 0 1 0 462 |0.0009
0 2682 | 983 0 631 0 628 0 0 319 0 0 241 0 0 0 0 0 0 5484 |0.0074
E 6 93 32 0 28 0 132 1 1 48 0 0 35 0 0 0 0 0 0 376 |0.0005
0 546 516 0 0 2030 0 236 170 0 0 133 0 0 0 0 0 158 0 3789 (0.0101
N 1 66 167 1 0 37 1 17 17 1 0 18 2 0 0 0 32 0 361 |0.0010
875 351 0 521 0 0 0 764 0 0 243 0 0 0 0 192 0 0 0 2946 |0.0059
Q 363 28 0 39 0 0 4 37 0 0 29 0 1 0 0 37 0 0 0 538 0.0011
648 0 0 0 1103 0 659 0 637 273 541 284 0 0 673 | 1386 | 816 242 44 7306 |0.0084
S 74 0 1 110 1 190 0 13 47 101 18 0 0 57 27 68 17 22 747 10.0009
1957 0 852 804 0 0 1598 0 0 469 0 0 630 0 197 0 0 0 84 6591 |0.0097
G 107 1 101 61 0 0 24 0 0 22 0 0 48 1 32 1 0 0 21 419 |0.0006
863 0 130 0 166 486 0 0 0 0 145 869 0 0 0 188 0 0 0 2847 |0.0104
H 378 0 57 1 17 35 0 0 0 0 23 51 0 0 0 20 0 0 0 582 0.0021
206 200 0 0 389 0 740 0 0 1420 | 186 0 0 2272 0 0 0 1781 0 7194 10.0130
T 24 21 0 0 17 1 17 0 0 195 40 0 0 79 1 2 0 1056 0 502 |0.0009
0 0 309 205 0 0 892 509 0 3529 357 0 3224 0 0 0 0 0 0 9025 [0.0124
A 4 1 25 28 0 4 6 40 1 51 33 0 53 0 3 0 1 0 0 250 |0.0003
502 0 0 0 0 198 | 2086 0 261 650 666 0 0 0 0 3309 0 0 0 7672 |0.0118
P 113 1 0 1 0 42 91 0 29 37 90 0 0 0 0 291 0 0 1 696 |0.0011
0 0 62 0 81 0 105 0 490 0 0 0 0 0 1125 0 198 0 0 2061 |0.0074
Y 0 0 65 0 18 1 19 2 59 0 1 0 0 1 124 1 8 0 0 299 |0.0011
0 0 95 98 0 0 0 191 0 0 932 0 0 2319 0 989 286 | 3057 0 7967 (0.0129
v 3 1 63 38 0 0 1 134 0 1 168 0 1 74 1 50 20 42 0 597 |0.0010
104 107 0 0 0 0 0 0 0 705 0 0 0 1050 0 335 0 826 0 3127 [0.0139
M 5 18 0 0 0 0 0 0 0 119 0 0 0 156 0 20 0 29 0 347 |0.0015
350 0 0 0 0 0 260 116 0 0 0 0 594 0 0 0 169 0 82 1571 |0.0066
C 396 0 0 0 0 0 39 65 0 0 0 0 139 1 0 0 35 0 39 714 |0.0030
227 0 0 0 0 145 279 0 83 0 0 692 0 1078 | 304 0 1366 | 387 95 4656 |0.0045
L 90 1 0 0 0 10 93 0 21 0 0 225 0 60 20 0 92 13 6 631 |0.0006
0 0 0 0 0 0 291 0 0 0 0 0 124 159 0 144 880 17 0 1715 |0.0045
F 0 0 0 0 0 0 90 0 0 0 1 0 6 44 0 38 80 16 0 275 10.0007
35 30 0 0 180 0 131 0 0 1468 0 0 0 2189 | 690 0 337 242 0 5302 (0.0117
4 11 0 0 19 0 18 0 0 108 2 0 2 55 62 0 8 15 1 305 |0.0007
225 0 0 0 0 0 38 51 0 0 0 0 0 0 0 169 57 0 0 540 |0.0043
w 384 0 0 0 0 2 8 22 0 0 0 0 0 0 0 27 11 0 0 454 10.0036

1kG | 7143 | 4654 | 2947 | 3326 | 4602 | 6436 | 9003 | 3695 | 6378 | 7706 | 4232 | 2380 | 2382 | 8950 | 5743 | 5728 | 8140 | 3077 | 6789 | 3000 [106311

OMIM | 1975 | 283 511 520 308 232 503 | 1168 | 274 395 643 522 267 488 307 408 660 240 274 173 | 10151

Figure 1. The amino acid exchanges observed in human protein variants. The 1 kG data set is the top row of each cell and OMIM the
bottom row of each cell*. Amino acids are arranged by 1 letter code according to increasing hydrophobicity (least hydrophobic is left and most
hydrophobic is right) using the Fauchére and Pliska scale [58]. Yellow blocks indicate mutations where there are statistically significant differences
between 1 kG and OMIM. Blue blocks indicate where no mutations were present in the 1 kG data set. White blocks show where there are no
statistically significant differences. Green blocks show where there are proportionally more 1 kG mutations compared to OMIM. Orange blocks show
where there are proportionally more OMIM mutations than 1 kG. The mutability scores (see methods) for the 1 kG and OMIM sets are shown in the
last column. "Note that these matrices are fundamentally different. The 1 kG data set gathers all the observed mutations in the 1 kG project, counting
each only once; the OMIM data set combines information gathered from potentially many individuals but filtered to identify those mutations
associated with a disease.

