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Abstract

The metabolome is the complete set of small molecules (<1,500 Da)

present in a biological sample or organism. Metabolomics studies

metabolomes through technologies such as Nuclear Magnetic Reso-

nance and Mass Spectrometry.

Metabolomics poses a major bioinformatics challenge: to identify the

large number of metabolites detected, whose structure and biochem-

istry is unknown. This thesis contributes towards solving this chal-

lenge by developing methods to predict organism-specific metabolomes:

metabolism database integration, text mining, and chemical enumer-

ation.

Metabolism data integration – through a novel merge method – shows

that merging metabolism resources significantly increases the size of

the metabolite catalogue. The integrated metabolite collection cov-

ers ∼15% of the Human Metabolome Database (HMDB); the main

difference is accounted for by the large lipid collection in the HMDB.

The text mining pipeline built – analyzing PubMed abstracts – pro-

duces some thousands of additional metabolites and relations between

tissues and small molecules. This method retrieves an additional 6%

of what remained undiscovered in the HMDB after the database inte-

gration part. Results retrieved only through text mining have a bias

towards exogenous small molecules.

On enumerating generic reactions from the previous sets, the num-

ber of small molecules generated grows exponentially and only a few

paths lead to known metabolites. To narrow down the results, I

explore methods which rely on thermodynamic feasibility, catalogue



lookups, and reaction similarity. While this part produces only lit-

tle overlap with what remained uncovered of the HMDB, the selection

methods restrict the results to ∼5,000 connectivities resembling known

molecules, out of ∼67,000 connectivities produced.

Polyketides are an example of a more complicated case within me-

tabolism, where reactions steps are defined in a very particular and

non-obvious order. I contribute towards the elucidation of polyketide

structures through the development of tools to improve our under-

standing of a rarely studied class of polyketides.

The methods in this thesis aim to be a start-up point for the semi-

automatic generation of species-specific metabolomes, producing a re-

sult which is in-between existing metabolism resources and highly cu-

rated databases such as the HMDB – including as well many molecules

that are not part of the HMDB. These methods produce a richer

organism-specific catalogue of small molecules, compared to what can

be accessed by use of existing metabolism databases.
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Chapter 1

Introduction

1.1 Motivations

Before life, there was chemistry. Proteins, RNAs, and their blue-prints in the

genome, enable the cell to act on a chemical world that encompass it. The

living cell obtains its building blocks and energy from the surrounding chemical

entities through complex processes. The cell aims to harness the chemical world

around it to its favour. Yet there is so much to be discovered about the complex

interplay between the chemistry and the cell. Thousands of genomes are available

today, but only few extensive species-specific collections of small molecules – or

metabolomes – are currently compiled [69; 121; 166]. We need more knowledge

about the small chemical molecules that are found in specific organisms, tissues,

and cell types to improve our understanding of the interplay between organisms

and their surrounding chemistry, and of the internal mechanisms of the cell. Such

is the importance of small molecules in biology that some have even labeled them

as “the missing piece of the central dogma of molecular biology”[132].

Genomes tell us very little about the particular phenotype of a cell or organism

at a particular condition1. Gene and protein expression take us closer to the

phenotype of a cell. Descending through the “omics” cascade [26] (Figure 1.1),

the metabolome – the set of small chemical molecules that can be found in a cell

or biological sample – gives the most sensitive and accurate representation of a

1There are of course some genes, or SNPs in them, that determine phenotype directly, like
those for eye colour for instance.
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1. INTRODUCTION

phenotype [26; 37].

Genome

Transcriptome

Proteome

Metabolome

Phenotype

What can happen

What appears to 
be happening

What makes it 
happen

What has 
happened and is 
happening.

4,832 species deposited 
with whole genome 
shotgun sequences.

1,040 + 7,350 species 
deposited with >100 
proteins.

~1,500 species deposited 
with transcriptome 
experiments.

<10 species with 
metabolome described. 

Figure 1.1: The “omics cascade” as proposed in [26], represents only the main flux
of information through the “omics”. To the right we find the number of organ-
isms that have whole genome sequences (deposited in the European Nucleotide
Archive, ENA [90]), of organisms with transcriptomic experiment results (in the
ArrayExpress database[116]), and the number of organisms with more than 100
proteins known (1,040 in SwissProt and 7,350 in trEMBL[19]). Metabolomics is
behind in developing databases with an adequate coverage of species, compared
to other “omics”.

Metabolomics, the area that experimentally catalogues and measures small

chemical molecules in biological samples, has been around for hundreds of years

– shaped to how we know it today, mainly in the past 50 years[157]. However, the

task of resolving and identifying small molecules is of such complexity, that still

only less than 40% of the small molecules detected in a sample can be adequately

identified on average using well established technologies[154; 161]. There are

2



many experimental challenges that are responsible for this. In the bioinformatics

side, the difficulty partly lies in the lack of good resources, such as the Human

Metabolome Database (HMDB [166]), that compile existing reference evidence

of small molecule occurrence in biological containers (species, organs, tissues,

cell types, etc.). Having more resources in this area will improve the chances of

identifying more complete sets of small molecules in Metabolomics experiments.

Compiling metabolomes as reference data sets is complex and time consuming

because the potential sources of data are not properly integrated. One approach,

is the collection in the form of an archive, of as many Metabolomics studies as

possible. Examples of these are KnApSacK database [135], BinBase/SetUpX[40],

GMD [85], METLIN [136], or the MetaboLights Database at the European Bioin-

formatics Institute (EBI). This approach, provides a consolidated evidence bank,

that allows the comparison of multiple results and cross confirmation of obser-

vations. However, it does not solve the problem of identifying unknowns in the

data set. For this, a reference biology data base is required, like the HMDB, that

provides background knowledge on the extensive list of small molecules that can

be found in the biological sample under study. This kind of resource requires a

massive investment of man power, so methods that derive this kind of resources in

a more automated way would be useful towards the generation of more reference

species-specific metabolomes data sets.

1.2 Introduction to small molecules

Small molecules are organic chemical compounds with a mass of up to 1,500

Daltons [166].

A small molecule can be classified into many different categories according

to physicochemical properties, biological roles (activator, inhibitor, metabolite,

etc.), chemical properties (acid, base, alcohol, oxide, etc.), applications (pesticide,

anti tumoral, indicator, etc.), substructural features (polycyclic, carboxylic acid

part, etc.), or provenance (secondary metabolism, endogenous, natural, synthetic,

etc.), to name some. While far from completely covering the whole spectrum

of possibilities, chemical ontologies and information hierarchies provide ways of

classifying small molecules. I discuss these ontologies later.
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1. INTRODUCTION

Small molecules are connected to the cell mostly through metabolism: the

process of uptake of mass and energy which the cell couples with the production

of highly ordered structures that allow it to replicate and perpetuate life. Most of

the small molecules present in the cell at some point interact with enzymes, to be

subject of biologically catalyzed chemical reactions, or at least will interact with

a protein for some purpose. Another relevant biochemical process which involves

small molecules is osmoregulation, which actively modulates the concentration of

solutes, to avoid either very diluted or too viscous solutions.

Depending on their size and other properties, such as polarity, small molecules

will either be able to go through biological membranes or require some form of

protein mediated transport[27].

Small molecules play a central role in inter-cellular communication, as in

chemotaxis and quorum sensing in the case of bacteria, hormone signalling in

higher eukaryotes, and biological warfare between bacteria, fungi, insects, and

plants. This is mostly achieved by secondary metabolism: the production of nor-

mally more complex small molecules that are not necessary for the cell’s direct

survival, but which in many cases make it more fit. Bacteria, fungi, and plants

through their evolution have developed highly sophisticated secondary metabo-

lites. Figure 1.2 shows some examples: a bacterial polyketide, a fungal aflatoxin,

and a plant terpene.
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Figure 1.2: The structure of a bacterial polyketide, an Aspergillus aflatoxin, and
of a citric terpene.
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During the past years, open chemical databases such as PubChem [130],

KEGG [71], and ChEBI [25] have consolidated as important repositories of ref-

erence chemistry data. PubChem receives direct electronic submissions of small

molecules, these structures are subject to automatic normalization and merging

steps, and then made available to the community. In manually curated resources

such as ChEBI, submitted chemical structures are additionally manually checked

and corrected by expert chemists. While PubChem has a larger coverage of

small molecules, ChEBI has higher quality data. These chemical repositories are

relevant, as they provide persistent identifiers for chemical molecules and ref-

erence chemical information. They also provide ways of organizing molecules,

through hierarchies in the case of PubChem (NCBI MeSH chemical branch) and

KEGG(KEGG BRITE chemical categories), and through the ChEBI Ontology.

Detection of small molecules to understand the phenotype of a cell or living

organisms has been long used. In ancient cultures, detection of certain small

molecules by their smell or taste was a major part of medical diagnosis[157].Cu-

rrently many diagnostic tests rely on determining concentrations of certain small

molecules. This is because concentrations of different small molecules within a

cell or biofluid are good snapshots of the active phenotype.

1.3 Introduction to Metabolomes

The metabolome refers to the complete set of small molecules (< 1500 Daltons)

present in a biological sample or organism [165]. The term was first coined by

Steve Oliver in the context of S. cerevisiae omics studies[113]. The most common

way to investigate metabolomes nowadays is through the use of a wide range

of Metabolomics technologies, most of them branching from Nuclear Magnetic

Resonance Spectroscopy and Mass Spectrometry.

Estimations on the number of species on earth, range from a few millions

to a few tenths of millions [32]. According to [105], ∼1.2 million species have

been catalogued. Within those known species, a few thousands have been fully

sequenced. At the time of this writing, we are approaching a rate of 8,000 mil-

lion base pairs deposited monthly1. The metabolome is considered to be one of

1During the first half of 2012, more than 7,900 million base pairs from whole genome shotgun
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the main links between genotype and phenotype [37], yet even after completing

thousands of genome sequences, we still barely have a few metabolomes available

[69; 121; 166].

Metabolomes size estimations are much larger than metabolism reconstruc-

tions based on genome sequences. While the metabolism reconstructions of B.

subtilis , based on the enzymes annotated on its genome, estimated ∼800 small

molecules, experimental results showed 1,692 possible metabolites[139]. For H.

sapiens , while the major metabolic resources can explain close to ∼2,000 small

molecules, the HMDB estimates ∼8,000 small molecules. This again is evidence of

the knowledge gap between what is known of metabolism and what experimental

methods find.

Estimating the size of a metabolome requires to set boundaries to which small

molecules are considered as part of a metabolome. While mass constraints can be

easy to set, the main problem comes when considering endogenous and exogenous

molecules. For a non-versatile single cell microorganism – able to process only

few sources of carbon and nitrogen – or an autotroph this might seem straight-

forward. However, what about a complex higher eukaryote, which is food-fed,

has a number of bacterial communities as microflora of different organs, can be

affected by disease, and uses drugs for different purposes. All these oddities

influence the set of small molecules present in that organism. Additionally, hav-

ing many different tissues and cell types, each of those have its own localized

metabolome. Is the metabolome of such an organism only the small molecules

that its own enzymes can process or produce? Boundaries here are suddenly

extremely blurry.

The Lipidome, the set of all lipids within the metabolome, has been given spe-

cial attention in the past decades, due to its impact in a number of diseases[115].

In 2007 the LipidMAPS[146] database was released, which contains structure

and annotations for relevant lipids. As of the first half of 2012, the database

holds more than 30,000 unique lipid structures. In [168] ∼180,000 theoretical

lipids have been estimated to cover the major lipid classes (fatty acids, fatty acid

acyl-CoA, monoacyl glycerols, diacyl glycerols, triacyl glycerols, phospholipids,

projects were deposited each month in GenBank. Calculation based on section 2.2.8 “Growth
of GenBank” of the NCBI-GenBank Flat File Release 190.0 release notes.
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ceramides/sphingomyelin, glycosphingolipids, and cholesterols).

Aside experimental Metabolomics, the following sources of metabolome knowl-

edge can be identified:

Metabolism databases: These are one of the biggest repositories of metabo-

lome knowledge, where enzymatic reactions with chemical structures for

reactants and products are stored.

Literature: According to some experts, approximately 20% of knowledge is de-

posited in structured databases, the rest is hidden in thousands of articles

in the literature[62]. Given this, there is probably plenty of metabolome

knowledge that is not found in metabolism databases and that is only found

in literature.

Chemical databases: While chemical databases do not provide an association

of chemical entities with organisms, they do provide reference chemical data

for the small molecules, which through other resources can be associated

with particular biological containers.

Whole genome metabolic models: These are sets of reactions and molecules

obtained after the annotation of the enzymes of an organism[151]. Although

they rely mostly on metabolism databases, sometimes they also undergo

manual curation, which can bring new molecules into the models. However,

as one of the concerns when building them is adequate connectivity, most

of the times these models avoid small molecules that are not appropriately

connected. Most of these models do not include chemical structures, and

often not even an adequate cross reference to a chemical database.

1.4 Introduction to Metabolomics

Metabolomics can be defined as the comprehensive and quantitative survey of all

small molecules present in a biological sample, tissue or cell type [26; 50]. This

survey can be achieved by a number of experimental methods, followed by data

analysis.
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Currently, the most common detection methods used are Mass Spectrometry

(MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy [29]. Normally, MS

detectors are coupled with a previous separation step, such as gas (GC-MS) or

liquid chromatography (LC-MS)[48], which gives a further dimension (of retention

time) to the mass over charge (m/z ) result. While generating in silico m/z pre-

dictions for a molecule is relatively straightforward, the retention time estimation

is the most tricky part to predict, as it depends on the separation column used

and on a number of experimental factors (such as temperature, mobile phase, and

matrix of the sample among others)[21]. Through fragmentation trees, where a

selected ion is fragmented iteratively, MS can shed light on the structure of a

small molecule[75]. This is a time consuming task, and so it can be only done

for few compounds. Today the main challenges in MS are the identification of

compounds and the absolute quantification of concentrations. Mostly relative

quantities are reported, as absolute quantities require the use of standards.

NMR spectroscopy is a lot less sensitive than MS, and normally able to de-

tect less than a hundred metabolites in most samples [50], restricted to high

concentration metabolites. NMR based methods have the advantage of being

non-destructive, less contaminating, and provide information to elucidate parts

of the structure of the molecule directly. NMR spectra can be predicted from a

structure.

Results provided by these experimental setups can be used in different ways.

In Metabolic Profiling[30; 38], the resulting spectra are used to identify, and

hopefully quantify, particular small molecules. In this case, it becomes relevant

to have good reference collections of metabolites to be able to match the spectra

against.

A different approach is Metabolic Fingerprinting[30], where the spectra/peaks

are used as patterns, neglecting the identification of particular small molecules in

the spectra. These patterns are normally compared to other stored patterns to

identify or characterize the condition of the newer sample. In this case, there is

no need for good reference layers of small molecules to compare against.

Another relevant approach is Metabolic Footprinting[77], which looks for the

change in the composition of small molecules in the media, where the studied cells

are growing or are in contact with, the chemical impact of the cellular system
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in its environment, rather than intracellular changes. For instance, metabolomic

studies of blood or urine samples are normally considered “Metabolic Footprint-

ing” studies, as they are inspecting the outcome of many tissues metabolism in

these biofluids.

Metabolomics studies can be classified as either targeted or untargeted[26]. In

targeted Metabolomics, a small number of specific metabolites are monitored and

quantified, which is particularly useful for clinical applications as diagnosis tests.

In untargeted Metabolomics, there is no predefined hypothesis of metabolites to

pursue and the aim is to identify relevant metabolites and the global biochem-

ical change within the conditions under study. This second case requires good

metabolome databases to aid in the identification of putative metabolites.

The field of Metabolomics has seen the emergence during the past 10 years of

a number of experimental data repositories, such as METLIN [136], KnApSacK

[135], GMD [85], and Madison Metabolomics Database [23], among others. These

are relevant steps towards an accumulation of small molecule knowledge, however

there is a lack of a well funded and highly centralized resources such as those

for nucleotide (NCBI RefSeq, ENA, KEGG), and protein deposition (UniProt).

These central resources store the nucleotides and proteins depositions, annotate

them, and link them with their biological background.

1.4.1 Challenges in Metabolomics

In 2004, Goodacre and colleagues [48] described six different types of databases

that would be relevant for Metabolomics; among them they included: “Databases

listing all known metabolites for each biological species. With suitable metadata,

these databases could be extended to contain temporal and spatial information.”

Pedro Mendes [102] stated in 2006 three major bioinformatic challenges posed

by Metabolomics: to identify the large number of metabolites detected whose

chemistry is unknown, to identify the active areas of metabolism and the need for

data standards. While the second challenge has been partly addressed by various

studies in systems biology (specially including mRNA and protein expression

studies) and the third challenge has been tackled by a number of data standards

initiatives (MSI [39; 51], MIAMET [6], ArMet [66], mzData [114], mzXML [117],
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etc.), very little advance has been made in the first one.

Experimentalists in Metabolomics are able to identify only a small fraction

of the metabolome in a sample. With the existing chemical and metabolism

databases, researchers in mass spectrometry doing profiling leave most of the de-

tected metabolites without assignment to a known small molecule. This is the

main niche that this work attempts to tackle, the study of existing and new meth-

ods for generating extensive collections of small molecules, that can accurately

represent the metabolome of a sample or a species. Figure 1.3 illustrates in which

part of the complete metabolomics pipeline this work lies.

Area of this thesis

Figure 1.3: Diagram showing the main components of the metabolomics pipe-
line, from metabolome to identified metabolites: this work lies in the Chemical
Databases part, used to identify putative metabolites, irrespective of the detection
technology. The Chemical Databases part could as well have included databases
like KEGG, BioCyc, and ChEBI, among others. This work focuses on generating
species-specific chemical (metabolome) databases. Figure from [104], used with
permission.