doi:10.1371/journal.pcbi.1003382.g001

there is a strong correlation (r=0.786) between the frequency of most mutable, whilst the more chemically complex amino acids,
occurrence of amino acids in the human proteome and the Trp (0.004) and Phe (0.005) have the lowest mutabilities. There is
number of associated codons. Figure 2 shows that, excluding Arg no correlation in the 1000 Genomes data between mutability and
and Leu which are extreme outliers, there is a strong trend for frequency of occurrence (r=—0.003 excluding Arg) nor between
amino acids with a higher frequency of occurrence to have more mutability and the number of codons (Figure 3). It is well known
mutations (r=0.836). Taken together this leads to a relatively that CpG dinucleotides in DNA tend to mutate at rates 10-50
strong correlation (r=0.741) between the number of codons and times higher than other dinucleotides [28,29] and thus amino
the number of mutations. In contrast, the frequency of the gained acids with a CpG present in their codons will mutate with a higher
amino acids, resulting from the mutation, shows little correlation probability (see Figure 4). Four out of the six codons for Arg
between frequency of occurrence and number of mutations  include CpG sequences, and Arg mutates more frequently than
(r=10.349). any other residue, with a mutability (0.031) which is over twice as
high as its nearest rival. This high mutability also reflects the fact

Amino acid mutabilities that the CpG in the Arg codons occur in the non-wobble positions
The mutabilities of the amino acids (see methods) in the 1 kG so nucleotide mutations give rise to non-synonymous SNPs. In
dataset are shown in the last column of Figure 1. Arg (0.031) is the contrast Leu which also has six codons, none of which contain
PLOS Computational Biology | www.ploscompbiol.org 3 December 2013 | Volume 9 | Issue 12 | 1003382
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Figure 2. Comparison of the number of mutating residues vs
the amino acid frequency of occurrence.
doi:10.1371/journal.pcbi.1003382.9002

CpG, has a low mutability (0.005) and mutates six times less
frequently than Arg. However the correlation with CpG is far
from perfect and other factors must have an effect. For example,
Met, which has only one codon with no CpG dinucleotide, is the
second most mutable amino acid (0.014).

Figure 4 shows the clear pattern of amino acid gain and loss in
the human proteome. Jordan [26] and Zuckerkandl [30] long
since identified that Cys, Met, His, Ser and Phe are being accrued
significantly in the human proteome. Our data confirm a net gain
of these five amino acids, and Val, Asn, Ile and Thr were also
confirmed as weak gainers. Jordan and co-workers also identified
strong losers and our data again confirm that Pro, Ala, Gly and
Glu are strong losers. Lys was identified as a weak loser but our
larger dataset suggests that lysine should be considered a weak
gainer in humans. Arg is the strongest loser in the human genome
(similar to the human set in [26] but not other considered species).

We calculated the mutability for every amino acid on a
population specific basis. None of the populations showed a
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Figure 3. Amino acid mutability vs the number of codons in the
1 kG data.
doi:10.1371/journal.pcbi.1003382.9003
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Figure 4. A visual representation of the asymmetry of the 1 kG
data. The plot shows the difference between how often an amino acid
mutates vs how often it is mutated to. These are raw counts and also
reflect the frequency of occurrence. Each amino acid is coloured
according to CpG content. Red: a CpG dinucleotide occurs in its codons;
yellow: if one of its codons start with a G (with a C possibly preceding
it); blue: no CpG in its codons. The black line indicates the diagonal
where ‘mutations to’ equals ‘mutations from’.
doi:10.1371/journal.pcbi.1003382.9004

different pattern of amino acid mutabilities, compared to the
overall trend with correlation coefficients equal to 1.0 (Figure S1).
Using the individual amino acid mutabilites, we looked at
aggregate protein mutability differences by adding up the
individual mutabilities for every amino acid in each protein in
the data set and normalising by protein length. This was compared
to the aggregate mutabilities of proteins involved in disease as
classified by OMIM and Humsavar. The average score for
disease-associated proteins was 0.0103 and for non-disease
proteins 0.0102 with a median of 0.01022 (¢ =0.0006) and
0.01018 (o =0.0005), respectively, indicating that protein aggre-
gate mutability has no bearing on disease-association (Figure S2).

The effects of physicochemical characteristics of the
amino acids on their mutability

As well as constraints on the mutational process at the DNA
level, the consequence of a variant on the protein structure and
function will also have an impact on the number of observed
mutations. If a variant interferes with the structure and function of
a protein and that protein is essential, then this variant is less likely
to be seen. However comparison of mutability with the size and
hydrophobicity of the amino acid shows very little correlation in
the 1 kG dataset. There is a moderate anti-correlation between
higher mutability and size (r=—0.474), with the smaller amino
acids mutating more frequently, but no correlation at all between
mutability and hydrophobicity (r=—0.082) although the large
hydrophobic amino acids (Leu, Phe and Trp) have the lowest
mutability scores. Trp has the fewest mutations (544, even though
all SNPs in Trp codons result in a change of amino acid) and also
the lowest mutability score (0.004) together with Phe. In addition
to their complexity and low abundance, Phe and Trp often occur
in specialized roles such as the interior of proteins, 7-m stacking or
ring interactions and this might add to their low mutability. The
mutability of Cys is also low, perhaps reflecting its role in
disulphide bridges, which help to stabilise extracellular proteins.

December 2013 | Volume 9 | Issue 12 | 1003382

141



The structural properties of 1000 Genomes variants

To investigate the structural characteristics of these variants,
three sets of protein structures were compiled, namely the 3D set,
the monomer set and the model set (Table 1). The 3D and
monomer set were constructed from data in the PDB (see methods)
while the model set and the subsequent variant modelling was
created and performed using Modbase [31] and Modeller [32], built
into an in-house homology modelling pipeline. The 3D set contains
2,139 protein chains. A total of 10,628 1 kG nsSNPs were found in
these chains, of which protein models, based on the known
structures of human proteins could be built for 5,524. The
monomer set contains 325 protein chains identified as monomers
and a total of 1,461 1 kG nsSNPs were found, of which 897 could be
modelled. The model set, including models based on homologues
from the PDB, contained 2,630 protein chains and 12,432 out of
13,037 nsSNPs could be modelled. For the Humsavar set we found
5,592 nsSNPs of which 3,942 could be modelled.

Figure 5A shows a comparison of the solvent accessibility
distribution for all residues compared to that for the variants. On
average the variants in the 1 kG are slightly more exposed. An
analysis of the solvent exposed residues found that, for the most
accurate monomer set, 79% of nsSNPs are solvent exposed
compared to 73% of all residues (p =0.001). For the structures in
the model set, 81.9% of nsSNPs were solvent exposed. For all
three datasets, the 1 kG variants have a slight preference to occur
on the surface of proteins compared to all residues. Figure 5B
shows that there were no appreciable differences in secondary
structure preferences between variants and other residues.

All residues 1kG nsSNPs
525,342 residues 5,524 residues
A 50|Vent. 3 Buried 27 %
accessibility
Exposed 82 %
Exposed 73 %
B Secondary Other 34 %
structure
Strand 20 %
Strand 20 %
Turn 8 %
Helix 38 % Helix 37 %
C Functional Function

Buried 18 ¢

Other 34 %
Strand 20 %

Turn 10 Y
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Do natural mutations occur in functionally annotated
residues?

Functional annotation for each human protein was derived
using SAS (Sequence Annotated by Structure, [33]). Table 2
shows the different functional annotations for each set. The
vast majority of functional annotations identified, make
contacts to ligands (using PDBsum data, [34]) or site
interactions in the proteins (as defined in the PDB). Only
15.5% of the mutations (1,648 of 10,628) in the 3D set were
annotated with a function compared to 29.1% of all residues in
the set of human structures (Figure 5C). These data show that
the observed mutations in the 1000 Genomes occur less
frequently in the functionally annotated residues compared to
all residues.

Residue conservation

Residue conservation scores, defined as the variation of the
residues at a given site in the protein across multiple species, were
obtained for all sites in the human proteome (where sufficient data
are available) from the Evolutionary Trace server [35]. These
scores are distributed across the whole range of conservation
(Figure 6) with a mean score of 0.48. The scores for all the sites
with mutations in the 1000 Genomes data show a slightly different
distribution from all residues, with a small but significant shift
(p<2.2x107'% towards the less conserved sites and a reduced
mean conservation score of 0.43. Clearly natural variation occurs
across all conservation levels and is not limited to non-conserved
residues.

OMIM nsSNPs
1,864 residues

HUMSAVAR nsSNPs
3,942 residues

Buried 41 %

Buried 33 %

Exposed 67

%

Exposed 59 %

Other 32 % Other 34 %

Strand 24 %,

Turn 8 % Turn 7%

Helix 40 %

Helix 35 %

annotation 29.1% Function )
15.5% Function ]
o 11.2% Function
6.5%
No fi . No function
No function No function o ungnon 93.5%
70.9% 84.5% 88.8%

Figure 5. Site properties for all residues, 1 kG nsSNPs, OMIM nsSNPs and Humsavar nsSNPs in the structure 3D set. (A) the solvent
accessibility for the variants in the four datasets, (B) the secondary structure in which each of the variants occurs, (C) the functional annotation of

every variant in the four datasets.
doi:10.1371/journal.pcbi.1003382.9005
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Table 2. The various functions assigned to nsSNPs in each set.

Amino Acid Mutation Characteristics

Set Site Ligand Site/ligand overlap Metal Catalytic Overall (non-redundant)
3D 1,414 1,432 1,220 334 17 1,648 (15.5%)

Monomer 281 273 245 83 4 312 (21.4%)

OMIM 163 184 147 17 17 209 (2.1%)

Humsavar 305 285 252 58 41 355 (51.2%)

Models 1,538 1,443 1,304 376 36 1,676 (12.9%)

shown.
doi:10.1371/journal.pcbi.1003382.t002

Amino acid exchange characteristics in 1000 Genome
data

For each amino acid the mutation profile can be calculated
showing the preference for specific X =>Y mutations in the 1000
Genomes data. These profiles, given for all the amino acids in
Figure 7, show that there are striking differences in frequency of
occurrence for the different exchanges. For example, in the 1 kG
set Arg shows a strong preference to mutate to Gln and His, whilst
mutations to Ser, Gly and Pro are much less frequent. All the
amino acids show these differential exchange rates. Figure 8A