This work aims to generate resources, based on different types of knowledge,

that can bridge the gap between Metabolomics results – putative metabolites –

and the small molecules that they should be assigned to.
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1.5 Research objectives

The main objective of this thesis is the investigation of methods to generate

species-specific collections of metabolomes. Considering the huge man power that

initiatives like HMDB require, an important component of our study is the gen-

eration of automatic methods that can alleviate this requirement, as there are so

many organisms for which metabolomes are unknown. Today, the most common

resource of small molecules, on a species-specific basis, are metabolism databases,

like the Kyoto Encyclopedia of Genes and Genomes (KEGG) or BioCyc, among

many others. However, this type of resources does not hold more than two thou-

sands small molecules when restricted to particular organisms (probably, in most

cases, below a thousand small molecules). In contrast, the HMDB reaches nearly

∼8,000 small molecules for H. sapiens . Although it might be difficult to reach the

amount of molecules in HMDB, a reasonable objective would be to have species-

specific collections that double or triple the size of what is offered by the main

metabolic resources. In other words, collections that lie in between those derived

from metabolism resources and the HMDB, but that can be easily replicated in

many organisms.

Towards this aim, the areas of metabolism databases integration, text mining,

and chemical enumeration are visited. Initially a backbone of data is extracted

and merged from the main metabolism databases. This backbone is further en-

riched by the use of text mining tools to add relations to further small molecules,

proteins apparently related to them and the tissues and cell types in which these

entities could be found. Starting from known reactions and metabolites, new

putative small molecules are added through methods of enumeration. Addition-

ally, this work explores a more elaborated case in metabolism: the production

of polyketides. These interesting natural products are examples of how the com-

bination of simple chemical transformations in non obvious orders can generate

extremely complex molecules.

It is important to stress again that the work in this thesis lies – as Fig-

ure 1.3 shows – in the layer of small molecule collections, as small molecule,

metabolome, and metabolism databases could be considered. Hence this work

neither deal with the data analysis that each different experimental metabolomic
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technology require, nor how the raw output of each technology is compared to

known molecules for assignment or annotation, but one step after that, as Figure

1.3 illustrates.

1.6 Guide to chapters

The first work chapter, deals with merging different major metabolism resources

in a species-specific manner, towards more complete, species-specific, catalogues

of small molecules. I explore the difficulty of integrating different metabolism re-

sources, decide which are the main resources to be integrated and choose a frame-

work for doing this. The software written builds Species-specific metabolome sets

for different organisms, which I compare to find commonalities and particularities

between the organisms. Results for H. sapiens are compared against the HMDB.

The second work chapter, explores the use of text mining techniques for gener-

ating species-specific metabolomes. Following a short exploration of the area, the

chapter shows the strategy implemented – based on named entity recognition and

co-occurrences – to find small molecules in the literature and their relationships

with organisms, proteins, tissues, and cell types. This approach relies on dictio-

naries of terms built from relevant resources, such as databases and ontologies.

Classification methods are used to increase the reliability of the results obtained.

Again, results for H. sapiens are compared against the HMDB.

The first two work chapters deal with small molecule knowledge which is de-

posited in existing resources, such as metabolism databases or chemical databases.

The final work chapter, explores methods of enumerating, or predicting, new pos-

sible small molecules that under certain rationality could be part of a defined

metabolome. This chapter visits the enumeration of generic reactions (reactions

that have a variable part), as a learning stepping stone towards the general enu-

meration of reaction mechanisms; and bacterial polyketides, as an example of

a difficult case were molecules are relatively unique to each organism and are

“directly” encoded in their genomes.
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Chapter 2

Metabolism database integration

2.1 Introduction

In this chapter I focus on the methods used to merge different databases of

metabolism in an organism specific manner. I discuss briefly some minimum

aspects that a metabolomes database should include, to step into a survey of

databases and frameworks that could be used for the proposed integration, ex-

plaining the main features that lead to the inclusion of certain resources, the use

of particular technologies and the blessing of gold standards for comparison.

The main aim of this part of the work is to generate a method to consolidate as

much available knowledge as possible for the metabolome of an organism, starting

with what I think is the obvious first stop: metabolism databases. I gather data

for four organisms (H. sapiens , M. musculus , E. coli , and S. cerevisiae), exemplify

and assess the consolidation process with one of them, and then compare this

merged result with a gold standard.

Finally, I compare the merged sets of the different organisms, looking for

differences and commonalities between them.

2.2 Desired elements in a metabolomes database

A database that hold metabolomes should include a number of other biological

entities besides mere small chemical molecules. A biological context to these

13
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small molecules is essential to integrate the knowledge existing in other fields of

biology into assembling complete metabolomes. At least the following entities

should be present in some form:

Biochemical reactions: They link small molecules to a particular enzyme, that

needs to be present in the organism’s genome so that the reaction is consid-

ered to occur in the organism. Biochemical reactions are normally indexed

by the IUBMB Enzyme Nomenclature number, or EC Number [152]. Bio-

chemical reactions are essential as they encode the chemical mechanisms

that the reactome is able to exert on the metabolome – allowing future

enzyme promiscuity studies – and because they link small molecules to en-

zymes, for which there is so much localization knowledge that could be then

transferred to chemical entities.

Enzymes: The proteins in charge of catalyzing the reactions are invaluable

sources of knowledge for assembling a complete metabolome. They are

a gateway to gene/protein expression experiments, that allow one to char-

acterize a metabolome not only at the level of the organism, but also at the

level of tissues, cell types and/or conditions. For each enzyme, an external

identifier (such as a UniProt [19] identifier) should be included.

Tissues: One of the main aggregated containers in higher eukaryotes and the tar-

get of many metabolomics and gene expression experiments. Tissues should

be vocabulary controlled through a hierarchical organization, probably an

ontology such as the BRENDA Tissue Ontology [49], to allow for general

overviews as well as detailed granularity analysis of the data composition.

Cell types: Although of different granularity, serves for this purpose similarly

to tissues, and should be controlled likewise.

Organisms: The aim is to build organism specific collections, which can then be

compared at different taxonomic level. Organisms are naturally organized

through resources like the NCBI Taxonomy [36].

Conditions: Metabolism is highly dynamic, probably the fastest changing of all

omes. As such it is relevant to be able to store meta data about the treat-
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ment, disease, environments, etc. to which a biological sample is exposed.

As with Tissues and Cell types, which could be considered a part of the

conditions vector, conditions should also be controlled through an ontology

where ever possible.

2.2.1 Small molecules

The electronic collection of small molecules (m < 1500Da) from the different

databases visited during this work divides data in three levels according to com-

pleteness: small molecules with chemical structure, small molecules with generic

structures and small molecules with no structures.

The first and ideal scenario happens when both the database contains chem-

ical structures for the referenced small molecules and the particular molecule

is completely defined. Example of this is pyruvate in databases like ChEBI or

KEGG.

Generic structures represent molecules that have variable parts in their struc-

tures. Databases that have chemical structures for their referenced small molecules

normally include them. “2-oxo monocarboxylic acid” in ChEBI or “a long chain

fatty acid” in KEGG are examples of these type of molecules. Most databases

store these generic structures in a representation called “markush structures”,

which places pseudoatoms or “R-groups” – denoted normally by R or other let-

ters not used for any element – to mark variable parts of a molecule. Figure 2.1

shows an example of a markush structure for 3-sn-phosphatidate, from BRENDA.

Finally, chemical entities with no structure are present in databases with

chemical structures, when the represented molecule is a class of molecules that is

too general to be represented by a markush structure. Examples would be “an

oxoacid” from ChEBI or “Lipid” from KEGG. However, this also happens when

databases simply do not include chemical structures, like IntEnz [43], or, in the

worst scenario, have missing structures for some molecules, as it happens in many

cases with BRENDA.

Small molecules stored should include structure and chemical identifiers when

ever possible. Identifiers allow quick search and comparison within a database.
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Figure 2.1: A markush structure representation for 3-sn-phosphatidate, from
BRENDA

The preferred chemical identifier should be the InChI string. InChIs are a one-

line text representation of the small molecule’s structure, which allows to identify

a molecule with a single text line without the need to interpret its structure.

Given that for database indexing purposes it is useful to have fixed-length fields,

the InChI string can be encoded, through a hashing function, into a 27 length

string called the InChI Key. It is not possible to go from an InChI Key back to a

complete InChI, but as long as the association is maintained within the database

this is not a problem. It is certainly faster to search (and index) a table through

InChI keys than through complete InChIs. Optionally, a third component, the

AuxInfo string, accompanies the InChI string. To produce the original chemical

structure from an InChI string, both the InChI string and the AuxInfo string are

required.

The only drawback of the InChI identifier is that it requires a completely

defined structure to be calculated, so InChIs cannot be calculated for generic

molecules (markush structures), which include an unknown or variable portion

of the molecule.

For generic molecules where InChI cannot be calculated, the SMILES identi-

fier is the next best choice, taking care of calculating SMILES always with the

same implementation. SMILES can be calculated for generic molecules (having

an R-group). There is an extension of SMILES – known as SMARTS – capable

of a higher level of expression for generic structures, allowing to set restrictions

to the R groups.
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For each small molecule stored, references to external databases, like ChEBI

[25], KEGG[72], PubChem Compounds [160] or ChemSpider [118], among others,

should also be stored. This is particularly useful for molecule classes with generic

structures, as the classifications in these databases might allow to find instances

of them, that could be latter checked to see whether they could belong to the

organism in question.

2.2.2 Reactions

Reactions are a central part of the data found in metabolism databases. They are

of extreme importance as they join the chemical world with the biological world,

linking small molecules and enzymes. Biochemical reactions have been systemat-

ically classified since 1961 through the International Union of Biochemistry and

Molecular Biology (IUBMB) Enzyme Commission number[152], widely known as

EC number. Metabolism database use EC numbers to classify reactions, often

as well storing proposed EC numbers that the Enzyme commission blesses when

enough experimental evidence exists. Although widely used for classification of

reactions, EC numbers many times do not refer to a unique reaction but to small

classes of reactions (producing one EC to many reactions relations).

Reactions found in metabolism resources can be classified in different types

according to their participants. Some of them have implications in the way that

data needs to be handled to make use of them.

We distinguish normal reactions, where all small molecules are defined, from

generic reactions, where markush structures represent certain participants. Some

generic reactions also represent polymeric reactions (like DNA bases elongating a

DNA stretch, or single sugars being added to a polysaccharide). Polymeric reac-

tions pose the issue that they are normally represented with the same participant

at both sides, denoting its length in often unconventional ways.

Although not exactly generic structures, sometimes reactions with protein

participants (as substrates and products, not as catalyzers) are also represented

through the use of generic reactions, where markush structures represent the por-

tion of the protein that reacts with small molecules. This is particularly difficult

to handle as frequently databases do not provide any semantic indication that

17



2. METABOLISM DATABASE INTEGRATION

those participants are actually proteins, and that the R-groups do not represent

really a variable chemistry, but the rest of the protein involved. This leaves to

the user the responsability to tell protein participants apart from regular generic

chemical molecules. It is also common that protein participants are only repre-

sented with a name, which at least does not produce the false artifact of a generic

molecule.

When retrieving small molecules from metabolism databases of biochemical

reactions, normally the approach is to look for reactions that are catalyzed by

known enzymes in the organism of interest. One exception to this rule are spon-

taneous reactions, which are known to take place at biochemically relevant rates

without the need of a catalyzing enzyme. The transformation of Trypanothione to

Trypanothione disulfide in the presence of dehydroascorbate1, or the dissociation

of carbamate into carbon dioxide and ammonia2, are examples of spontaneous

reactions. To consider a spontaneous reaction part of a biochemical system, the

main requirement would be that at least one side of the reaction participants

(small molecules) are known to be part of the system. In the whole of KEGG

reactions (that is, including all organisms), there are 64 reactions labeled as

spontaneous. The MetaCyc database (compilation of all the BioCyc databases

reactions with experimental support) contains 188 spontaneous reactions.

Spontaneous reactions should not be confused in metabolism databases with

reactions that, for a given organism, do not have an enzyme assigned. This

normally happens when the enzymatic activity is known to exist in the organism

due to experimental studies, but no enzyme from this organism has been isolated

as responsible for this enzymatic activity. Reaction acetoacetate decarboxylase

(EC 4.1.1.4) – where acetoacetate is broken to form acetone and carbon dioxide –

is an example of this. In the words of the Enzyme Commission: “While no aceto-

acetate decarboxylase (AADase) gene has been identified in the human genome, an

AADase enzyme activity has been purified from human serum”. Some resources,

like the BioCyc databases, assign pathways (from a relevant taxonomic range) to

an organism if the organism has most of the enzyme for those pathways. This

can as well lead to reactions in the organism with no enzyme assigned.

1Reaction R07316 in KEGG
2Reaction R08358 in KEGG
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When a reaction occurs through a cell or organelle membrane and there is

a mass transfer through it, this is called a transport reaction. In general there

is much less knowledge about transport reactions than there is of regular, same

compartment, reactions. EC numbers do not deal with multi compartimental-

ization of reactions. A more recent classification, the Transport Classification

Database[10], or TCDB, can be used for this. The TCDB is far less widely

adopted than the EC number classification.

2.3 Methods for database integration

2.3.1 Metabolism database selection

There are many metabolism databases from where pathways, reactions and small

molecules can be obtained. However, one should be selective, as each resource

requires additional integration and validation efforts, and not all of them provide

additional data, as some resources are built by simply merging other databases.

In the following sections I explore a number of resources to decide which ones to

integrate.

2.3.1.1 KEGG

The Kyoto Encyclopedia of Genes and Genomes[72], better known as KEGG, is

one of the most widely used bioinformatics databases available1. Developed since

1995 by the Kanehisa Laboratories in Japan, it is a multi organism database

that holds genome sequences, annotated genes and proteins, assignments from

enzymes to reactions, small molecules, a comprehensive collection of pathways

and ontologies to organize these entities. The knowledge in KEGG is stored in 15

different internal databases, eight of which are directly connected to metabolism

(PATHWAY, DRUG, COMPOUND, GLYCAN, REACTION, RPAIR, RCLASS

and ENZYME), giving KEGG a strong bias towards metabolism. On its version

57, of March 2011, KEGG included 1,389 different organisms, nearly 6 million

coding sequences (CDSs), 144 pathways, 8,393 biochemical reactions and 16,413

1According to Web of Knowledge, the 4 more cited papers about KEGG have together more
than 440 citations per year
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small molecules1, among others. KEGG was one of the first metabolism databases

to include actual chemical structures for its compounds. Data in KEGG receives

a combination of automatic processing and manual curation. Most of the manual

curation in KEGG is at the gene and protein annotation level. Once this is done,

the metabolic information is generated automatically, using EC Numbers as the

main key between the genome and biochemical reactions.

Besides the data resources, the Kanehisa laboratories have made available

through KEGG a number of very useful and interesting tools for the study of

metabolism. For instance KEGG E-zyme [167], predicts new biochemical reactions

between any given two small molecules, using the knowledge of reaction pairs

mapping stored in the RPAIR database.

Until July 2011, the data in KEGG was completely available for download and

redistribution. Unfortunately, a major funding crisis lead to a closure of some of

the services provided by KEGG, terminating the bulk data access through FTP.

This work, as many other initiatives, was left then only with what was made

available by KEGG before the shutdown. There is still a programmatic access

through SOAP web services that allow certain level of bulk querying, but for the

size of a resource like KEGG, massive integrations like the one aimed on this

thesis cannot be done through web services access only.

2.3.1.2 MetaCyc/BioCyc

Following in importance to KEGG are the MetaCyc/BioCyc[11]2 collection of

databases. These databases are organism-specific (one database per organism),

with the exception of MetaCyc, which is an aggregated database comprised of all

the experimentally verified or manually collected elements existing in the organ-

ism specific databases.

A Cyc database is normally constructed starting from the annotated genome

sequence of an organism. In the coding sequences (CDSs) annotation, the soft-

ware used to build these databases, Pathway Tools[74], recognizes EC numbers

1This only includes the COMPOUND database section, it does not include GLYCANS,
DRUGS and other sections

2According to Thompson-Reuters Web of Science, the four most cited BioCyc articles make
together an average of 104 citations per year
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and enzyme names. These annotations are then compared to MetaCyc, where

enzymes and EC numbers have mappings to biochemical reactions. In this way,

Pathway Tools associates biochemical reactions to the protein products of the or-

ganism. Using the assignment of reactions, the tool transfers pathways to the new

organism whenever reactions of that pathway were mapped. This also introduces

new candidate reactions that could be present in the organism.

Given the construction process, a Cyc database contains annotated genome

sequences, annotated coding sequences, annotated proteins (and particularly, en-

zymes), reactions, small molecules (including structures) and metabolic pathways.

Additionally, some of the manually curated Cycs include allosteric enzyme reg-

ulation and transcriptional regulation pathways. EcoCyc[78], for instance, is a

good example of a database with such a level of completeness.

The BioCyc databases are separated into 3 tiers, or categories, according

to the level of human curation that they have undergone. Tier 1 databases,

comprising MetaCyc, E. coli (EcoCyc), H. sapiens (HumanCyc), A. thaliana

(AraCyc) and S. cerevisiae (YeastCyc) represent the highest level of quality, some

of them reaching a man-decade time of manual curation. Tier 2 databases are the

second category of data sets, which have a moderate level of manual curation. By

the end of 2011, SRI reported to have 34 databases at Tier 2 level. Finally Tier 3

groups only automatically generated databases, approximately 1,653 databases.