‘Site’ refers to residue specific annotations made by depositors of PDB structures, ‘Ligand’ refers to residues involved in binding a ligand, ‘Metal’ refers to residues
coordinating with metals and ‘Catalytic’ to residues involved in the catalytic activity of the protein. The % of non-redundant assigned residues that are ‘functional’ is also

shows the distribution of changes in energy of the whole protein
caused by each mutation, evaluated as the statistical potential
energy DOPE score (Discrete Optimised Protein Energy) in
Modeller. 68.1% of the 1 kG variants increase the DOPE score
(i.e. make the protein less stable). This implies that most natural
variants decrease the stability of the protein, albeit by a very small
amount. The distribution of changes in size and hydrophobicity
for all observed mutations (Figure 8B and 8C) show that 59.4% of
mutations increase the hydrophobicity of the amino acid and
52.4% of mutations increase the size. Over 84% of variants

Conservation score comparison

e
[e2]
— All residues
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—— OMIM nsSNPs
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Conservation scores

Figure 6. Comparison of the conservation scores in the four sets used. The density distribution of residue conservation scores for all the
amino acid positions in UniProt (9,532,474 residues, black), 1 kG (185,428 residues, blue), OMIM (8,099 residues, red) and Humsavar (21,446 residues,
green). The conservation scores range from 0 for non-conserved residues to 1 for highly conserved residues.

doi:10.1371/journal.pcbi.1003382.9006
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Figure 7. Comparison of the differences in observed mutations in the various sets. Comparison of the differences in the % of observed
mutations in the 1 kG (blue) and OMIM (red) sets for one amino acid mutating to all others e.g. proportionally, more mutations from Lys to Glu are
recorded in OMIM than in the 1 kG set. Each plot shows the results of mutation from a specific amino acid (e.g. Arg at top left) to every other amino

acid.
doi:10.1371/journal.pcbi.1003382.9007

change their size by less than 50 Da. 72% of variants change their
hydrophobicity by less than 1 unit. Extreme changes are rare. At
this stage these observations provide empirical expectation rates
for amino acid exchanges in humans and result from the genetic
code, the nucleotide exchange rates and also some selection at the
protein level. However without a good random model it is difficult
to be confident about the importance of the different contributions
to such variation.

Comparison of 1000 Genome variants with those
predicted by the PAM and WAG mutation matrices

The 1 kG counts matrix is a snapshot of mutations that have
occurred in humans in a short period of time. To understand this
process the count matrix can be converted into an instantaneous
rate matrix describing the rates of change of each amino acid in
humans in a time-independent manner [36]. Instantaneous rate
matrices have previously been built from a wide selection of
protein alignments across many species including nuclear proteins,
mitochondrial proteins, chloroplast proteins, buried protein
domains and exposed protein domains. PCA can be used to

PLOS Computational Biology | www.ploscompbiol.org

compare these inter-species matrices with the 1 kG intra-species
matrix (Figure 9A-C). The 1 kG matrix was built using data
where the direction of the mutations is known whereas all other
matrices were calculated assuming direction is unknown. This was
compared to the WAG [37] and PAM matrix [38]. To check that
any differences between the 1 kG matrix and the other matrices
are not caused by using direction, a directionless matrix has also
been included in the plot (Figure 9D). In this plot, principal
component one clearly separates the 1 kG matrices, which are
placed very close together, from all of the previously calculated
matrices. Principal component two then spreads matrices out
based on whether the alignments used to build them are made up
mainly of exposed or buried domains, with the mitochondrial
matrices at the one extreme built from nearly all membrane
proteins, and matrices built from only exposed regions of proteins
at the other.

A difference between the intra-species data and the inter-species
matrices is the amount of selection which has occurred. Due to the
time-scale for the 1 kG data and the relatively weak selection in
human populations [39,40] the only mutations which are not
observed are lethal mutations. This means that there should be a
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Figure 8. Comparison between the physicochemical properties of the wildtype and the mutant models for each of the data sets.
Plots showing the differences between (A) Modeller DOPE scores for the wild type and mutant model (based on 3D, 10,628 mutations, and Humsavar
sets, 21,446 residues), (B) changes in hydrophobicity between wild type and mutant in both sets and (C) changes in size between wild type and
mutation in both sets.

doi:10.1371/journal.pcbi.1003382.9g008
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Figure 9. Bubble plots comparing the relative differences between the instantaneous rate change matrices of the data sets. (A) 1 kG
data, (B) PAM matrix and (C) WAG matrix. (D) A PCA (first two components) plot showing the separation of the 1 kG matrices from other matrices.
Matrices included are 1 kG (with and without assuming direction), nuclear (WAG, JTT, LG, PAM, tm126, PCMA), mitochondrial (mtREV24, mtMam,
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components one and two represent 34% and 20% of the variance, respectively. All other principal components represent 9% or less of the variance
each. Amino acids are arranged according to increasing hydrophobicity.

doi:10.1371/journal.pcbi.1003382.9009
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limited effect of selection on the 1 kG matrix. By using no allele
frequency cutoff for the minor alleles when building the count
matrix, we gather the maximum amount of information about the
mutation process. The counts are necessarily shaped by mutation
and selection but will mostly reflect the mutation process. The
inter-species matrices (e.g. PAM and WAG in Figure 9B,C) on the
other hand are subject to selection pressures. This could explain
why the 1 kG matrix is so different from the other matrices. One
clear factor is CpG hypermutability: for example, changes from
Arg, an amino acid with four of six codons containing a CpG,
have a very high rate in the 1 kG data, and not in WAG
(Figure 9A,B). In fact only codons containing a CpG have high
rates overall (Figure 10). The most plausible explanation is that
these CpG mutations are occurring at a very high rate and then
are selected out so that the effect is not seen as strongly when
looking across multiple species.

Comparison between the 1000 Genomes variants and
the disease-associated variants

For comparison, we have constructed the amino acid exchange
counts matrix for data from the OMIM database and the associated
plots for these mutations (Figures 1-8). Disease variants from the
UniProtKB/Swiss-Prot Human polymorphisms and disease muta-
tions index (Humsavar) were also included with plots available in the
supplement (Figures S3, S4, S5). Our focus however is on the
OMIM set. In contrast to the 1 kG data, various double and triple
base mutations are observed in the OMIM set, however the three
triple base changes (Phe-Lys, Met-Tyr and Trp-Ile) were checked
back to the publications and all were found to be errors either in the
paper or in OMIM and were removed. 82 two base changes were
found in OMIM and a few (10%) randomly selected changes were
manually checked with no errors found. Clearly the OMIM data
are radically different from the 1000 Genome data, in that they are
all independent observations of variable confidence and manually
determined by individual scientists. They only represent a small
fraction of disease-associated nsSNPs and the number of mutations

N

ees oo m oo

rate

——

No CpG'change Potential CpG change

0- T
CpG changed
Figure 10. Dependence of mutation rates on the change in CpG
status. Rates of change from codons were calculated similarly to the

amino acid rate matrix [36], but on a 61 by 61 codon matrix.
doi:10.1371/journal.pcbi.1003382.g010
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(~10,000), is approximately ten times smaller than the number of
1000 Genomes mutations. The normalised OMIM counts that
differ from the 1 kG dataset are coloured in Figure 1. Considering
just the residue type, if we exclude Arg, the overall correlation
between the normalised frequencies of occurrence of the mutated
residues in the two datasets is only 0.14 and between 1 kG and
Humsavar it is 0.48. If we compare all 148 observed X=>Y
frequencies, the correlation between 1 kG and OMIM is 0.51 and
1 kG and Humsavar is 0.79.

Previous studies have found that mutations from Arg and Gly
are the major contributors to human genetic disease and have
been shown to make up about 30% of the mutations involved in
disease [41]. In this updated and much expanded set, variants
from Arg and Gly only make up 15% of the disease causing
mutations. However mutations to Arg are still the biggest
contributor to genetic disease with ~19.4% of all mutations.

Figure 11 shows a rank order comparison between the
frequency of occurrence of the 1 kG and OMIM variants
(r=0.09) as well as between 1 kG and Humsavar (r=0.31) and
Humsavar and OMIM (r=0.51), normalised for amino acid
occurrence. Unlike for the 1 kG data, the disease-associated
variants show moderate inverse correlations between their
frequency and the frequency of occurrence of the residue type
(r=—0.67) implying that, at least for OMIM, the mutations to the
rarer amino acids (with fewer codons) are more likely to be
associated with disease. As with the 1 kG data there is no strong
correlation between a residue type being associated with a disease
in the OMIM data and the number of codons. For hydrophobicity
and size, the disease associated variants show the opposite trend to
the 1 kG dataset with a moderate correlation between lower
frequency and smaller size (r =0.528, excluding Cys and Trp) but
no correlation between frequency and hydrophobicity (r =0.289).
It is interesting to note that the least mutable amino acid in the
1 kG data (Trp) turns out to be the residue whose mutation is most
likely to result in disease in the OMIM variants and is highly
ranked in the Humsavar set. Trp, the largest amino acid, often
occurs in specialized roles in proteins as does Cys, the second most
frequent variant residue type in OMIM. Amino acids with a lower
frequency of occurrence tend to be the more complex amino acids
and are frequently found in specialized roles. Mutating them will
result in the possible loss or alteration of protein function, hence
the over-representation in OMIM and Humsavar. In a number of
cases the OMIM and 1 kG variant preferences appear to behave
in an opposite way from one another e.g. in Figure 7 Arg most
frequently mutates to Gln in the 1000 Genomes and a variantion
to Gly is much less common, whilst Arg to Gly is the most
common variant in the OMIM dataset and a variation to Gln is
rare.

We observe a reasonable correlation between the OMIM and
Humsavar mutabilities (r=0.51), but some amino acids appear to
behave completely differently in the two datasets. Gly and Ala are
much more frequently mutated in the Humsavar set than in
OMIM, whilst Gln, Lys and His have mutabilities in the
Humsavar set similar to those observed in the 1 kG dataset and
much smaller than those in OMIM. This may reflect the larger
Humsavar dataset (but this seems unlikely since Gly and Ala are
quite common amind acids), so these specific discrepancies may
rather reflect the origins of mutations in the two separate datasets.