In some rare exceptions, these databases can consist of aggregations of organisms,

like the case of PlantCyc, an aggregation of 350 plant species, probably a very

valuable resource for the study of natural products.

Pathway Tools is distributed under an academic license, allowing groups

around the world to create their own Cycs or PGDBs, as called in the context

of the local installation. This PGDBs can be easily submitted back to the main

SRI repository.

The Pathway Tools software is able to load downloaded BioCyc databases1

and export them in plain text files for later parsing. However, there are certain

aspects, like small molecules structures, that are not made available by the export

mechanism, and are only accessible through the Lisp API provided by Pathway

Tools. The need to access certain parts of the data through Lisp can be seen as

1Academic license required for the download
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a disadvantage for BioCyc and Pathway Tools, as this is a rare expertise in most

bioinformatics groups. Until very recently, the BioCyc databases could not be

accessed through a programmatic web service1.

2.3.1.3 BRENDA

The Braunschweig Enzyme Database[131], or BRENDA, is a comprehensive multi-

organism metabolism resource that focuses on enzyme kinetic parameters and

biochemical reactions. BRENDA is recognized within the community2 due to its

extensive catalogue of enzyme kinetic parameters, reactions and their variations.

These are mostly collected manually from the literature, and hence of very high

quality.

By the end of 2011, BRENDA housed 5,536 reaction types with different EC

numbers, including 297 preliminary BRENDA EC Numbers, more than 100,000

KM values3 and more than a million small molecules (enzyme ligands), more than

85,000 with chemical structures. BRENDA has been developed since the early

2000’s by the group led by Prof. Dietmar Schomburg.

Unfortunately the BRENDA general distribution policy is poor, and the only

way to get the bulk data set is through a monolithic, and badly constructed,

text file which has no internal identifiers for small molecules. This leaves the

task of associating the small molecule name given to an actual structure to the

researcher. This file is seldom updated. Furthermore, chemical structures are not

easily available for download.

During the last part of 2011, the BRENDA SOAP web service was improved,

exposing much more data. The web service allows one to clarify parts that are

ambiguous in the downloaded file.

1A programmatic web service exposes an Application Programming Interface (API) through
the web, which means that programs can be written that interact through the network with
the database that it is exposing this service. Normally used for bulk querying or massive data
access.

2According to Web Of Knowledge, the 4 most cited BRENDA articles have a combined
average of nearly 50 citations per year

3KM is the concentration of substrate at which the enzyme achieves a reaction rate of half
its maximum possible velocity, Vmax.
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2.3.1.4 Reactome

Reactome[99] is a high quality, manually curated, metabolic, information trans-

fer and signalling pathway database focused specifically on H. sapiens , and to

some extent in mammals . It has been extended to other taxonomic ranges but

only in an automated fashion. This produces a quality gap between its main

organisms (H. sapiens) and the ones belonging to other taxonomic ranges, as

the main source of knowledge for the automatic reconstruction tends to be very

narrow from the phylogenetic point of view, in contrast to what happens in the

case of MetaCyc, which is derived from many organism’s experimental results.

Reactome has been developed by a consortia of life sciences research institutes

and universities continuously since 2004.

From all the resources presented, Reactome features the most extensive, en-

cyclopedic articles on most of the topics that covers (mostly for H. sapiens). The

database is extensively cross referenced to key resources such as UniProt (for

proteins) and ChEBI (for small molecules) among others.

Reactome provides a wide range of bulk access modes, from MySQL dumps1,

different pathway exchange format standards (SBML, BioPax) and also a SOAP

web service access. It is worth mentioning that a text book version of all of

the articles can be retrieved. The web pages of Reactome are of very high

quality in terms of information content: Reactome offers an excellent view of

metabolism for the interested researcher. Most of the diagrams displayed are

drawn in CellDesigner[45], one of the best tools for assembling SBML models with

compliant layout, and include cellular compartmentalization when adequate.

However, due to the narrowness of the phylogenetic spectrum of this database,

I did not to include it. Although other organisms are provided, this data is mainly

automatic mappings to H. sapiens , decreasing reliability for other species. It was

not included as a gold standard model for validation of H. sapiens metabolome

since the coverage of small molecules that it has is much lower than the Human

Metabolome Database, HMDB. However, if the aim would be to build a good

metabolism resource for H. sapiens , Reactome should be definitely included, due

to the depth in which metabolic processes are annotated.

1A database dump is an entire copy of the database in a flat file, that can be used with the
same engine to recreate the database completely in another location
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2.3.1.5 BioSystems

NCBI BioSystems [46] is a relatively young resource in the metabolism database

landscape. It is mainly an aggregated resource that stores entries of genes, pro-

teins, metabolic pathways, diseases, reactions and small molecules existing in

the main metabolic resources mentioned. Entries are linked by the resource to

biochemical objects present at the NCBI internal databases: organisms are nor-

malized with NCBI Taxonomy[36] ids; genes and proteins to Entrez Genes and

Entrez Proteins respectively; diseases to the OMIM database; literature entries

to PubMed and Entrez Books; and finally small molecules to PubChem. As of

December 2011, approximately 5.4 million proteins, 1.9 million genes and 9,241

small molecules were annotated as part of the BioSystems collection. To the

best of my knowledge, to this date, this have been derived mostly from KEGG,

EcoCyc and Human Reactome. These entries are linked to presumably1 1,664

different organisms.

The NCBI BioSystems compendium can be bulk accessed through the NCBI

E-Utils web services[150] and through FTP access. However, since this resource

is mostly a compendium and not a database that generates its own entries, I

decided to leave it out of the main metabolism database integration. It shall

prove useful in the later text mining chapter.

2.3.1.6 Pathway Commons

Pathway Commons [12], another aggregated database, gathers primarily data sets

of interactions between the main biochemical macromolecules. As of early 2012,

it provides data coming from 9 different sources (of interest for this work, only 2,

HumanCyc and Reactome, the rest of them mostly concerning protein and gene

interactions). The resource has an important bias towards H. sapiens data sets

and networks. It includes biochemical reactions, but this is not the focus.

The resource provides adequate bulk access to its data through a SOAP web

service and downloads. All the data aggregated are made available in BioPax and

1They are linked to 1,664 different NCBI Taxonomy identifiers, however, some of these
might refer to a genus instead of a species, which might change this figure, although in general
it is in line with the number of sequenced organisms to date
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SIF1, which is convenient if the data includes what one is after, since it reduces

considerably the parsing efforts.

Pathway Commons is mainly built using cPath[13], an open source solution

for parsing, storing and querying most of the data sets made available at Path-

way Commons. This would be a very useful tool for a project which requires

integration of different interaction data sets.

Given the main focus on protein-protein and gene interactions, the fact that

this is a database merger which does not add further data of its own and that is

heavily biased towards H. sapiens data sets, I decided that this resource is not

adequate for the integration of metabolism resources described in this work.

2.3.1.7 WikiPathways

Surprisingly, WikiPathways [120] has a reasonably high visibility in the commu-

nity2, despite being relative recent. The resource is built by the collaborations

of it members, as in any Wiki platform, which to January 2012 was of around

2,000 members. Currently the platform includes 19 organisms, which are linked

to a total of 45,000 UniProt entries, 974 distinct ChEBI and 1,730 PubChem

Compounds small molecule entries.

Although a promising database to be watched in the coming years, this re-

source still is small in comparison to the other major metabolism projects, which

is partly reflected in the amount of organisms and small molecules referenced.

WikiPathways has the tremendous value though to be a potential repository of

many new pathways that might not be present in other resources, as it operates

by manual input of pathways. Still, given its size, it is probably not worth to

integrate it in the current project.

2.3.1.8 Rhea

Rhea[3] is an organism-independent database of biochemical reactions. The

database is derived from an earlier resource, the Integrated relational Enzyme

Database (IntEnz)[43], which is the source of the Swiss Institute of Bioinformat-

1Simple Interaction Format
2The two main articles considered, the resource has an average of 20 citations per year
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ics (SIB) ENZYME database[5]. The ENZYME database reflects the decisions

of the Nomenclature Commission of the International Union of Biochemistry and

Molecular Biology (NC-IUBMB), which are the definitions of EC Numbers and

the reactions they represent.

Rhea has most of its molecules referenced to the ChEBI database, providing

high quality chemical structures for more than 17,000 reactions as of December

2011. These reactions are cross referenced to 3,890 different small molecules

from ChEBI, and nearly 140,000 different proteins present in UniProt. Reactions

are also cross referenced against major metabolism resources such as KEGG,

MetaCyc, and Reactome, among others.

Rhea contains reactions standardized to pH 7.4, their EC number assignments,

and the small molecules that participate in the reaction. Rhea does not contain

pathways information. The resource is manually curated by researchers at the

Swiss Institute of Bioinformatics (SIB), who also add new reactions to Rhea. The

European Bioinformatics Institute (EBI) develops the software layer of Rhea.

2.3.1.9 The Human Metabolome Database, HMDB

Researchers at the Wishart Group in Alberta, Canada, manually compiled the

Human Metabolome Database (HMDB)[166], comprising ∼8,000 small molecules

with evidence to be present in the human body. They derived this resource mostly

from peer-reviewed literature results, text books and experimental results.

The authors manually annotated the molecules with several fields regarding

the biological source of the samples and with a detailed description of context and

role of the chemical entity within the Human body. There is no other resource

that matches the HMDB both in its coverage of the Human Metabolome, or in

its level of annotation.

Given that one of my main aims is to build a resource in the most automatic

possible way, so that it can be replicated to many organisms, we need a validation

data set, a gold standard. Throughout this work I explore different methods of

generating collections of metabolites in an organism specific manner. For these

reasons, and for the quality of the resource, is that I use HMDB as the gold

standard for a single-species Metabolome. All the results from our methods are
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at some point compared against this resource.

2.3.2 Schema decision

I explored a number of alternative database schemas for housing metabolomes

with adequate connection to their biological context. A first need is to be able

to store Enzymes, Reactions and their participants, as metabolism is deemed as

an important connection between small molecules and organisms. It also needs

to be flexible enough to house other relationships, like evidence that a protein or

a small molecule are known to occur in certain cell types and/or tissues. It is

important as well to be able to store sets of data belonging to different organisms,

having a way to separate them, and different sources, even for the same organism.

From the technical perspective, such a resource should have its storage back-

end in a relational database engine, such as MySQL, PostgreSQL or Oracle. It

should have a persistence layer1 based on a technology such as Hibernate or

equivalent, in a language such as Java, Perl, Python or C++. Preferably in

Java, which allows a better integration with cheminformatics tools such as the

Chemistry Development Kit (CDK) [141] or Chemaxon’s JChem library[22], re-

quired for handling small molecule structures, and bioinformatics packages like

BioJava[56], SBML[59] and MIRIAM[70], that aid respectively in sequence ma-

nipulation, metabolic model imports/exports, and external database identifiers

consolidation. It should also be a project relatively tested by the community and

with some level of visibility, for instance a reasonable number of citations or an

active user community.

Most of the Warehousing solutions for bioinformatics before 2009 tend to focus

on genomics and proteomics, giving little attention to metabolism, and virtually

none to chemical entities participating in metabolism.

One of the first widely used warehouse systems was FlyMine[94], developed

within the D. melanogaster community to house data from this model organism

and other insects. This initiative focused on genomics and proteomics data, in-

cluding sequence annotations, microarray results, protein-protein interaction net-

1A persistence layer, in this context, refers to a software layer that encapsulates the in-
teraction with the database for client programs, exposing functionality through an application
programming interface, API
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works, diseases information and transcriptional modules. FlyMine did not include

particular information about enzyme catalyzed reactions nor small molecules.

Another warehousing system that had attention from the community was

Atlas[134], which had a much broader scope in terms of organisms. Like FlyMine,

it was mainly focused on genomic and proteomic data. It had a particular focus on

protein-protein interactions. Atlas again had no explicit support for biochemical

reactions nor small molecules.

The GMOD bioinformatics community released in 2007 the CHADO[106]

warehouse system. As most of the other systems, focused in genome annota-

tion and features data. This system had the particularity of handling data in

an ontology oriented fashion, which should allow it to handle new types of data

without major schema modifications. This has not been translated, to the best

of my knowledge, into a support for metabolism related data.

The BNDB[87], the Biochemical Network Database, was one of the first ware-

house solutions to consider metabolic pathways data as well as genomic and pro-

teomic data. It also had a strong focus on protein - protein interaction networks

and general network visualization. Its main persistence layer access was written

in C++, although a Java API is also available, but apparently only for its visu-

alization package. Unfortunately, BNDB was scarcely tested by the community,

averaging less than two citations per year since its release1 and the release history

of the software shows little activity for the past years.

ONDEX[84] is a graph-based visualization analysis system which has a back-

end that in many respects resembles the database warehouse concept that this

work requires. Much more oriented to networks than all the previous efforts,

this system apparently manages to integrate metabolic pathways data with other

network types and expression results, with the aim of visualizing it in an inte-

grated manner. Unfortunately, there is little technical documentation regarding

the database back end and the persistence layer API that would allow to make a

reasonable judgement regarding how much of our problem it can cover.

BioWarehouse[89] is a bioinformatics warehouse that focuses primarily on

pathway-centric resources, focusing on integrating resources such as KEGG or

BioCyc. As most of the mentioned resources, BioWarehouse needs to be deployed

1According to Thompson-Reuter’s Web of Knowledge Citation report for its main paper
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on a RDBMS system, in this case either MySQL or Oracle database engines. It

has explicit support for pathways, reactions, enzymes and chemical entities. It

has loaders for various databases, including KEGG, BioCyc databases and NCBI

Taxonomy, allowing an adequate organization of sets of data by organisms. It has

a very good visibility1, nearly as good as FlyMine, and the project has been ac-

tively developed since 20062. The persistence layer, although available in Java and

a few other languages, is not based in hibernate or other suitable standard, but

can be reasonably extended as it is open source and well documented. Further-

more, BioWarehouse is released by a group with wide experience in metabolism

resources, Peter Karp’s group at SRI, the same group responsible for Pathway

Tools and the BioCyc/MetaCyc suite of databases.

For the reasons and characteristics discussed for each of these warehouse alter-

natives, I decided to use BioWarehouse as our central repository for metabolome

collections.

2.3.3 BioWarehouse Schema Structure

The BioWarehouse database schema is relatively large, and exploring it com-

pletely would go beyond the needs of the chapter. For this reason, Figure 2.2

presents the main aspects of the BioWarehouse database schema that are useful

to this work, explained in the following paragraphs.

BioWarehouse organizes different sources of data through the DataSet table.

A DataSet can hold multi organism or single organism sets of data, depending

on the loading process. Each source of data is uniquely identified with a DataSet

WID (WID stands for Warehouse Identifier), which is a numeric index.

“Object” tables hold different biological and meta data objects, such as pro-

teins, chemicals or reactions. As each object has different attributes, there is one

table per each type of “object” represented. All the “object” tables reference each

of its entries to a DataSet (so there is a non-identifying one to many relation go-

ing from DataSet table to each object table, connecting the WID of the DataSet

1According to Web Of Knowledge, BioWarehouse has an average of nearly 7 citations per
year, the highest we found among these type of resources after FlyMine, with more than 8.

2Development seems to be interrupted in terms of funding by the end of 2010, reaching
version 4.6.1
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with the DataSetWID field of each object), as each instance in an object table

comes from a source data. Elements in an “object” table are uniquely identified

as well by a WID (WIDs are unique database wide, so no two objects, regardless

of the source have the same WID). Any table that has WID and DataSetWID

fields is an “object” table. Besides the object tables Protein, Reaction, Chemi-

cal and ChemicalStructure, which are self explanatory, other relevant objects are

EnzymaticReaction, BioSource and Taxon. EnzymaticReaction associates Reac-

tion objects and Protein objects (normally the catalyzing enzyme) to represent

catalyzed biochemical reactions. BioSource table stores biological containment

units (tissues, cell types, organisms, diseased cell types, cellular locations, etc).

The Taxon table stores organisms taxonomic organization, which is essentially

derived from NCBI Taxonomy.

A different type of table are the linking tables, which store relations between

objects or additional vectors of attributes for objects. An example of this is the

very important CrossReference table, which links to any “object” table through

its OtherWID field. This table stores, for instance, references to ChEBI or Pub-

Chem Compounds identifiers (among others) for elements of the Chemical table

or UniProt identifiers for elements of the Protein table. The CrossReference can

also bind this external identifier to its object in the warehouse if it is present. For

instance, one could load the entire UniProt database, then a protein for a set in

KEGG that has a UniProt identifier could be linked through the CrossReference

table to the actual protein object in Protein table from UniProt that is loaded

in the warehouse. Other examples of linking tables are DBID, which stores the

identifier of the object from its source database (like the KEGG COMPOUND

identifier, C00005, for NADPH in the KEGG DatSet), or the SynonymTable,

which stores name synonyms for objects of the different types.

The following section details which tables of the schema were part of the

improvements I did.

2.3.3.1 Improvements and modifications to BioWarehouse

BioWarehouse is accompanied by a number of parsers for different knowledge

bases (KEGG ligand and the BioCyc collections among others). The aim of these
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2. METABOLISM DATABASE INTEGRATION

parsers is much wider than biochemical reactions and small molecules, leaving

behind some Chemical detail that falls out of the scope of the resource. For this

reason, I improved some of these parsers to include additional features of interest

that were not considered by the original authors. For some other databases, such

as the HMDB, which was loaded for results validation, or BRENDA, I wrote

parsers in Java, as none were available.