Structural properties of disease-associated nsSNPs

The disease-associated OMIM variants show a slight preference
for buried sites (33%) compared to all residues (27%) in the human
proteome (Figure 5A) is even stronger in the Humsavar data
(41%). This contrasts with the ‘natural’ variants of the 1 kG data,
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Figure 11. Amino acid mutability rank order plot comparing the mutability scores for 1 kG, OMIM and Humsavar residues. The most
mutable amino acids are at the top. Correlation coefficients for 1 kG vs OMIM, 1 kG vs Humsavar and OMIM vs Humsavar are 0.09, 0.17 and 0.51,

respectively.
doi:10.1371/journal.pcbi.1003382.g011

which show a decreased preference (18%) for the interior. Our
work broadly agrees with a smaller study done by Gong and
Blundell [21] that showed 60-65% of disease associated nsSNPs
are solvent exposed. We found an almost identical distribution of
OMIM and Humsavar variants compared to all residues and the
1 kG variants between the different secondary structures
(Figure 5B).

Figure 8A shows the differences in the DOPE scores [42]
calculated for each variant during the structural modelling process
for the 1 kG, OMIM and Humsavar datasets. The distribution for
the disease-associated variants is shifted towards larger positive
energies in both datasets, indicating that the variants destabilize
the protein slightly more than the non-disease variants. In contrast
to the 1 kG data, OMIM mutations are more likely to increase
polarity (54%) and more likely to decrease size (51.6%,
Figure 8B,C). The two datasets show some detailed differences
in size and hydrophobicity changes. The Humsavar variants less
frequently reduce size or decrease hydrophobicity compared to
OMIM mutations.

Functional annotations

In the OMIM set, 11.2% (209 of 1,864) of the modelled
mutations were annotated with a function (Figure 5C and
methods). This is less than the distribution for all residues
(29.1%) and that seen for the 1 kG variants (15.5%). For the
Humsavar data this drops to only 6.5%. This is a surprising
finding, which needs further validation. It implies that most
disease-associated mutations do not have a direct effect on the
proteins’ catalytic or binding sites but instead act through other,
unannotated residues such as those which affect overall structure

PLOS Computational Biology | www.ploscompbiol.org

and stability or are involved in as yet unidentified protein-protein
interfaces.

Conservation

There is a clear difference in the conservation score distribution
between natural variants and the OMIM and Humsavar variants
(Figure 6). The natural variants occur across the entire range of
conservation but the OMIM and Humsavar variants show a peak
in the more conserved residues. This is consistent with the idea
that mutations in conserved residues often lead to disease.

Discussion

The results presented herein are subject to a few caveats, the
most serious being related to the limited and possibly biased
disease-associated data in OMIM. There are only ~10,000
variants in our OMIM set and these have variable experimental
validation, and may indeed be biased according to scientists’
preconceptions that such mutations should correspond to the
residues that are most conserved and the amino acid exchanges
that generate the largest changes in physicochemical characteris-
tics. The Humsavar set has over 23,000 disease variants, however
the requirements for inclusion are based on an annotation of
‘involvement in disease’. This annotation is derived from either
OMIM annotations or associations found in literature during
curation of the SwissProt data. Notwithstanding, the OMIM
dataset is one of the best available at the present time, although the
coming years will see major expansion and hopefully improve-
ments in such data. The results highlight the complex interplay of
features from the level of the DNA up to protein sequence and
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structure. The codon CpG dinucleotide content plays a large role
in determining which amino acids mutate. This in turn affects the
mutability of amino acids and a clear difference was seen between
non-disease and disease variants where amino acids that are
naturally very mutable, show the opposite trend in the disease-
associated data.

The data for the 1000 Genomes provides a new experimental
baseline against which amino acid profiles may be compared.
Although there might be sequencing biases due to the DNA
sequencing techologies used [43], every effort has been made by
the 1000 Genomes consortium to correct for this. They estimate
that using consensus calling on data produced by multiple
platforms results in an error rate of 1-4%, thus having a small
but negligible impact on our results. The current results show
evidence for some protein selection, mainly in that the variants
occur slightly more often on the surface of the protein and are
much less likely to be annotated as functional than expected by
chance. However, we should note that even the best definition of
functional, taken from structural data, is limited. At one level, the
definition is rather broad. For example, all residues in contact with
a ligand are described as functional, but this is a major
underestimate since many cognate ligands are not present in the
crystal structures and similarly protein-protein interactions are
rarely captured. In addition there are still relatively few complete
structures for human proteins, which makes analysis of the effects
of variants more difficult.

Even with these caveats, it is clear that the 1 kG variants
eschew functional residues as defined here, a trend which is
surprisingly even stronger in the OMIM and Humsavar data.
The preference for OMIM mutations to be more buried and less
functional supports the suggestion that these variants predomi-
nantly affect the structure and stability of the protein [4]. This is a
similar result to that found by Sunyaev and co-workers [44] on a
much smaller set. They found that 35% of disease variants were
buried and a more detailed analysis found that ~70% of the
variants are located in structurally and functionally important
regions. Therefore these disease-associated mutations may well
target residues that are remote from the active site, which
modulate rather than obliterate the function of the protein. For
example, for an enzyme, the primary catalytic residues are rarely
targeted, but the ‘secondary’ residues in the interior (which affect
stability) or on the surface, which may affect protein-protein
interactions, could modulate function. However, the higher than
average conservation scores for OMIM and Humsavar sites
suggest that these disease-associated residues, although not
defined as ‘functional’, are still important for the organism. This
needs further investigation, with particular attention to how
‘functional’ residues are defined and whether we can improve on
this definition.

Bringing together all the above observations for discase-
associated and natural variants in —1000 humans, we observe
that the mutability of amino acids is largely driven by the
properties of the DNA and mutational mechanisms, which favour
mutations at codons containing a CpG dinucleotide. Therefore
mutations to Arg residues are more than twice as common as any
other mutation. However there are clearly other factors at play,
which determine the frequency of variants, even at the DNA level.
Although the disease-associated variants (both OMIM and
Humsavar) follow the same pattern as the 1 kG variants (i.e. the
same mutations are present in both sets, as dictated by the genetic
code), the rank order of amino acids, according to their probability
of being disease-associated, is radically different from that
expected on the basis of the 1 kG data, with some of the rarer
amino acids being shifted to the top of the list.
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There is a small but significant impact of the protein structure
on amino acid mutability, so that natural variants occur slightly
more often in non-conserved regions. 59.4% of variations increase
the hydrophobicity of the amino acid and 52.4% increase its size
in the natural set, while OMIM variants often result in larger
changes in the size and hydrophobicity of the amino acid and are
more destabilising on average than 1 kG variants. The Humsavar
data supports this idea that disease variants result in more extreme
changes. The selection pressures captured in the WAG and PAM
matrices ‘purify’ out the ‘natural’ variants, removing variants with
large changes in size and hydrophobicity. The amino acids all
show distinctive exchange profiles, whereby some exchanges are
very common and some very rare, which provides an empirical
expectation for any specific exchange in humans.

As the cost of sequencing drops rapidly, many more genomes
will be sequenced and experimental validation of disease-causing
mutations will improve as a result of more data. Much better
codon-based models of evolution will be attainable, allowing in
turn a better dissection of the impact of selection at the protein
level. The data herein will be used to develop an improved method
to predict the effects of individual mutations, to explore cancer-
related amino acid mutations, to investigate and compare
mutational profiles in different organisms as well as improving
codon mutation models for human DNA.

Methods

Non-synonymous mutations in humans

UniProt [5] was queried for all reviewed protein sequences
belonging to Homo sapiens. 19,058 entries were retrieved. The
Ensembl transcript ID [45] was obtained for each protein
sequence using the mapping provided by UniProt (17,708 UniProt
entries were mapped to 40,351 Ensembl transcript IDs). Immu-
noglobulins and major histocompatibility complex proteins were
excluded as they are inherently variable. For every protein, the
Ensembl v67 Perl API was used to query the transcript ID in
Ensembl for nsSNPs found in the 1 kG data set (as available on 1
August 2012). To reduce the inherent uncertainty involved in
determining the ancestral allele, only mutations that occurred in
one of the 1000 Genomes described populations were used, with
the allele present in all populations considered the ancestral, hence
defining the direction of the mutation. This increases the chances
that the variant found in the 1 kG data is a mutation away from
the ancestral genome. 106,311 mutations were found and this data
set, containing the ‘natural’ variants found in the 1 kG project, will
be referred to as the 1 kG set.

Residue conservation scores for each residue in every protein
sequence were calculated using the Evolutionary Trace server
[35]. Conservation scores for 2,274 sequences could not be
calculated due to the methodology used by the Evolutionary Trace
server that disregards residues in columns of the multiple
alignment containing more than 60% gaps and ranked as being
non-conserved, as well as residues judged by the algorithm not to
have enough information. This process almost certainly preferen-
tially excludes surface residues (where insertions and deletions are
most common) but since we are using the conservation distribution
for comparisons, this bias is not significant. The UniProt sequences
were used to calculate the relative abundance of amino acids in
human proteins. A total of about 10.5 million amino acids were
counted. For each protein sequence, the OMIM Mutations search
tool (http://www.bioinf.org.uk/omim) was queried with the
UniProt entry ID to retrieve variants found in OMIM. Only
variants for which the correct amino acid position in the protein
has been verified, were used for the OMIM data set and will be
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referred to as the OMIM set. 556 of the OMIM mutations were
found in the 1 kG set (0.5%). Although these represent a very
small fraction we removed them so that they did not bias the
results.

The instantaneous rate change matrices were derived using the
DCFreq method [36] and the human proteome frequencies.

Mutability of amino acids

A mutability score for every amino acid was calculated by taking
the total number of mutations for a specific amino acid in the data
and dividing by the frequency of occurrence for the specific amino
acid in the human genome. The proportional representation of
each amino acid in the human proteome is given in supplemental

Table S1.

Statistical validation

We compared the amino acid variant counts in the 1 kG and
OMIM data using Fischer’s exact test in the R package (R
Development Core Team, 2011). Multiple comparison correction
was done on the p-values for each amino acid using p.adjust in R
with the Benjamini-Hochberg-Yekutieli method [46,47]. P-values
lower than 0.01 were considered statistically significant. For
correlation values, r>0.7 and r<—0.7 were considered strong,
0.4<r<0.7 and —0.4>r>—0.7 were considered moderate and
0.3>r>—0.3 weak or no correlation.

Retrieving human proteins and their structures

The protein structure data set was constructed by first taking all
the above mentioned protein sequences and annotating each with
their respective Pfam [48] domains. Only proteins for which there
were matching entries in the Protein Data Bank (PDB, [49]) were
kept. This resulted in a list containing the UniProt identifiers for all
known human proteins that have at least one structure in the PDB.
For accuracy, the corresponding PDB structures were then filtered
to include only X-ray structures. Using the Pfam mapping, only
protein structures containing all the protein’s Pfam domains were
kept. The final list contained 2,139 protein chains and will be
referred to as the 3D set.