The schema lacked some attributes that were desirable for storing metabolo-

mes:

Chemical Structures An additional table added to store the molecules as com-

plete MDL MOL V2000 representations. All the databases to be unified

export chemical structures in this format. This enables a quick loading

into CDK molecule objects, for any necessary cheminformatics computa-

tion. The MDL MOL V2000 data were saved in the database as it came

from different database sources. In this way, parsing errors only influence

computations (such as molecular formula, descriptors, mass, protonation

states, etc.), but the stored structure remains as obtained from the source

and calculations can be redone if parsing errors1 are detected. I added

a many-to-many relation table to link the entry in Chemical table with

the entry in ChemicalStructure table. A many to many relation gives the

flexibility of having multiple Chemical table entries pointing to the same

molecule and also to store standardized versions of molecules at particular

pH values.

InChI The original schema did not consider the use of InChI and InChI Keys,

which are useful for searching for molecules in a text-only manner. InChI

has the advantage, compared to other forms of one line molecule serializa-

tions, that there is only one implementation of the algorithm to calculate

them. In other cases, such as SMILES, the output might depend on the

implementation used. The only possible variation of InChIs is on the ver-

sion of the software used and the parameters. I added InChI, InChI Keys

1During the course of the work at least 3 bugs were submitted to the CDK project about
parsing errors of the MDL MOL V2000 reader module.
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and the AuxInfo string fields to the original table Chemical and to Chemi-

calStructure.

PerSpecies tables For multi organism data sets like KEGG or Rhea, we need

the ability to retrieve all the reactions and small molecules for a particu-

lar organism. Depending on how this different data sources are built by

their original authors, the steps required to enumerate those reactions and

chemical entities for a particular organism will vary. These tables (Enzy-

maticReactionPerSpecies, ReactionPerSpecies, ChemicalPerSpecies) allow

to store the relations once computed, between those objects and the organ-

ism, simplifying and standardizing any later queries per organism.

Transformed Gibbs Energy of Reaction In the Reaction table, I add a field

to store the Standard Transformed Gibbs energy of reaction. This is suitable

for the thermodynamic analysis of a set of biochemical reactions, as it con-

siders for the calculation of the energy the effect of pH and ionic strength.

Gibbs energy calculations that do not incorporate these effects produce an

energy value that is correct for zero ionic strength aqueous solutions, but

they do not reflect the true state of reactions within the cell.

Text mining co-occurrences In the later chapter of text mining, we shall add

a data set of small molecules that are retrieved for the organisms of in-

terest. This will include relations to containers (cell types and/or tissues),

represented as BioSources within BioWarehouse, and have associated scores.

This could not be stored in the original schema.

Table 2.1 shows data sets I loaded into this modified schema, and after the

considerations presented in 2.3.1.

For each type of data source, in this case depending more on the database

type than on the organism variety, different strategies had to be used and different

shortcomings solved. I inspect the different particularities of each type of data

set in the following part.
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2. METABOLISM DATABASE INTEGRATION

Data set Version URL Comment

NCBI Taxonomy 2009-04 www.ncbi.nlm.nih.gov/Taxonomy
KEGG 57 www.genome.jp/kegg LIGAND
HumanCyc 15 www.biocyc.org
EcoCyc 15 www.biocyc.org
MouseCyc 1.36 www.biocyc.org
YeastCyc 14 www.biocyc.org
BRENDA Human 2010-02 www.brenda-enzymes.org
BRENDA E.coli 2010-02 www.brenda-enzymes.org
BRENDA Mouse 2010-02 www.brenda-enzymes.org
BRENDA Yeast 2010-02 www.brenda-enzymes.org
HMDB 2.5 www.hmdb.ca

Table 2.1: Data sets loaded into BioWarehouse.

2.3.4 Database loading

2.3.4.1 KEGG Data set

The included BioWarehouse loader for KEGG parsed and loaded KEGG ligand

v57, after minor fixes to its source code, which only supported slightly older re-

leases of KEGG. Considered data includes all the chemical entities present in

KEGG COMPOUND as well as those in DRUG and/or GLYCAN that partici-

pated in reactions.

I linked each organism in KEGG, represented in BioWarehouse as entries

in the BioSource table, to the appropriate NCBI Taxonomy species, which are

represented as entries of the table Taxon. At the same time, I linked each protein

in KEGG to the its organism BioSource table entry. Proteins relate to biochemical

reactions in BioWarehouse through the EnzymaticReaction table. Through this

chain of links, one can obtain most of the reactions (and small molecules) that

should be part of the metabolism of a particular organism stored in KEGG. This

process accounts for all the reactions and small molecules for which KEGG has

direct citations or experimental evidence that links them to a protein (an enzyme

normally).

In the case of KEGG, reactions can be additionally assigned to enzymes

through orthology families. An orthology or protein family gathers together pro-

teins from diverse organisms that show a certain degree of conservation at the
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level of sequence and functional domains, given certain constraints (for particular

implementations of the orthology concept see [67; 71; 149]). For enzymes, these

families will have assigned an EC number (associated to a reaction), because there

is evidence of this for some members of the family. For enzymes that do not have

a direct assignment of a reaction due to lack of experimental evidence, KEGG

assigns a reaction through orthology families. Using orthology families is easy to

make incorrect assignments of EC numbers to an organism. For instance, for H.

sapiens as many as a hundred EC numbers could be assigned that do not cor-

respond to the mammalian taxonomic range, so these should always be checked

against a reference resource such as UniProt, to ensure that the EC number has

been annotated to a protein of the organism. I managed to increase in more than

∼700 metabolites the KEGG H. sapiens collection of small molecules through

orthology, checking that the EC number and orthology assigned to the enzymatic

reaction exist in H. sapiens .

Multi organisms data sets require special handling of spontaneous reactions

when assembling single organisms metabolomes. Spontaneous reactions in the

database cannot be assigned directly to the organism of interest, as they might

be in the data set due to other organisms. To add the adequate spontaneous

reactions, and avoid adding chemical entities for which there is no real evidence,

I only add those spontaneous reactions where all participating chemical entities

of one of the sides of the reaction has been previously identified as part of the

organism (because of direct evidence or orthology). To address the unlikely case

of consecutive spontaneous reactions, I repeated this process until no further

spontaneous reaction is added, although for the data sets tried so far, I have not

found consecutive spontaneous reactions.

I store all the identifiers for Reactions, Enzymatic reactions (which link reac-

tions and enzymes), and participating small molecules assigned to an organism

of interest by any of the mentioned methods in the PerSpecie set of tables, for

easy retrieval and standardization to other data sets.
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2.3.4.2 BioCyc organisms databases

As mentioned previously, I added to the warehouse the BioCyc collections for

H. sapiens (HumanCyc), E. coli (EcoCyc), M. musculus (MouseCyc), and S.

cerevisiae (YeastCyc). Differently to KEGG, each of these are separate data

sets, simplifying the treatment of them at the organism level. I linked each data

set to its NCBI Taxonomy identifier for the adequate organism.

For BioCyc databases, the chemical structure of the participating chemical

entities is not part of the regular export files. I wrote Lisp scripts that interacted

with Pathway Tools1 through its API to extract the chemical structures in MDL

MOL V2000 file format. The same was done for generic molecules present in the

reactions, which in the normal exported data files are not registered as regular

chemical entities.

2.3.4.3 BRENDA organisms databases

The BRENDA database had no parser available to be uploaded to BioWare-

house. I wrote a parser that uploads all enzymes, reactions, small molecules and

tissues/cell types occurring for a specified organism in the BRENDA data file.

Figure 2.3 shows the execution order that the parser follows.

BRENDA is the only one of these resources that adds information about lo-

calization within the organism, mostly organs, tissues and cell types. I normalize2

the localization vocabulary using the BRENDA Tissue Ontology (BTO) [49].

Free text tissues and cell types names present in the BRENDA data file many

times had slight differences to the names in the ontology, so I used string nor-

malization and Levenstein distances to compare these and make assignments to

elements of the ontology. The program accepted automatically matches with

dLevenstein = 0, and left results with 0 < dLevenstein < 10 for later manual revision.

A file stores the outcome of the manual curation, which the parser consults when

running into those cases, so that parsing and loading goes uninterrupted.

1Pathway Tools is the software used by SRI to create the different BioCyc databases, start-
ing from genome sequences of the organism and comparing against the data in the multi or-
ganism MetaCyc database

2In the context of information retrieval and text mining, normalizing means to associate a
noun or entity in the text to an identifier of a database or controlled vocabulary.
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Figure 2.3: For loading BRENDA organism specific databases, the loader written
executes the pipeline shown. The main object in BRENDA are enzymes, hence
the pipeline starts by parsing the reaction associated to each enzyme (codified by
the EC Number), as can be seen in the left block. The central block shows the
detailed process for loading small molecules, obtained from the reactions. The
rightmost block shows the process that the loader follows for the proteins. NSP
Reactions stands for natural substrate product reactions, as opposed to artificial
catalysis achieved using the enzyme with exogenous molecules.
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For some cases, the process could not map the tissues and cell types present in

the BRENDA data file to elements in BRENDA Tissue Ontology. The mapping

process relied on the Ontology LookUp Service (OLS) [20], which allowed to easily

switch the target ontology, enabling to fall into other ontologies dealing with

tissues such as the Experimental Factor Ontology (EFO)[97] among others.

Chemical structures, as MDL MOL files or any other format, were not avail-

able directly for download from BRENDA, so a Web Bot was configured as de-

scribed in [24] to retrieve MDL MOL files for all the structures in BRENDA. The

loader stores chemical structures as obtained from BRENDA and standardized

to pH 7.

2.3.4.4 HMDB: Human Metabolome Database

There was no parser available for the HMDB, so I wrote a parser that uploads all

the small molecules, tissues and cell types present in the HMDB metabo cards

file, which is the main downloadable file from HMDB, and in the SDF chemical

structure files.

HMDB links small molecules directly to tissues and cell types, in contrast to

BRENDA, which links proteins to these containments. The loader produces links

between the Chemical table and the BioSource table to account for this. As with

BRENDA, tissues and cell types in HMDB are normalized through the BRENDA

Tissue Ontology.

2.3.4.5 General post-processing of data sets

Loaded data sets contained various errors like missing references or duplicated

Chemical entries (specially KEGG), which I corrected through Java-based post

processors. These post processors, or helpers as I sometimes refer to them, also

handled the upload of structures (MDL MOL files) into the database, the deriva-

tion of the major microspecies at pH 7 and the computation of the following

properties and identifiers:

Major microspecies pH 7: Using Chemaxon JChem, this module calculates

the most abundant microspecies at pH 7 for each existing structure, storing
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it in the ChemicalStructure table and linking it to the original chemical

entity in the Chemical table.

CrossReference normalizer: This module normalizes cross references to ex-

ternal databases, so that the name of the external resource and the format

of the accession or identifier is the same across different data sets. For this

standardization, I used the MIRIAM catalogue of databases and resources,

as well as synonyms added manually.

Chemical cross references: This module enriches chemical cross references to

other databases through existing names, synonyms and existing cross refer-

ences. The helper searches these against previously prepared Lucene indexes

for ChEBI, PubChem Compounds (a sub set of it), and KEGG Compounds.

When using names and synonyms, the tool only accepts the results if they

are exact and unique, so if two different ChEBI IDs are retrieved after

searching for a name, these identifiers are neglected. All used IDs are pri-

mary identifiers. The tool checks every new cross reference to have the

same connectivity than the molecule to be annotated in the database, un-

less that the molecule has no structure. Generally speaking, around 5% of

the assignments by name get rejected due to differences in connectivity.

Redirection to primary identifiers: For ChEBI and PubChem Compounds,

there are many entries that are equivalent within the databases even though

they have different ID numbers. A normal ID number comparison would

yield these entries as different. To avoid this, the tool replaces all equivalent

identifiers by the primary identifier in the case of ChEBI, or the parent CID

in the case of PubChem Compounds.

Molecular formula: This module calculates the empirical formula using the

CDK, after transforming implicit to explicit hydrogens, both for the original

structure and its major micro species1 at pH 7.

Exact mass: The module computes the mass of the most abundant isotopic

1The major micro specie at a particular pH is the predominant structure, in terms of
protonation, at that pH
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isomer through the CDK, after transforming implicit to explicit hydrogens,

both for the original structure and its major micro species at pH 7.

Natural mass: The module computes the average mass, weighted by the abun-

dances of the different isotopic forms, calculated with the CDK.

InChI: This module calculates Standard InChI string, Standard InChI key and

AuxInfo using IUPAC InChI 1.03 through the CDK.

SMILES: The module computes the “simplified molecular input line entry spec-

ification” using the ChemAxon’s JChem SMILES generator1.

Gibbs Energy: The Standard Transformed Gibbs Energy of reaction is calcu-

lated for each reaction, through the calculation of Gibbs energies of forma-

tion based on group contribution (Section 4.1.4.1 on Chapter 4).

For all the operations that required the chemical structure of the molecules,

the tool filters the structures to get rid of smaller disconnected components that

can be sometimes found with the structures (like metal ions or salts components

for instance). All SMILES, InChIs, masses and formulas hence reflect the largest

connected component appearing on each molecule structure. The MDL MOL

V2000 structures stored in the database contains all the data, the program applies

the filtering only when executing calculations. This is specially important for the

later steps of molecule comparison towards a unified data set.

2.3.5 Overview of loaded data sets after post processing

With the construction of a database of metabolomes being the main aim of this

work, the most important objects of the loaded data sets should be the Chemical

structures and their meta data. Figure 2.4 shows the amount of small molecules

within each data set, where chemical entities are separated into the three men-

tioned categories: with structures, with generic structures and chemical entries

with no structure. The number of different structures tends to be similar be-

tween data sources within a certain organism, with some exceptions. BioCyc

1Originally I used the CDK SMILES generator, however I found a high amount of incorrectly
generated SMILES, when comparing the same molecules from different data sources.

40



database EcoCyc is probably the most intensively curated metabolism resource

for E. coli , this generates the higher number of different small molecules with

structure compared to BRENDA or KEGG. In the other cases, KEGG has a

slightly higher amount of molecules, backing the general impression that it is

the widest metabolism resource, although it achieves this by reactions and small

molecules added through the KEGG orthology. The graph also shows the num-

ber of molecules for the HMDB database, our gold standard collection of small

molecules for H. sapiens . The HMDB molecule count goes beyond the limit of

the chart, as it has ∼8,000 small molecules, which is a big difference compared to

regular metabolism resources for H. sapiens , with normally no more than 1,500

small molecules. One of the technical challenges of this thesis is to be able to

generate organism specific collections with sizes that lie in between the existing

metabolism resources and metabolome databases like HMDB.

One would expect that two model mammal organisms such as H. sapiens and

M. musculus would show similar number of chemical structures, the differences

shown however are mostly due to the level of curation that the related databases

receive.

Given the difficulty of comparing small molecules, it is useful to have as many

cross references to other small molecules databases as possible. Figure 2.5 shows

the number of cross references to KEGG, ChEBI and PubChem Compounds for

all the chemical entities on each of the loaded data sets.

At this point we can also compare the mass distributions of small molecules

for the different organisms and data sources. Figure 2.6 shows the exact mass

distribution for each data set by organism. The exact mass is calculated using the

most abundant isotope for each element in the molecule. As it would be expected,

the aggregation of metabolites masses tend to be relatively similar from data set to

data set within organism, but also, relatively similar from organism to organism.

Only the mass distribution of HMDB strikes as different to the other H. sapiens

databases. I inspected the small molecules at peaks from 700 to 900 Daltons and

at 1,500 Daltons, where HMDB mostly differs, and found that it is due to the

high number of Lipid species included in HMDB. Details on the numbers and
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Small molecules per type
and data set
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Figure 2.4: Summary of the number of molecules per data set loaded, dissected
by organism. The bars for complete structure and generic structures represent
counts of different structures (different InChI and different SMILES respectively),
where the bars for no structure are just different entries in the database.
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Chemicals with CrossReference per organism
and data set
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Figure 2.5: Summary of the number of molecules with cross references per data
set loaded, dissected by organism. This only considers cross references to ChEBI,
PubChem Compounds or KEGG. The counts shown are after applying the mod-
ules for adding cross references and normalizing them in format and identifier
(primary/secondary). The text within the bars indicates what % of the total
number of chemical entries for the organism/data source combination has a cross-
reference.
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types of Lipids are given in Figure 2.28.

Figure 2.6 also shows – for the four organisms – that the masses of molecules

distribute in a common first peak right below the 200 Daltons and then in a

second, much smaller peak, close to 800 Daltons. This behaviour seems very

interesting, so I analyze these peaks compositions per organism later on, once

organisms are unified.

Another important aspect of metabolism resources is the biological context

they provide, mostly through reactions and enzymes. Figure 2.7 shows the num-

ber of reactions for each organism and data source. I trust reactions to be different

within each data source, so each entry is counted. The only requirement is that

the reaction involves at least one chemical entry (regardless of whether it has a

structure, a partial structure or no structure at all). I separate reactions in two

groups, the first one with a direct assignment of a protein to catalyze the reaction

in the database, or “catalyzed”, and a second one with reactions with no protein

assignment to catalyze it, or “not catalyzed”. The fact that a reaction appears

in a database without assigned enzyme does not mean necessarily the reaction is

spontaneous, but most of the time the resource does not have evidence to sup-

port the assignment of an enzyme to that reaction in that organism. It is true

that spontaneous reactions fall in this category, but they represent only a minor

fraction (overall spontaneous reaction counts can be seen in page 18).

As with the count of chemical entities, the number of reactions is similar across

different databases for a given organism. KEGG tends to have fewer “catalyzed”

reactions but normally gets to the same numbers as BioCyc or BRENDA by

additional “not catalyzed” reactions. In the case of KEGG these are derived

through the orthology families as explained in section 2.3.4.1. In the case of

BioCyc databases, this happens mostly due to the assignment of pathways of the

adequate taxonomic range when most, but not all, the enzymes are annotated in

the organism.

As we mentioned before, enzymatic reactions are normally classified through

the Enzyme Comission number, or EC number. This classification is widely used

as well for assigning reactions to the enzymes of newly sequenced genomes, once
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Mass distributions per organism
and data set
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Figure 2.6: Distribution of chemical entities mass per data set loaded, dissected
by organism. Density curves always have equal areas, so overall size of each data
set is not reflected, the aim of the plot is to compare the positions of the peaks and
the distributions of the data set, normalized by size. The mass corresponds to the
exact mass, calculated from the most abundant isotopes. Metabolites in all the
organisms align reasonably well in terms of mass distribution. The distribution for
HMDB is remarkably different to the other databases for H. sapiens metabolism.
The lower peak between 100 and 200 Daltons for HMDB and the higher peak
at 700 to 900 and at 1,500 Daltons is explained by the inclusion of thousands of
Lipids in HMDB that are not present in the other databases.
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Reactions per organism
and data set
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Figure 2.7: Summary of the number of reactions per data set loaded, dissected
by organism. The total number of reactions is the sum of reactions with an
assigned enzyme catalyst and reactions without an assigned enzyme catalyst.
The number of reactions without an enzyme catalyst assigned does not mean
that the organism has that many spontaneous reactions, but that the data set
lacks evidence to make some of the reaction-enzyme assignments. In the case of
KEGG, many catalyst-to-reaction assignments are done indirectly through the
orthology groups, which explains why this database has so many more reactions
without an assigned enzyme. In the case of BRENDA, as the resource focuses on
enzymes directly, it does not have reactions without a catalyst assigned.

46



these enzymes have been annotated with EC numbers. The number of different

EC numbers annotated in a genome will normally tell us something about the

chemical diversity of the metabolism of that organism, and hence we can use it

as a non-quantitative predictor of the organisms metabolome. Figure 2.8 shows

the number of different EC numbers according to organism and source data set.

Only looking at the amount of different EC numbers per organism given by the

different databases, it might be tempting to conclude that the databases have

essentially the same reaction content. However, upon closer inspection of the

data, some differences show up that the following sections reveal.
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Figure 2.8: Summary of the number of different EC numbers per data set loaded,
dissected by organism. Total number of EC numbers is the sum of officially
assigned EC numbers and proposed EC numbers.

The number of proteins that each data set is linking against small molecules

is also relevant, as proteins are a gateway for additional contextual knowledge.

Figure 2.9 shows the count of proteins available per data set, both as a count

of entries and as a count of unique UniProt identifiers, which is the most useful
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representation of proteins to retrieve localization information from many other

resources. The different count of proteins for each organism and data source is

produced by the fact the some resources, like BioCyc, index the full proteome of

the organism, where as others like BRENDA only include enzymes. Also some

issues of data completeness play against some databases, specially KEGG. In the

case of E. coli an inconsistency of data in KEGG release v57 makes the auto-

matic mapping of proteins impossible. KEGG release v57 for E. coli points to

the taxonomy identifier of the E. coli K-12 substrain MG1655, NCBI Taxon-

omy TaxID 511145, however previously it used to point towards E. coli K-12,

NCBI Taxonomy TaxID 83333. UniProt indexes this bacterium proteins under

NCBI Taxonomy TaxID 83333, and hence probably in the automatic generation

of release files at KEGG all UniProt identifiers linked were lost. For generating

the enzymatic reactions, reactions and small molecules for E. coli in KEGG the

PerSpecies helper – explained in section 2.3.4.5 – uses the KEGG orthology in-

formation deposited in UniProt to map up to 2,589 E. coli proteins to known

KEGG reactions. Similar thing happens with S. cerevisiae in KEGG, for which

approximately 1,333 proteins are potentially mapped to KEGG reactions. This

illustrates one of the many difficulties that integrating multiple databases for

multiple organisms can have, and that many times can go unnoticed if they only

happen in a few cases.

Through proteins, we can relate small molecules to different biological con-

tainers: tissues, cell types and even cellular organelles. BRENDA is the only

metabolic database that provides this kind of data out of the three major re-

sources. BRENDA provides this information for proteins, not for small molecules

directly. The HMDB has assignments of small molecules to some biologcal con-

tainers as well. These data are only useful if they are indexed by a controlled

vocabulary or even better, a proper ontology. As I mentioned before, during

the loading of both BRENDA and HMDB, I normalized the biological containers

present through the BRENDA Tissue Ontology and the Experimental Factor On-

tology ontologies among others. Figure 2.10 shows an overview of the amount of

different tissues and cell types linked by BRENDA and HMDB, and the number
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Figure 2.9: Summary of number of proteins per data set loaded, dissected by
organism. Number of proteins linked vary between data sets within an organism
due to the focus of the data source: BioCyc databases tend to include most
of the proteome of the organism whereas BRENDA includes only those that are
enzymes. An adequate cross reference to UniProt is very important, as this allows
to obtain localization data through proteins.
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Figure 2.10: Summary of number of tissues/cell types and their mappings to
ontologies per data set loaded, dissected by organism. Data of tissue localization
is of interest for multi cellular organisms mainly, so we leave out E. coli and
S. cerevisiae (although for unicellular organisms tissues and cell types can be
analogous to media types or host cells). The HMDB tends to make use of a much
smaller and general set of tissues and cell types, but makes direct assignments
of small molecules to them. The data from BRENDA is much richer given the
number of individual protein studies and high-throughput expression studies.
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of links to ontology terms.

In general both the numbers of reactions and chemical entries suggest that

the three main metabolism resources should have equivalent collections of small

molecules for each organism. However, to really assess this, a proper molecule

comparison is required. In general, comparisons existing in the literature tend

to show very low overlaps between the small molecules in one resource and the

other for the same organism, but much of this is probably due to the technical

challenge of the comparison rather that the collections being so different.

2.3.6 Comparing small molecules from one database to

another

Among different biochemical entities (genes, proteins, etc.), it has been recognized

that the comparison of small molecules between different data sources is partic-

ularly difficult [92] due to stereochemistry, tautomerism, different protonation,

and errors present in some structures. In essence, small molecule comparison is a

graph isomorphism problem, which is normally very expensive to solve and scales

non-polynomially1. Through isomorphism, two molecules are said to be the same

if there is a complete bijection between all their bonds. A bijection between any

pair of bonds – one bond belonging to each molecule compared – is only possible

if they both connect the same atoms in their respective molecules. Because of the

high computational cost of this problem, a number of alternatives have been gen-

erated during the past decades to compare chemical molecule’s representations

in the computer.

A common approach is to calculate fingerprints for a set of molecules and

then compare the molecules through their fingerprints. Fingerprints attempt to

capture a defined finite set of structural/physicochemical properties or character-

istics of molecules, but they are not able to capture all the structural information.

However, for two molecules to be the same, necessarily, their fingerprints (that

are a simplified representation of them) need to be the same. Hence, when we

want to find the unique subset of a set of molecules, we do not need to compute

1That a problem scales non-polynomially means that the execution time of known algo-
rithms to solve it increase very quickly with the size of the input.
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the graph isomorphism between every pair of molecules, but only for those pairs

that have equal fingerprints.

A different approach is the calculation of line notation representations of the

chemical graph, converting the chemical graph into a variable length ASCII string.

The idea in this case is to have an algorithm that is able to traverse molecule

graphs in a canonical way (within that algorithm at least) and then generate

an ASCII string representation of that traversal, considering of course atoms

symbols, bond types, charges, etc. Examples of this are SMARTS, SMILES

and InChI among others. Different to the fixed size fingerprints, this type of

representation aims to capture all the structural information of a chemical graph

to a certain level of detail, and some of the quoted examples are often used for

direct comparison of small molecules.

SMILES, which stands for “simplified molecular input line entry specifica-

tion”, was developed originally in the late 80’s by Arthur and David Weininger

[164]. During the past decades it has been extended and implemented in a number

of cheminformatics packages, being widely used by the research and commercial

communities. Probably due to historical reasons, maybe because the open source

movement was not so strong by the early 90’s, different closed source implemen-

tations of SMILES proliferated, giving rise to its main problem today: SMILES

is highly implementation dependent, equal molecules can have different SMILES

representation if they are computed by different software packages. However, if

one can make sure that SMILES are always calculated with the same implementa-

tion, then it should be safe to compare molecules. Again the problem of multiple

implementations means as well that any bugs found in one of them is probably

still present in the others, which also makes SMILES slightly less reliable than

other options. On the other hand, one of the nice features about SMILES is that

it supports generic structures.

The InChI identifier [140], which stands for “International Chemical Iden-

tificator”, is a more modern line notation representation developed by IUPAC

and NIST during 2000-2005, after that mainly by IUPAC, and from 2010 also

supported by the InChI Trust. Differently to SMILES, InChI has always been

open source, which has allowed the entire community to share a single implemen-

tation. This makes InChI strings a much more stable way of comparing small
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molecules across different databases. Initial versions of InChI provided a number

of options regarding how to interpret various aspects of a molecule’s representa-

tion (whether to consider or neglect stereo chemistry, mobile hydrogens, to add

protons according to present valencies, etc.). By request of the community, later

versions of InChI (starting from 1.02) introduced the Standard InChI, which is

an InChI string generated with certain default options that cannot be modified,

making easier the comparison of InChI strings across databases.

When comparing small molecules, there are an additional number of issues

that arise from the chemistry being represented. A first problem is generated

by protons: different databases have sometimes their molecules at different pro-

tonation states. Many times as well, they represent the molecule by a different

tautomeric variant, and often stereo chemistry is far from being reliable or com-

parable [123]. These issues affect the generated SMILES and InChIs depending

on the way they are generated, specially different protonation states and different

tautomer forms.

2.3.6.1 Method for comparing small molecules from different databases

Molecules contained in metabolism databases like BRENDA, KEGG and BioCyc,

among others, can be operationally separated in four types according to the level

of data they contain:

Complete Structure These are entries in the database, that represent small

molecules, for which the complete chemical structure is available (normally

as an MDL MOL V2000 file). This excludes entries that have molecules

with undefined generic groups (-R groups).

Generic Structure These entries, that represent a small molecule, have a chem-

ical structure available (normally in the form of a MDL MOL V2000 file)

that is only partially specified, as they contain a variable regions. This

kind of structures are normally known as generic structures. These generic

structures represent “classes” of molecules like “alcohols” or “aldehydes”.

Generic structures sometimes fail to describe the richness of the chemical

entity portrayed due to the simplicity of the representation (for instance,

53



2. METABOLISM DATABASE INTEGRATION

restrictions on the type of structures that could replace the variable part

have no way of being represented).

Empty Structures representing small molecules Although most of the en-

tries present in these databases should fall in either of the first two types de-

scribed previously, databases contain some chemical entities with no struc-

ture associated. This can be either product of an error, lack of completeness

or even the explicit decision to avoid using generic structures to represent

certain classes (because of the poor representation they might provide).

Empty Structures representing non-small molecules In many biochemical

reactions there are proteins and other biomolecules that can participate

and are as such included in the databases. Many times the transference

of a database from format to format might loose semantic indications that

those elements are not small molecules.

Given the different richness of these types of entries, they are initially com-

pared separately. In the case of entities with structure, the comparison is done

through Standard InChI strings. In a first approach, I used the JChem pKa plug-

in [22] to standardize all molecules across databases to pH 7, to solve differences in

protonation states, and then compare the molecules across the databases through

Standard InChI key. As mentioned before, the database schema of BioWarehouse

was modified so that it could hold multiple chemical structures (at different pHs)

for a defined chemical entry.

The results of this comparison showed that the protonation standardization

still left many molecules with the same scaffold and cross references in different

protonation states. Molecules from HMDB had particularly many differences in

the hydrogen layer when compared to the other databases, for molecules that a

human curator would consider the same. Overall, I identified nearly 80 cases like

these in the H. sapiens metabolism database comparison. Figure 2.11 shows one

example for reduced riboflavin from KEGG and BioCyc; Figure 2.12 shows the

same for hypotaurine, where actually the molecule coming from BioCyc has also

an error in the sulfur configuration.
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Figure 2.11: Molecules from KEGG and BioCyc for reduced riboflavin, where
the BioCyc version has a nitrogen less protonated, and a corresponding double
bond in the upper ring. Both molecules remained unchanged when protonated to
pH 7 using Chemaxon JChem, so original versions are shown only. The reduced
riboflavin from BRENDA has the same structure as the BioCyc version, hence is
not shown here. Below the names, the Standard InChI hydrogen layers – which
are different – can be seen for both molecules.
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the Standard InChI hydrogen layers – which are different – can be seen for both
molecules.
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I re-tried the same comparison avoiding the last character of the Standard

InChI key, which is reserved for the protonation state, however many incorrect

mismatches still appeared due to the differences in hydrogen distributions, even

after protonation standardization. Even though the last character in the Standard

InChI key is reserved for the protonation state, the attached protons still influence

the computations of other parts of the key (as they modify saturations and other

features for instance).

To overcome the protonation problems, I turned to the complete Standard

InChI string in a second approach. I transformed the Standard InChI taking

advantage of its formation by layers, to remove the effect of protonation. The

transformation implemented replaces the Hydrogen in the empirical formula layer

(second layer of an Standard InChI) with a wildcard recognized by the database

search engine, and deletes all layers appearing after the main connectivity layer

(which only considers “heavy” atoms, that is all the non hydrogens). We call

this an InChI Connectivity, as it represents essentially the connectivity of the

molecule. For instance, for the Standard InChI of Serine:

InChI=1S/C3H7NO3/c4-2(1-5)3(6)7/h2,5H,1,4H2,(H,6,7)

the corresponding InChI Connectivity would be:

InChI=1S/C3%NO3/c4-2(1-5)3(6)7/

Comparisons through the InChI Connectivity tend to be very generous, some-

times grouping stereo isomers or species with different saturation levels, which

one would want separated in a database. This demanded the implementation

of subsequent separation steps, based on meta data (chemical names and cross

references to other databases mostly) and structure, that could process a group

formed by chemicals from different sources but with the same InChI Connectivity,

and separate them in adequate sub groups of small molecules that are equivalent.

So first the method relies on connectivity, and then within each connectivity class,

uses human annotation of the molecules to discriminate which of those chemical

entries should be considered the same.

For chemical entities with generic structures, the InChI string cannot be cal-

culated. Because of this, it is necessary to rely on a second option, compare
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small molecules by SMILES. Identification of small molecules by SMILES is of

lesser quality than by InChI. Even after protonation correction, out of a few thou-

sands equivalence classes of small molecules generated through InChIs, one finds

a few hundred of these classes where the molecules within (which have the same

InChI) have different SMILES (and hence, if classified by SMILES in the first

place, they would have been deemed different when they are not). I computed

SMILES for each molecule as Section 2.3.4.5 explains (protonation to pH 7, de-

tecting aromaticity, removing hydrogens and only keeping the largest connective

component).

I implemented a method to unify different sets of small molecules which makes

use of structure and meta data. The method is illustrated in Figures 2.13, 2.14,

2.16 and 2.17. It is composed of three main steps. For defined structures, the first

step is a very generous way of comparison that builds groups of molecules with

equal connectivities, but that might include molecules that are not exactly equiv-

alent. In a second step the method dissects these groups, using mostly meta data

(cross references, names and synonyms mainly) and occasionally stereo chem-

istry, into sub groups where molecules should be equivalent. The same applies

for generic structures. For molecules with no structure associated, the initial

comparison relies on an index built from the name, which normalizes the words

avoiding trivial differences, as explained in Appendix A. Finally, the method

compares the unified groups formed in the structure and no structure parts using

cross references and normalized name matches, to try to complete groups in the

structure (and generic structure) part with elements that do not have a structure

due to database completeness errors.

Figure 2.13 shows the initial step of group formation, that starts by generating

keys that allow to join the data sets. Completely defined chemical structures use

InChI Connectivity as keys. Generic structures use SMILES as keys. The pipeline

retrieves the unique InChI Connectivity and SMILES from the data sets and

puts them together, generating a set of unique InChI Connectivity and SMILES.

For molecules with no structure, the program generates an index based on our

Chemical name fingerprinter. For H. sapiens , considering KEGG, BioCyc and

BRENDA, there are 1,543 unique InChI Connectivity, 914 unique SMILES (for

generic molecules) and 885 different normalized names for the remaining chemical
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entries that do not have a structure.

Keys Generation Step

Start

BioWarehouse

Input:
Data sets 
and specie

Collect union of
unique InChI connectivities 
for all the given Data Sets

Unique InChI
connectivities

Collect union of
unique SMILES for all the 
given Data Sets (only for 
Chemicals without inchi)

Unique SMILES

Collect union of unique 
Names for all the given Data 

Sets (only for Chemicals 
without InChI and SMILES)

Index names Index 2 Names

Figure 2.13: Initial part of the consolidation algorithm, where keys are generated
to join the chemical entries in the different data sets. The method obtains InChI
connectivities for all the complete molecules in the given data sets and generates
a unique set of InChI connectivities. The same is done with generic molecules,
but the method uses SMILES instead of InChI connectivities. Finally, it retrieves
a list of unique names from the chemical entries in the data sets that do not have
a structure.