A set consisting only of human monomeric proteins was also
constructed. An algorithm was implemented whereby a protein
was classified as being either a multimer or a monomer based on a
majority vote. The predictions used were from PISA [50],
UniProt, 3DComplex [51], PIQSI [52], PQS-PITA [53-55],
relevant PubMed abstracts and REMARK 350 records from the
PDB structure file. The oligomeric predictions from each of the
servers were collected for every protein in the 3D set. Only when
the majority of the servers agreed on the most probable oligomeric
state of the protein, was it designated as either a multimer or a
monomer. The monomeric protein list contained 325 proteins and
will be referred to as the monomer set.

Another homology-based set was constructed using the human
models in ModBase [31]. Models with 90-100% sequence identity
and coverage were used as templates. This set contained 2,630
models and will be referred to as the model set.

Protein chain annotation

Each protein chain in the 3D, monomer and model sets was
annotated with information from various databases and online
resources. Information about protein properties such as catalytic
residues, metal-binding residues, ligand-binding residues and
PROSITE patterns [56] were extracted from PDBsum [34] and
additional functional residue annotations were retrieved using SAS
(Sequence Annotated by Structure, [33]). The 3D coordinates for
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each of the proteins in the structure data sets were retrieved from
the PDB. To maintain consistency between the PDB and UniProt
residue numbering, the SIFTS mapping [57] for each protein
chain was used. NACCESS was used to calculate the relative
solvent accessibilities for the individual residues in a chain. A cut-
off of 5% solvent exposure was used to distinguish between buried
and exposed residues.

Mapping nsSNPs to structures

To investigate the effect a nsSNP might have, each individual
nsSNP was mapped to its correct amino acid in the protein
structure. For every such nsSNP that could be mapped, a
homology model of the protein containing the nsSNP was built
using Modeller 9v3 [32] with the original protein structure serving
as the template. A maximum of 200 steps of conjugate gradient
minimization followed by 200 rounds of molecular dynamics at
300 K (using Modeller) was applied to each variant and its
structural context analysed. NACCESS was run on all the variant
models to identify changes in solvent accessibility. Comparisons of
the Modeller DOPE score (Discrete Optimized Protein Energy,
[42]) were made between the nsSNP model and the reference
structure to estimate the magnitude of change that a variant might
cause. The 1 kG models are available in PDBsum (http://www.
ebi.ac.uk/pdbsum/) by looking at the specific PDB code of
interest.

Supporting Information

Figure S1 Mutabilities of the amino acids for each
population. AMR: American admixed, ASN: South East
Asian, AFR:African, EUR: European.

(EPS)

Figure 2 The distribution of average protein mutabil-
ites for all human proteins (blue) and disease associated
proteins (red).

(EPS)

Figure S3 The amino acid exchanges observed in
human protein variants. The | kG data set is the top row
of each cell and Humsvar(SP) the bottom row of each cell*. Amino
acids are arranged by 1 letter code according to increasing
hydrophobicity (least hydrophobic is left and most hydrophobic is
right) using the Fauchere and Pliska scale. Yellow blocks indicate
mutations where there are statistically significant differences
between 1 kG and Humsavar. Blue blocks indicate where no
mutations were present in the 1 kG data set. White blocks show
where there are no statistically significant differences. Green blocks
show where there are proportionally more 1 kG mutations
compared to Humsavar. Orange blocks show where there are
proportionally more Humsavar mutations than 1 kG. The
mutability scores (see methods) for the 1 kG and Humsavar sets
are shown in the last column. *Note that these matrices are
fundamentally different. The 1 kG data set gathers all the
observed mutations in the 1 kG project, counting each only once;
the Humsavar data set combines information gathered from
potentially many individuals but filtered to identify those
mutations associated with a disease.

(EPS)

Figure S4 Comparison of the differences in observed
mutations in the various sets. Comparison of the differences
in the % of observed mutations in the 1 kG (blue) and Humsavar
(red) sets for one amino acid mutating to all others e.g.
proportionally, more mutations from Lys to Glu are recorded in
Humsavar than in the 1 kG set. Each plot shows the results of
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mutation from a specific amino acid (e.g. Arg at top left) to every
other amino acid.

(EPS)

Figure S5 Comparison of the differences in observed
mutations in the various sets. Comparison of the differences
in the % of observed mutations in the Humsavar (green) and
OMIM (red) sets for one amino acid mutating to all others. Each
plot shows the results of mutation from a specific amino acid (e.g.
Arg at top left) to every other amino acid.

(EPS)

Table S1 The relative abundances of the various amino
acids in the UniProt protein set.

(PDF)
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Appendix C

C.1 Supplementary Figures
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Figure C.1: ROC curve for a simulated dataset with the w-distribution of the
mammal dataset shown in Figure 5.1a, including those which are positively se-
lected, showing the FPR against the TPR. The red line indicates the 5% FPR
point, corresponding to a power of approximately 0.6. My aim is to devise a sta-
tistical test that approaches this power as closely as possible, without exceeding
the chosen FPR. The red dot corresponds to the FPR and TPR found if the y?
threshold of Massingham and Goldman (2005) is used: 0.0075 and 0.27, respec-
tively. Note that the ‘cost’ of this reduced FPR is that the TPR is reduced by
about one half.
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