Figure 2.14 illustrates the second phase of the consolidation. Using the com-

piled set of keys, the method queries each data set, to obtain the representative

chemical entities in each data set that match each key. All the elements from the

different data sets that match a defined key are left together in one group. For

example, the InChI Connectivity:

58



InChI=1S/C11%N2O4/c12-8(11(16)17)5-10(15)7-3-1-2-4-9(7)13-6-14/

Grouping and Separation Step

Separation step: based on 
structure and meta data.

BioWarehouse

Unique InChI
connectivity or 
SMILES entry

Obtain Chemical entries per 
Data set with matching InChI 

connectivity

Group of 
Chemicals

Final Groups of 
Chemicals

Figure 2.14: Second part of the consolidation algorithm, the method queries each
key generated to the different data sets, to find representatives of that key in each
data set. All the results of a single key accross data sets are considered a Group
of Chemicals (in green). The method then attempts to break up the group into
sub groups if it is appropiate. This separation step relies on structure and meta
data, and can be seen in more detail in Figure 2.16.

used as a key retrieves the results shown in Table 2.2, for the formyl kynurenine

related compounds. In that case, we can see that the group should be latter

split in two groups, the N-Formyl-D and the N-Formyl groups. Even though N-

Formylkynurenine and L-Formylkynurenine, in BioCyc and KEGG respectively,

mean the same molecule, their InChIs have different hydrogen layers (this was

not corrected either by protonation adjustment). Because of this, through an
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ordinary InChI consolidation, they would end as different molecules. Figure 2.15

shows that these molecules have different structures in KEGG and BioCyc both

before and after protonating to pH 7.

DataSet Name InChI (hydrogen layer)

KEGG N-Formyl-D-kynurenine /h1-4,6,8H,5,12H2,(H,13,14)(H,16,17)
BioCyc N-formyl-D-kynurenine /h1-4,6,8H,5,12H2,(H,13,14)(H,16,17)
KEGG L-Formylkynurenine /h1-4,6,8H,5,12H2,(H,13,14)(H,16,17)
BioCyc N-formylkynurenine /h1-4,8,13-14H,5-6,12H2,(H,16,17)

Table 2.2: Initial group formed for InChI=1S/C11%N2O4/c12-8(11(16)17)5-
10(15)7-3-1-2-4-9(7)13-6-14/ InChI Connectivity, corresponding to Formyl-
kynurenine. L-Formylkynurenine and N-formylkynurenine refer to the same
molecule, however the hydrogen layer differs (initial layers are the same), leav-
ing them as different in a plain InChI search. Unfortunately in this case, the
representative from BRENDA has different connectivity, rendering them directly
different.

If the method queries for InChI Connectivity

InChI=1S/C3%NO3/c4-2(1-5)3(6)7/

the results are the two different stereo isomers of Serine and an undefined

stereochemistry Serine. This is another example where the method generates

groups that include different stereo isomers, which are later separated. The “(L-

or-D) Serine” result shows the complication generated by unexpected constructs,

which will probably be left on a group of its own, increasing the number of

molecules artificially.

Table 2.3 shows a more complicated case in which more molecules are obtained

for the InChI Connectivity

InChI=1S/C3\%O2/c1-3(5)2-4/

In this case there are several sub groups that the separation step needs to

isolate. This is normally as complicated, in terms of separation, as it can get.

This also shows a number of molecules for which BRENDA either does not have
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Figure 2.15: N-Formylkynurenin (or L-Formylkynurenine) from KEGG and Bio-
Cyc, before and after being protonated. Molecules, which are supposed to be
the same – since the BioCyc entry links to the KEGG entry and they have the
same synonyms – are different both before and after protonating to pH 7 with
Chemaxon JChem.
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DataSet Name InChI

KEGG Methylglyoxal InChI=1S/C3H4O2/c1-3(5)2-4/h2H,1H3
BioCyc methylglyoxal InChI=1S/C3H4O2/c1-3(5)2-4/h2H,1H3
BRENDA methylglyoxal InChI=1S/C3H4O2/c1-3(5)2-4/h2H,1H3
KEGG Lactaldehyde InChI=1S/C3H6O2/c1-3(5)2-4/h2-3,5H,1H3
BioCyc D-lactaldehyde InChI=1S/C3H6O2/c1-3(5)2-4/h2-3,5H,1H3
KEGG (R)-Lactaldehyde InChI=1S/C3H6O2/c1-3(5)2-4/h2-3,5H,1H3
KEGG (S)-Lactaldehyde InChI=1S/C3H6O2/c1-3(5)2-4/h2-3,5H,1H3
KEGG Hydroxyacetone InChI=1S/C3H6O2/c1-3(5)2-4/h4H,2H2,1H3
BioCyc acetol InChI=1S/C3H6O2/c1-3(5)2-4/h4H,2H2,1H3
KEGG (S)-Propane-1,2-diol InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3
BioCyc L-1,2-propanediol InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3
KEGG Propane-1,2-diol InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3
KEGG (R)-Propane-1,2-diol InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3
BioCyc D-1,2-propanediol InChI=1S/C3H8O2/c1-3(5)2-4/h3-5H,2H2,1H3

Table 2.3: Initial group formed after querying for InChI=1S/C3%O2/c1-3(5)2-4/
InChI Connectivity, corresponding to a number of different compounds in terms
of protonation. In this case, stereo isomers and different protonation states are
confounded in the same chemical group.

a molecule, or it has with a different connectivity which excludes it from this

result.

Table 2.4 shows the results of searching for the connectivity of pyruvate. Here

we see that all three databases show molecules for the different compounds that

have that same connectivity. In the same table we find examples of differences

in the charge layer which would render a normal InChI consolidation unusable

without handling protonation/charges.

Finally, Table 2.5 shows another example of the same molecule in two different

databases with different InChI hydrogen layers. This is an example where even ad-

justing the pH does not solve the differences, separating the molecules in a consoli-

dation by mere InChI. Queuine is also a case where the databases even show differ-

ent connectivities, as in BRENDA Queuine is a 7 carbon molecule with a different

structure. This has been fixed in the current online version of BRENDA. The

InChI shown for BRENDA actually corresponds to 7-aminomethyl-7-deazaguanine

or PreQ1, which is related to Queuine. This confusion apparently has been

dragged to other databases, as PreQ1 in BioCyc for B. subtilis links to Queuine in
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DataSet Name InChI

BRENDA pyruvate InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)
KEGG pyruvate InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)
BioCyc pyruvate InChI=1S/C3H4O3/c1-2(4)3(5)6/h1H3,(H,5,6)/p-1
BRENDA (R)-lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
KEGG (R)-Lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
BioCyc (R)-lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/p-1
KEGG Lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
BRENDA (S)-lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
KEGG (S)-Lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)
BioCyc (S)-lactate InChI=1S/C3H6O3/c1-2(4)3(5)6/h2,4H,1H3,(H,5,6)/p-1

Table 2.4: Initial group formed after querying forInChI=1S/C3%O3/c1-
2(4)3(5)6/ InChI Connectivity, corresponding to pyruvate and lactate. In this
case, stereo isomers and different protonation states are confounded in the same
chemical group. A plain InChI search aiming for pyruvate would have missed
BioCyc’s pyruvate, which has a different InChI (charge in this case).

ChEBI and KEGG. Recovering from these differences goes beyond the capacity

of our pipeline, and is a quality issue of the resources in which the method bases

the consolidation.

The consolidation process proceeds then with each one of the groups obtained

by querying the connectivity keys and the name indexes. For the structure-based

groups, the method attempts to break them into sub groups if appropiate, as

Figure 2.16 shows in more detail. Groups in Tables 2.2 and 2.3 would be splitted

in that step.

Figure 2.17 shows the third and last part of the unification process. The

method compares the groups formed from chemical entries with no structure

with groups of chemicals with structure through names and cross references,

when exact matches are found and the merge increases the database coverage,

the chemical entries with no structure are added to the groups with chemical

structures.

The exposed way of merging small molecules was the most generous way that

I could implement (generous in the sense of providing the higher overlap between
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Separation Step

Group of 
Chemicals

Create edge-less Group 
and Anti-group graphs

with members

Group Graph

Anti-group
Graph

Add separation evidence 
from data set and cross 

references.

Add union evidence from 
name and stereo inchi.

Check
Antigraph

Add union evidence from 
data set and cross 

references.

Final Groups of 
Chemicals

Obtain connected 
components of Group graph

No conflicts: add

Figure 2.16: Diagram of the separation step that dissects groups of connectivities
into more accurate groups. The method relies on cross references, names, syn-
onyms and stereo InChI, which is only trusted under particular conditions. As
the method visits the evidence, two graphs store the knowledge retrieved from
the evidence: a normal graph stores evidence that two molecules should be con-
sidered the same (nodes are molecules, an edge between them means they are
equivalent); an anti-graph stores evidence that two molecules (nodes) are differ-
ent (direct edge between them). Each time that new evidence is inspected, these
graphs are updated transitively and checked to see whether no previous evidence
– of higher priority – is being contradicted.
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DataSet Name InChI

BioCyc Queuine InChI=1S/C12H13N5O3/c13-12-16-10-8(11(20)17-
12)5(4-15-10)3-14-6-1-2-7(18)9(6)19/h1-2,4,6-7,9,14,18-
19H,3H2,(H2,13,17,20)/p+1

KEGG Queuine InChI=1S/C12H15N5O3/c13-12-16-10-8(11(20)17-
12)5(4-15-10)3-14-6-1-2-7(18)9(6)19/h1-2,4,6-7,9,14,18-
19H,3H2,(H4,13,15,16,17,20)

BRENDA Queuine InChI=1S/C7H9N5O/c8-1-3-2-10-5-4(3)6(13)12-7(9)11-
5/h2H,1,8H2,(H4,9,10,11,12,13)/p+1

Table 2.5: Initial group formed after querying for InChI=1S/C12%N5O3/c13-12-
16-10-8(11(20)17-12)5(4-15-10)3-14-6-1-2-7(18)9(6)19/ InChI Connectivity, cor-
responding to Queuine. Even though both database refer to the same molecule,
the InChIs calculated from the provided structures have different hydrogen layers.
Even though of different connectivity, we show the entry for BRENDA with the
same name, as an example of data quality issues.

Merging groups without structure

Final Groups for 
SMILES

Final Groups 
for InChI 

Connectivity
Index 2 Names

Search index of
names in final 

groups

Add unique hits to groups

Figure 2.17: Diagram shows the third part of the consolidation algorithm imple-
mented to consolidate sets of small molecules. Once the program generates the
groups of molecules for complete structure, generic structure and no structure, it
searches the indexes of the names of elements in the group of no structure against
the names of defined structure groups and generic structure groups. When unique
exact hits are found and the addition of the element with no structure completes a
group (meaning that it adds an element from a database that was not previously
in the group), then the new element with no structure is added.
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the different data sets). However, this approach also looses resolution in certain

cases. The InChI connectivity does not include any form of stereo chemistry,

which is an advantage, since stereo chemistry is known to be problematic for

merging data sets. However, from the standpoint of the database, is probably not

desirable to have (R)-2-hydroxystearate and (S)-2-hydroxystearate as the same

molecule. Neglecting bond orders and protonation can lead to molecules with

very different properties being considered in the same class, but it is necessary to

resolve artificial differences due to forced protonation of molecules in the source

databases. For these reasons, I included the additional separation steps described

to the molecule merge process, which solve most of those resolution problems by

using molecule’s meta data.

2.3.6.2 Assessment of the method

To assess the quality of the whole database consolidation algorithm, I manually

inspected a sample of results, checking whether the groups of molecules formed

were correct. In the case of complete groups, this meant assessing whether all the

members were equivalent. For incomplete groups, this implied to check whether

I could find entries in the missing resources that could be added to the group.

After many manual inspections of the results during the development and testing

phase, I roughly estimated that the overall probability of success of consolidating

correctly a group of molecule should be in the order of ∼80% for the method, or

a success probability estimate of p̂ ≥ 0.8. Considering that the method treats

data differently for molecules with structure, generic structure and no structure,

I stratified the sampling accordingly. With this initial estimate we derive a sam-

ple size n, through a confidence interval, to have a better estimate for the true

probability of success, p, of the method.

p = p̂± Error (2.1)

Error = zα
2

√
p̂(1− p̂)

n
(2.2)

Solving for n, the sample size, and then assuming p̂ = 0.8, zα
2

= 1.96 for a
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95% confidence and an error of 10%

n =
( zα

2

Error

)2
p̂(1− p̂) (2.3)

n =

(
1.96

0.1

)2

0.8(1− 0.8) (2.4)

n = 61.46 (2.5)

Equation 2.2 is used normally to derive sample sizes for population proportion

problems (in this case, which proportion of the groups formed are correct). This

requires that the sample size is sufficiently large and that sample means are

distributed normally around the population mean, which is what we want an

estimate for. For choosing the sample size, a common assumption would be to

set the probability estimate p̂ of success at p̂ = 0.5, where the largest variance is

expected, however, as we have a previous estimate, we can use it to reduce the

number of samples required. Given n = 61.46 we need at least 62 samples from

each stratum. I used the sample function from R to obtain random samples for

each stratum. Each one of the selected groups was inspected to decide whether

it was correctly formed or not.

Manual inspection of 97 groups randomly selected for the completely defined

molecules gives a total of 86 correct groups. Calculating a proportionality test

with continuity correction1, generates a 95% confidence interval of [0.80, 0.94]

for the probability of correct assignment of groups of molecules with complete

structure. The same results for the generic molecules and molecules with no

structure can be seen in Table 2.6.

Overall, the manual assessment shows that for groups formed by chemical

entities with structure, in the worst case scenario, up to a 20% of error can be

expected. This error increases to 30% in the worst case scenario for groups of

generic molecules and for groups of molecules with no structure. However, these

error rates have more chance of being at ∼10% and ∼20%, respectively.

Chemical fingerprints and isomorphism comparison are independent checks

1The proportionality test was calculated with R using prop.test() method
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Category p̂ 95% CI

Defined 0.89 [0.80, 0.94]
Generic 0.79 [0.69, 0.86]
No Struct. 0.79 [0.67, 0.88]

Table 2.6: Estimated probability of success as confidence intervals for each of the
three types of data that the consolidation method handles. In the case of chemical
entities with no structure, we find that between 54% to 74% represent proteins
or RNAs names and not small molecules, so these were not considered for the
success chance estimation. This reduces the quality of our estimate, producing a
wider interval.

that can be applied to the chemical groups consolidated, as I did not use them

in the merge process. I calculated the MACCS fingerprint (using CDK) for all

molecules in the integration, and then, based on that fingerprint, the Tanimoto

similarity between all the molecules that belonged to different regions of the inte-

gration. If two molecules are the same, but have not been unified by the approach,

they should present the exact same fingerprints, and the similarity between them

will be one. Of course, that two molecules have a fingerprint similarity of one is

not a sufficient condition for them to be the exact same molecule; for every pair

that presented maximum fingerprint similarity, I calculated an ismorphism sim-

ilarity (using SMSD [124] isomorphism toolkit from the CDK). However, neither

fingerprint similarity nor isomorphism similarity account for stereo chemistry (at

least in the implementations that I have access to).

The total possible comparisons between different group pairs belonging to

disjoints regions1 in the H. sapiens chemical integration amounts to ∼3.5 million.

Out of these, only 361 group pairs have perfect isomorphism similarity. Table 2.7

summarizes the finding per regions compared. Appendix B shows representatives

of the group pairs compared, for the 361 pairs and also for some additional ones

that had perfect fingerprint similarity but not perfect isomorphism similarity.

Out of the 361 perfect isomorphism matches, I managed to classify 204 auto-

matically as correctly separated pairs of groups through some very simple stereo

chemistry checks (comparing up and down bonds). A manual revision of a sam-

1By region I mean each of the sections of the Venn diagram shown in Figure 2.20 ahead.
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ple 40 of the remaining 157 pairs shows that ∼50% of the pairs are different due

to stereo chemistry, and hence correctly separated by the method. The remain-

ing 20 pairs are badly separated groups and should be merged together. Given

the sample size, the confidence interval for this probability of erroneously sepa-

rating groups (for these 157 cases) is [35%, 65%]. If we assume the worst case

for the error of separation at the ∼65% estimation for the 157 cases, then 103

pairs of groups should be merged, reducing in 103 groups the total count of small

molecules, out of ∼2100 groups with structure. This means that the fingerprint

and isomorphism check shows that there are at the most ∼5% of errors in the

groups formation, for groups with structure. Even assumming that the ∼65%

error applies to the 361 pairs of groups, that would yield 235 pairs of groups to

be merged, meaning an error of ∼11% of the groups in the chemical consolida-

tion process. These numbers (∼5% and ∼11%) are in agreement with the 89%

probability of success estimated before for the case of completely defined struc-

tures, supporting the previous assesment and the estimated rate of error for the

chemical unification.

Overall, both assessment methods – manual inspection of generated groups

and comparison of structures between groups representing unique small molecules

– account at the most for an error rate of ∼20% for the unification method.

2.3.7 Overview of molecule integration results

The three different types in which the method separates the data have different

completeness and consistency levels. The richest stratum (molecules with struc-

tures) allows a better integration of the data sets, as it is shown in Figure 2.18,

where more groups of chemical entities with representatives from the 3 databases

can be formed. Figure 2.19 shows that BRENDA is the database that gener-

ates the highest number of singletons and participates in the lowest number of

groups with two members (intersection between two databases), where as BioCyc

and KEGG tend to form more intersections. BRENDA shows more redundancy

between its molecules and has higher numbers of chemical entities without a
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Region Pairs

A B Total DS Generic

BR BC-BR 4 3 0
BR KG 10 6 8
BR KG-BR 17 10 5
BC-BR KG 2 0 1
BC BR 8 4 7
BC BC-BR 7 1 1
BC KG 16 12 12
BC KG-BR 8 5 6
KG-BR BC-BR 18 12 3
KG-BR KG 6 3 2
KG-BC-BR BR 72 47 22
KG-BC-BR BC 18 3 6
KG-BC-BR BC-BR 28 19 1
KG-BC-BR KG 24 16 3
KG-BC-BR KG-BR 29 20 5
KG-BC-BR KG-BC 25 8 12
KG-BC BR 18 9 14
KG-BC BC 13 7 7
KG-BC BC-BR 7 1 4
KG-BC KG 15 11 6
KG-BC KG-BR 16 7 9

Table 2.7: Pairs of chemicals with complete isomorphism similarity from the
different regions of the unification. BR : BRENDA; BC : BioCyc; KG : KEGG;
BR-BC stands for BRENDA-BioCyc only intersect region. DS stands for Different
Stereo chemistry, and shows the number of pairs within the total of that row that
have different stereo chemistry according to some simple automatic check. More
pairs could have different stereo chemistry. The column Generic stands for the
count of pairs in each row that are formed by generic molecules.
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Databases represented
per group formed.

(when merging KEGG, BioCyc and BRENDA for H. sapiens)
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Figure 2.18: The bar plots summarize how much of the resources could be unified
in terms of types chemical entities. A group is a set of chemical entries suspected
to represent the same molecule, so the more groups with the 3 databases repre-
sented (meaning that the group has a chemical entry from each of the databases),
the better. The Y axis shows the number of databases per group, 1 (singleton
groups, with an entry only from BioCyc, KEGG, or BRENDA), 2 (groups con-
formed by representatives of two of the databases), or 3 (groups with a molecule
from each of the three databases). The method separates the data in completely
defined chemical structures, generic structures and chemical entries with no struc-
ture. The leftmost part shows that the chemical entities with structure tend to
form a bigger proportion of groups with the 3 databases represented, nearly half
of the number singletons (groups with just one database represented), compared
to nearly a fourth and less than a fourth in the case generic structures and no
structures, respectively. The same tends to happen with groups in which at least
two databases are represented.
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Group sizes
per source databae.

(when merging KEGG, BioCyc and BRENDA for H. sapiens)
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Figure 2.19: The bar plots summarize the participation of each databases in
groups with the 3 databases represented (total intersection, obviously same
amount for the 3 databases), with 2 databases represented (the database plus
one of the two others intersected) and 1 database represented (that database
forming a singleton for that chemical entry). BRENDA shows by far the highest
number of singletons, while KEGG and BioCyc tend to form more intersections.
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chemical structure, which partly explains this.

The Venn diagram in Figure 2.20 shows the intersection for H. sapiens of

the three metabolism resources integrated. It illustrates that BRENDA is the

resource with the highest number of singletons and that KEGG and BioCyc tend

to integrate better. The amount that each database adds on its own to the human

metabolome collection is considerable, even if we assume errors as high as 20%.

Figure 2.20: Venn diagram (generated with R package VennDiagram [17]) of the
intersection of chemical entries in KEGG, BioCyc and BRENDA for H. sapiens .
Numbers denote the small molecule counts.

Beyond the manual checks that we performed on particular samples of the

data in the assessment Section 2.3.6.2, it is also useful to check the overall be-

haviour of it. Figure 2.21 shows that the distributions of mass of the chemical

entities that could not be integrated (singleton groups) has marked differences

between the three data sets. Particularly, BioCyc singletons concentrate in the

800 Daltons region, when compared to the other two resources. Looking closer,

73



2. METABOLISM DATABASE INTEGRATION

this range reveals 44 entries in BioCyc, 24 in KEGG and 22 in BRENDA (which

represents 6.6% of the collection of singletons with structures and 8% of the

BioCyc collection in this same category). BRENDA and KEGG collections for

H. sapiens present other biases as well that are unique. Among these, we find

11 compounds with 9 to 11 length prenyl units, most of them involved in the

biosynthesis of ubiquinol-10 pathway, that seem to be only present in the BioCyc

collection. This happens because both BRENDA and KEGG handle the elements

in this pathway as variable length units, and hence do not provide entirely defined

structures for these compounds, leaving only the ones in BioCyc available. Also in

this mass range we find 8 compounds in BioCyc involved in the thyroid hormone

metabolism pathway. This pathway has some steps without assigned enzymes

in H. sapiens , which would normally avoid our procedure to retrieve results for

KEGG and BRENDA, as in the first case the concept of pathways is too broad

and not organism specific, and the second case, no pathway grouping is exposed.

Additionally, the treatment given to the pathway in KEGG and in BioCyc differs,

being the second one much more detailed. None of the compounds selected that

participate in the BioCyc thyroid hormone metabolism pathway had links in the

HumanCyc web site to KEGG either.

2.3.8 Comparing reactions

After comparing small molecules from different datasets, the next challenge is

to unify reactions from the different data sets. This is useful since it allows to

connect small molecules with proteins, mostly enzymes, through reactions (either

as catalysts or reactants). Connecting small molecules to proteins opens the

possibilities of stating whether a small molecule can be present in a particular

biological compartment (cell type, tissue, etc.) based on a plethora of existing

experimental results (gene expression, proteomics, RNA-Seq, etc.) and resources.

Deciding whether two reactions are equal poses a number of problems. The

easier case is just to assume that if the reactants, stoichiometries and products

are the same, then the reactions are the same. This leaves a number of equivalent

reactions still separated. Lets go through some examples:

Reactions which might have been adjusted for a reference pH in a database,
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Mass distributions for singletons
per data set, for H. sapiens
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Figure 2.21: The density plot shows the distribution of mass for all the chemical
entries, from the three different databases integrated, that do not find any inter-
section with the other resources (singletons or groups with just one member). As
it is a density plot, is very good at keeping the distribution of each set of small
molecules, yet the areas under the curve are only comparable within each set and
not between them, so the relevant data is the location of the peaks. This result
supports the quality of the unification, as it shows that chemicals that could not
be consolidated do present marked differences in their mass distributions. Single-
tons from BioCyc show a bias for a peak centered at 800 Daltons, suggesting that
a collection of compounds in this database, centered around this mass, might not
be present in the other resources. The same happens with BRENDA at 300 Dal-
tons and KEGG at 280 Daltons, approximately. Identical distributions within
the singletons would have been less suggestive that they are actually different
molecules. Again this figure shows the two main peaks where molecules seem to
concentrate: in the vicinity of 200 Daltons and 800 Daltons.
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compared to other sources, might have additional protons and water participat-

ing. Such is the case of the serotonin degradation reaction (EC 1.4.3.4), which

in BioCyc has an added proton compared to the same equivalent reaction in

KEGG. Sometimes these added protons are accompanied by water for automatic

balancing purposes. To avoid considering these cases as different, we neglect any

differences in protons and water in the reactions. In our H. sapiens reaction con-

solidation we find ∼400 classes of unified reactions with these kind of artifacts,

that would be otherwise separated. Of these cases, 379 have an additional pro-

ton in one of the databases, and 26 show differences due to added water. Ten

reaction classes show both water and protons added in some of the databases.

Most of the proton additions to reactions come from BioCyc, where reactions are

protonated to pH 7. In 357 reaction classes the only difference between members

of the class is a single proton, being all the other reactants the same (except for

protein participants and tRNA participants).

Both protons and water are readily available to any biochemical reaction

inside the cell. A biochemical reaction normally takes place not between sin-

gle state protonation molecules, but between pseudoisomer groups [1, page 63].

The pseudoisomer group of a molecule (for instance ATP) represents the equilib-

rium concentration of all the possible protonation states of that molecule at the

pH of operation (ATP4−, HATP3−, H2ATP2− for ATP). This drives metabolism

databases to implement differently the inclusion of protons and water in some

reactions. This is because databases sometimes pick different major microspecies

(the most abundant protonation form within a pseudoisomer group) for use in

their reactions. This can also happen when databases choose a different operation

pH.

Another difference might arise from balancing (which can be accumulated with

the previous example), where a database shows a version of the same reaction

balanced, where others do not, exhibiting different stoichiometries. Example of

this is the oxidation 6-Mercaptopurine to 6-thiouric acid, EC number 1.17.3.2 as

portrayed in KEGG, under reaction identifier R08235, and BRENDA. In KEGG

2 molecular oxygens and 2 water molecules are consumed, where as in BRENDA

only one of each is consumed. This kind of difference is less common, but never-

theless happens. We solve this by setting all stoichiometric coefficients to one for
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the comparison (in the comparison objects, not the database).

Reversibility of a reaction can also complicate the comparison of reactions.

The truth is that for most reactions, we do not really know the preferred direction

(unless a particular pathway context can be used as reference). In most cases,

biochemical reactions are also close to equilibrium, which means that there is

no preferred direction at all, as the reaction flux is equal in both directions. To

understand reaction directions, we need to calculate Gibbs energies of reaction

and know the participants concentrations. Because of this lack of knowledge,

some databases might represent the reaction in one direction while others in the

opposite. This can be solved by comparing the two sets of participants, regardless

of the side they are given (but still keeping them separate).

Participating proteins are not always well defined in reactions, and as such,

we are left only with a name matching case. We neglect participating proteins

at the comparison level, considering them as the same object that we label as

“protein participant”.

For the sake of this exercise, we do not deal with internal cellular compart-

ments, so reaction participant’s sub cellular localizations are neglected for this

comparison. These kind of data is seldom available in any case.

Our reaction comparison algorithm starts from the chemical entries unified

in the previous part, merging reactions that share small molecules that have

been consolidated. The method neglects protein participants (as substrates or

products), ignores the direction of the reactions, allows differences in a group of

selected molecules (water, protons, oxygen) and neglects differences in stoichio-

metric coefficients. Given that that many times EC numbers are not one to one

mappings to reactions, we avoid using EC numbers for merging reactions, leaving

them as a tool for prospective curators to asses the consolidation.

Figure 2.22 shows the intersection of reactions for H. sapiens after applica-

tion of the method. Previous published work [143] claimed that the KEGG,

BioCyc, the Edinburgh Human Metabolic Network and the Human Metabolism

reconstruction in BiGG only had approximately 3% of intersect for its reactions.

Through our method of chemical entities comparison, we achieve more than 10%

of total intersection of reactions and more than 23% of reactions with some level

of intersection. Given that our chemical integration scheme can have errors, we
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identified approximately 50 chemical unification conflicts (that is, chemical enti-

ties deemed as different when in fact they are the same) that could increase by a

few hundred the number of intersected reactions if they were manually corrected.

For a fair comparison, considering that these authors integrate more and different

databases, we compared the number of reactions integrated between BioCyc and

KEGG for H. sapiens , which are two databases used in both studies. According

to their supplementary material, the authors manage to match 579 reactions be-

tween HumanCyc and KEGG, whereas our Venn diagram in Figure 2.22 shows

a total intersection of 670 reactions (422 + 248 regions). For the small molecule

match between these two databases, the authors calculate the ratio between in-

tersection and union of both small molecule sets, reporting 28% between BioCyc

and KEGG for H. sapiens . From our Venn diagram in Figure 2.20 the ratio of

intersection to union between BioCyc and KEGG for H. sapiens is 41%. Our

method achieves higher levels of overlap between metabolism databases for both

small molecules and reactions.

The method found 466 different EC numbers annotated in reactions that were

unique to each database. These EC numbers did not appear either in any of the

unified reactions (either two or three database intersections). The EC Wheels in

Figure 2.23 display the distribution of EC numbers that are unique to each of

the resources. This again is evidence that the different resources hold a number

of unique small molecules that are not shared by the others.

It is useful to compare the number of unique reactions from each database

(∼2,900, the singletons or zones of no intersection in the Venn diagram) with the

numbers of unique EC numbers from each of the databases (466). The general

assumption that one EC number maps to one reaction leads to a confusion here,

as one would expect these two numbers to be the similar. In fact each EC number

can have more than one reaction assigned. HumanCyc has 1,255 EC numbers,

235 map to more than one reaction. These 235 EC numbers map to a total of 742

reactions, so more than 3 reactions per EC number on average. In BRENDA for

H. sapiens 499 EC numbers (that each map to more than one reaction) map to a

total of 1676 reactions, again more that 3 reactions per EC number on average.
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Figure 2.22: Intersection of Reactions in H. sapiens .
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Figure 2.23: EC Wheels representing the distribution of unique EC numbers for
BRENDA, KEGG and BioCyc for H. sapiens . The EC Wheel starts from angle
0 in clockwise manner, as the example shows. Each subdivision of the inner most
circle, and each color, corresponds to a different EC class: purple, pink, blue,
green, yellow and orange represent classes 1 (oxidoreductases), 2 (transferases),
3 (hydrolases), 4 (lyases), 5 (isomerases), and 6 (ligases) respectively. Concentric
belts represent sub classes. The separated regions in the outer concentric belt
represents a complete EC number (see EC number 1.14.11.2 in the example).
Overall, there are 466 distinct EC numbers not shared by the databases (out of
a total of 1588), 292 coming from BRENDA (out of 1221), 159 from BioCyc (out
of 1255) and 15 from KEGG (out of 1056). Many of these unique EC numbers
did not have an entry in UniProt, in many cases described activities but with no
protein catalyst known. The amount of unique ECs on each database supports
the fact that they contribute with many different metabolites to a metabolome
collection.
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Many reactions as well do not have an EC number assigned. However, the number

of unique reactions is still high in the unification, as we tend to have 6 reactions

per unique different EC on average. This higher reaction to EC ratio is probably

due to errors in the unification process. If we assume an approximate 15% of

error at the chemical entity unification level, and each reaction has an average of

3.7 participants without including water, then this 15% error at small molecule

unification level translates to as much as 48% error at the reaction level (if we

assume a 20% error, this translates, on average for a 4 participant reaction to

59% chance of error).

As bad as they seem, all these error estimations are upper bounds for the

error for a few reasons. First not all metabolites participate in the same number

of reactions, and those that tend to be more connected tend to be better anno-

tated (correct structures, more cross references, more synonyms), leading surely

to a lower error rate of chemical unification for them. Also, most reactions have

only completely defined structures, which means their unification error is prob-

ably closer to 10% than to 15%, again lowering the overall reaction unification

probability error.

For example EC number 3.1.4.11 appears twice in the H. sapiens unification,

one version from BioCyc and one from BRENDA. The reactions are the same,

yet in BioCyc participant 1,2-diacyl-sn-glycerol has a generic structure, where as

in BRENDA the equivalent entry diacylglycerol does not have a structure. None

of them have a matching synonym or cross reference, so they are left as different

entities, generating two versions of reaction 3.1.4.11.

From the unique EC numbers for each data set, I mapped UniProt identifiers,

which I used for protein function enrichment analysis1 using DAVID2 [58]. The

Cellular compartment branch of the gene ontology showed BioCyc with a bias

towards localization in Golgi, Nucleus and other intracellular parts, whereas the

BRENDA related proteins had a bias towards localization in the extracellular

region. There are few EC numbers found only in KEGG, which map to only a

handful of UniProt identifiers, making these enrichment analyses worthless for

1Section C. 1 in Appendix C shows the statistical explanation of all enrichment analyses
done.

2DAVID is a widely used enrichment analysis web tool for proteins, which incorporates a
number of protein functional classification systems.
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2. METABOLISM DATABASE INTEGRATION

KEGG in this case.

The biological process branch of the gene ontology enrichment showed a bias in

BioCyc unique ECs for information processing (DNA, RNA processing and post

translational modifications), which makes sense with the compartmentalization

enrichment. These ECs also had presence in lipid and glycan metabolism. For

BRENDA, this same part of the ontology shows enrichment for protein catabolism

and protein modification biological processes.

Inspection of the molecular function branch of the gene ontology shows en-

richment in helicases and other enzyme activities which relate to information pro-

cessing for BioCyc EC numbers. For BRENDA, this branch shows enrichment

in peptidases enzymatic activity, which make sense with the biological processes

enriched for the set of ECs unique to BRENDA.

These enrichment analyses show again that the different databases sometimes

focus on particular domains of knowledge with different levels of details, which

further supports the fact that we find small molecules that are unique to each

database.

2.4 Comparison against the Human Metabolome

Database

Using the same merge process described in Section 2.3.6.1, I compared the HMDB

with the merge of BRENDA, KEGG and BioCyc for human. Figure 2.24 shows

the results of the merge in a Venn diagram.

A high proportion of HMDB records are not matched with elements from

any of the other databases, only 1288 records from HMDB are matched with

records from other databases. KEGG has the higher overlap with the HMDB

(959 chemical entries), followed by BioCyc (913 chemical entries). Figure 2.25

shows the mass distributions for the unique entries to each of the data sets, and

indicates that more than two thirds of the unique entries from HMDB are lipids.

Using the Metabolite Biological Role (MBRole) tool [14], I did enrichment

analysis using different mass sub sets of the unique HMDB entries, according to
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Figure 2.24: Venn diagram showing the intersect between the different H. sapi-
ens metabolism databases and the HMDB. Numbers denote the small molecule
counts.

the main peaks in Figure 2.25. Through these analyses, Figure 2.28 supports the

high concentration of lipids by showing that most of the unique HMDB entries

in the range of 500 to 1000 Daltons belong to lipid categories in the HMDB

chemical taxonomy classification. In contrast, Figure 2.26 shows that the unique

1,654 HMDB entries in the range 0 to 500 Daltons are less dominated by lipid

categories. Nevertheless, Figure 2.27 shows the main categories of lipids present

in this range, which include a total of 380 different HMDB entries, ∼23% of the

HMDB entries in the 0 to 500 Daltons region. The remaining 713 unique HMDB

entries above the 1000 Daltons are ∼90% lipids according to enrichment analysis,

where ∼56% are glycolipids.

Overall, enrichment analysis of the unique elements of HMDB shows that out

of the 6,533 elements of HMDB that have a chemical structure and are not found

in the other databases, only ∼25% are non lipid small molecules, 1,635 HMDB
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2. METABOLISM DATABASE INTEGRATION

Mass distributions for singletons
per data set, for H. sapiens
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Figure 2.25: Mass distributions of all the singleton regions (small molecules
unique to each database). The peak between 500 and 1,000 Daltons for HMDB
consists of 4,166 molecules not found in the other resources, at least 3,876 are
lipids (recognized by naming nomenclature), Figure 2.28 shows details. The re-
gion between 0 and 500 Daltons contains 1,654 entries unique to HMDB, ∼23%
of these are lipids. Figures 2.26 and 2.27 show the 1,654 unique HMDB entries
in the range 500 to 1000 Daltons classified according to the HMDB Chemical
Taxonomy.
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Top 20 most enriched compound classes for
unique HMDB molecules in mass range 0 − 500 Daltons
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Figure 2.26: Top 20 most enriched categories of the HMDB Chemical Taxonomy
for the unique HMDB entries in the mass range 0 to 500 Daltons. This mass
range concentrates most of the non lipid elements from HMDB that are not
found in the other databases by the unification method. The categories shown
are not exclusive, a small molecule can be assigned to more than one. All these
categories have significant p-values for enrichment (p-value < 10−5), but given
the high similarity of enrichment p-values, they are sorted by the number of
molecules in each category.
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Top 10 most enriched lipid related compound classes for
unique HMDB molecules in mass range 0 − 500 Daltons
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Figure 2.27: Top 10 most enriched categories of the HMDB Chemical Taxonomy
related to lipids for the unique HMDB entries in the mass range 0 to 500 Daltons.
Counting unique entries, these categories include a total of 380 different HMDB
entries.
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Top 20 most enriched compound classes for
unique HMDB molecules in mass range 500 − 1000 Daltons

HMDB entries

C
la

ss

Cholesterol esters

Sphingomyelins

Sphingolipids

Phosphatidylglycerols

Phosphatidylinositols

Triacylglycerols

Enol ether

Diacylglycerols

Phosphatidylcholines

Phosphatidylethanolamines

Glycerolipids

Quaternary ammonium salt

Primary aliphatic amine (alkylamine)

Primary amine

Phospholipids

Phosphoric acid ester

Cell signaling

Membrane component

Carboxylic acid ester

Lipids

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

28

28

67

119

143

0 500

1000

1500

2000

2500

3000

3500

Figure 2.28: Top 20 most enriched categories of the HMDB Chemical Taxonomy
related to unique HMDB entries in the mass range 500 to 1,000 Daltons. As the
graph shows, most categories are lipid related, and the general category “lipids”
holds more than ∼3,700 HMDB entries for the 500 to 1,000 mass range.
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entries.

Metabolism databases add 1,803 small molecules that do not appear in HMDB.

Even in the worst case scenario of a 20% error, this would still mean ∼1,400 small

molecules that do not seem to be present in HMDB.

2.5 Comparison of metabolism databases based

species metabolomes

Using the chemical and reaction unification methods, I built consolidated data

sets in BioWarehouse for H. sapiens , M. musculus , S. cerevisiae and E. coli based

on BRENDA, BioCyc and KEGG. Using the same unification method, I compare

these consolidated data sets. Figure 2.29 shows the intersection of small molecules

for these organisms.

Figure 2.29: Venn diagram for multi species comparison of small molecules be-
tween H. sapiens , M. musculus , E. coli and S. cerevisiae. Numbers denote the
small molecule counts.

As it could be expected, the biggest overlap for H. sapiens in terms of small
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molecules is with M. musculus . S. cerevisiae has a bigger overlap with the two

other eukaryotes (24 + 268 + 30 = 322 common small molecules that are not

present in E. coli) rather than to its unicellular counterpart, E. coli (only 158

common small molecules present only in S. cerevisiae and E. coli), suggesting

that the chemistry of S. cerevisiae might be more associated to its eukaryotic

character rather than its unicellular nature.

Figure 2.30 shows the distribution of masses for the unique small molecules

of each organism (that means, regions 727, 317, 260 and 1817 that belong re-

spectively to unique H. sapiens , M. musculus , S. cerevisiae and E. coli small

molecules), where we can see that both higher eukaryotes tend to be distributed

towards slightly bigger metabolites (in the 200 to 400 Daltons range), where as

both unicellular organisms display distributions towards smaller metabolites (in

the 150 to 200 Daltons). This might suggest some increase of chemical complexity

when we step from unicellular to multi cellular organisms. Using the union of H.

sapiens and M. musculus that does not intersect S. cerevisiae and E. coli also

confirms this trend.

To dive into the singleton regions, I obtained from the database the unique set

of ChEBI identifiers available for the small molecules in each region that is unique

to each organism. This search retrieves 106 ChEBI identifiers for H. sapiens , 80

for M. musculus , 101 for S. cerevisiae, and 753 for E. coli . Unfortunately not

all molecules have a ChEBI cross references, but the retrieved ones can well be

considered as samples of each region.

With ChEBI identifiers, and using the MBRole tool, I performed enrich-

ment analysis to characterize through the ChEBI ontology these different sets

of molecules. Unfortunately MBRole maps the given sets of ChEBI entries to

very few roles, and poor results are obtained. This is partly because MBRole

restricts the search space to ChEBI 3 stars entries only.

BiNGO[96] is a Cytoscape[138]1 plug-in for enrichment analysis of gene sets

through the Gene Ontology. I modified BiNGO version 2.42 to run the same

type of enrichment analysis, but using the ChEBI Ontology, including both the

1Cytoscape is a widely used network visualization program, with a special emphasis in
biological data and protein protein interactions
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Mass distributions for singletons
per data set, for different species unifications.
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Figure 2.30: Mass distribution for the different species. Each curve is a density
curve, so the area for each of the curves is one. This means that each curve is
normalized by the number of molecules in each of the sets, so the distribution
differences are well appreciated, but areas under each curve represent different
count of molecules. There are 1,359 different molecules with mass for E. coli
that could not be mapped in the other organisms, 400 in H. sapiens , 169 in M.
musculus and 115 in S. cerevisiae.
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chemical ontology and the role ontology. Unfortunately as well, the sparseness

of roles annotation and the low number of unique elements in each region of

the Venn diagram that had ChEBI annotations, produce poor results for many

of the small molecule sets. In most cases, only high level chemical categories,

such as organic molecular entity or oxygen molecule entity, showed high levels of

enrichment, but they are of little use to understand the biological context as they

are very broad. I explore here, organism by organism, the enrichment analysis

results of the singleton and combined regions, looking for relevant patterns.

2.5.1 H. sapiens enrichment analyses

In the case of H. sapiens , some lipid classes show a certain level of enrichment,

this is based on 34 molecules (out of the total 106 different ChEBI entries for

H. sapiens , approximately a third of it). Figure 2.31 shows these enriched lipid

categories as a result of the analysis done with BiNGO. This might be indication

that a good amount of the 727 small molecules from H. sapiens that could not

be merged with the sets from other organisms could be lipid related.

Through the same analysis for H. sapiens , Figure 2.32 shows the main bio-

logical roles uncovered in this data set of 727 unique molecules, where we can see

biases towards enzyme inhibitors, and drugs.

Another way of analyzing these sets of unique molecules is to trace back from

them to the enzymes catalyzing the reactions that produce/consume them. The

database can map the 727 unique H. sapiens molecules to 256 UniProt protein

identifiers, where only 136 are unique. This reduction has a number of causes.

Many of the unique molecules come from BRENDA, which many times implies

that the enzyme does not have a UniProt identifier. Also BioCyc databases

add a number of small molecules as enzyme inhibitors only, specially for highly

curated organisms like E. coli or H. sapiens , but only specifying the type of

enzyme they inhibit, not the particular protein entry in UniProt. Additionally,

there are number of proteins that appear recurrently, 40% of them are linked

to more than one small molecule, and even some of them, like Diphosphoinositol

polyphosphate phosphohydrolase (O95989) or Sulfotransferase 1A1 (P50225), are
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2. METABOLISM DATABASE INTEGRATION

Biological Process % Enrichment

p-value Fold

Phosphoinositide metabolic process 9.5 1.9E-11 19.4
Glycerophospholipid metabolic process 10.3 2.5E-10 13.0
Glycerolipid metabolic process 11.1 8.6E-10 10.2
Lipid phosphorylation 5.6 2.2E-09 51.7
Fucose metabolic process 5.6 5.1E-09 46.0
Phospholipid metabolic process 11.1 6.1E-09 8.7
Glycoprotein biosynthetic process 10.3 7.5E-09 9.7
Steroid metabolic process 11.1 1.3E-08 8.2
Protein amino acid glycosylation 8.7 1.1E-07 10.2
Biopolymer glycosylation 8.7 1.1E-07 10.2
Fatty acid metabolic process 9.5 7.9E-07 7.2
Lipid modification 6.3 1.7E-06 13.7
Carboxylic acid metabolic process 14.3 3.3E-06 3.8
Cellular carbohydrate catabolic process 6.3 6.8E-06 11.1

Table 2.8: Biological processes from Gene Ontology enriched for proteins linked
to unique H. sapiens small molecules. The % refers to the percentage of proteins
associated to that biological process.

linked to as many as 9 small molecules. Table 2.8 shows the most enriched

categories of the biological process of Gene Ontology using DAVID. Many lipid

metabolism related processes are enriched, supporting the result shown by the

ChEBI ontology enrichment analysis.

2.5.2 E. coli enrichment analyses.

In the case of E. coli we see a number of metal ions included by the metabolism

databases. This is probably due to the existing research in metals resistance by

bacteria through efflux pumps, which as unicellular organisms are exposed to a

variety of environments. In contrast with H. sapiens , E. coli shows low enrich-

ment of lipids, but higher enrichment in sugars, other carbohydrates derivatives,

and antibiotics. The latter are probably added to some of the databases as in-

hibitors of bacterial enzymes, in some cases because they are produced by the

bacteria, or because of the inactivation reactions that the bacteria has evolved

to neutralize them. Table 2.9 shows some of these enriched categories, along

with those that seem more interesting from the functional point of view. For the
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most enriched ChEBI categories in E. coli and for more detail on some of the

categories, such as the low enrichment of lipids, see Section C. 2 in Appendix C.

Table 2.10 shows the result of the enrichment analysis of E. coli protein iden-

tifiers related to the unique E. coli small molecules. The protein enrichment

strongly supports the association of this sets of unique small molecules to carbo-

hydrates.

2.5.3 S. cerevisiae enrichment analyses

S. cerevisiae shows again a lower enrichment of lipids than H. sapiens , although

some fungus fatty acids and steroids appear, such as ergosterols. S. cerevisiae

shows enrichment as well in cyclic compounds, including some lactones, por-

phyrinogens, and many nucleobase containing cyclic structures. However, most

of the nucleotides seen are errors of the integration, as those compounds should be

part of the other organisms as well. One of the S. cerevisiae resources had a num-

ber of duplicated nucleotides, this generates problems in the integration. These

nucleotides do appear in the other organisms. Table 2.11 summarizes the main

interesting ChEBI classes that are enriched in the set of S. cerevisiae “unique”

small molecules. Section C. 3 in Appendix C shows the most enriched ChEBI

categories for reference.

Enrichment analysis of the proteins linked to these small molecules in S. cere-

visiae produces a rather puzzling result: many of the proteins enriched are linked

to viral activities. This analysis as well shows that these small molecules are also

related to the sporulation process and the Ehrlich pathway, both unique to S.

cerevisiae within the organisms analyzed. Table 2.12 shows these enrichments in

the Biological process branch of the Gene Ontology.

2.5.4 M. musculus enrichment analyses

For M. musculus , the 80 ChEBI entries mapped show very little enrichment of

roles or relevant chemical categories like carbohydrates, lipids or sugars. This is
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ChEBI class % Enrichment

p-value Fold

Heterocyclic antibiotic 3.3 7.6E-09 5.4
Organonitrogen heterocyclic antibiotic 3.2 1.2E-08 5.5
beta-lactam antibiotic 3.0 3.9E-08 5.5
beta-lactam 3.0 6.4E-08 5.3
Antibiotic 5.4 4.4E-07 3.0
Lactam 3.0 7.2E-07 4.6
Cyclic amide 3.0 7.3E-07 4.6
Toxin 5.8 2.2E-06 2.7
Lipid A oxoanion 0.9 4.5E-06 25.9
Antibacterial agent 2.9 5.0E-06 4.3
Metal cation 2.2 5.2E-06 5.7
Cephalosporin 1.6 5.2E-06 8.4
Carbohydrate acid derivative anion 1.9 7.7E-06 6.5
Carbohydrate 8.4 2.0E-04 1.9
Monosaccharide derivative 7.5 1.2E-03 1.8
Organophosphorus compound 13.5 2.3E-02 1.4
Sulfur molecular entity 8.4 7.5E-02 1.3
Carbohydrate derivative 16.8 1.2E-01 1.2

Table 2.9: Interesting ChEBI classes enriched in the set of unique E. coli
molecules. Even though these are not the most enriched categories, they still
have relevant corrected p-values, and they tend to be more informative than high
level ChEBI classes. This list covers 283 ChEBI entities of the 753 unique ChEBI
entities mapped to the unique ChEBI small molecules, so it is a very reasonable
sample of it. The rest of the entities tend to widespread into many different high
level categories.
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Biological Process % Enrichment

p-value Fold

Polysaccharide biosynthetic process 11.3 2.9E-31 4.4
Carbohydrate catabolic process 12.1 4.9E-31 4.1
Carbohydrate biosynthetic process 12.0 1.4E-30 4.1
Polysaccharide metabolic process 12.5 1.4E-28 3.7
Oxidation reduction 22.5 2.9E-27 2.3
Cellular carbohydrate biosynthetic process 8.8 6.7E-21 3.9
Cellular polysaccharide metabolic process 8.2 9.6E-21 4.0
Cellular cell wall macromolecule metabolic process 3.9 9.2E-20 9.4
Peptidoglycan biosynthetic process 3.7 3.1E-19 9.5
Aminoglycan biosynthetic process 3.7 3.1E-19 9.5
Glycosaminoglycan biosynthetic process 3.7 3.1E-19 9.5
Cellular polysaccharide biosynthetic process 7.7 3.1E-19 4.0
Cellular component macromolecule biosynthetic process 3.7 8.7E-19 9.1
Cell wall macromolecule biosynthetic process 3.7 8.7E-19 9.1
Anaerobic respiration 4.8 1.9E-18 6.4
Lipid biosynthetic process 8.4 3.5E-18 3.6
Lipopolysaccharide metabolic process 6.6 5.0E-18 4.3
Lipopolysaccharide biosynthetic process 6.5 8.2E-18 4.4
Peptidoglycan-based cell wall biogenesis 3.7 1.1E-17 8.4
Cell wall biogenesis 3.7 1.1E-17 8.4

Table 2.10: Biological processes from Gene Ontology enriched for proteins linked
to unique E. coli small molecules. The % refers to the percentage of proteins
associated to that biological process. The analysis shows a strong bias towards
carbohydrates, polysaccharides and cell wall related processes. Bacterial cell
walls, rich in peptidoglycans, polysaccharides and other polymers are massive in
term of material demand, and unique to E. coli in the context of the four model
organisms compared.
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ChEBI class % Enrichment

p-value Fold

Fatty acid ester 4.0 4.2E-03 21.0
3-beta-sterol 4.0 7.6E-03 14.6
Nucleobase-containing molecular entity 10.9 4.5E-02 2.4
Phosphoric acid derivative 20.8 4.5E-02 1.8
Lactone 5.0 5.3E-02 3.6
Ergosterol 1.0 4.9E-02 94.4
Fecosterol 1.0 2.6E-02 472.1
Carbohydrate derivative 19.8 1.6E-01 1.4

Table 2.11: Interesting ChEBI classes enriched in the set of unique S. cerevisiae
molecules. Even though these are not the most enriched categories, they still
have relevant corrected p-values, and they tend to be more informative than high
level ChEBI classes. This list covers 41 ChEBI entities of the 101 unique ChEBI
entities mapped to the unique ChEBI small molecules, so it is a very reasonable
sample of it. The rest of the entities tend to widespread into many different high
level categories.

really to be expected, as the organism is being compared to H. sapiens , so very

few, if not none, unique small molecules should be expected. Section C. 4 in

Appendix C includes the Top 15 most enriched ChEBI categories for reference.

2.5.5 Enrichment analysis of joint regions

In the comparison that Figure 2.29 shows, one would expect to see a higher overlap

between the two mammalian species, and the differences seen must probably be

artifacts of annotation levels and unification defects. A much robust set should

be the union of the singletons regions of H. sapiens and M. musculus (regions

sized 727 and 317) and the intersect between them that is not shared with S.

cerevisiae and E. coli (region size 880). This would be a set of metabolites

unique to mammals when compared to S. cerevisiae and E. coli .

From this set of 1,924 small molecules, 630 had a ChEBI cross reference,

reaching 699 different ChEBI identifiers. The ChEBI enrichment analysis has a

much more consistent result this time, where lipids represent nearly one third

of the whole set, and steroids play a major part of this enrichment. Table 2.13
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Biological Process % Enrichment

p-value Fold

Developmental maturation 10.9 8.4E-45 12.9
Virion assembly 10.9 8.4E-45 12.9
Viral assembly, maturation, egress, and release 10.9 8.4E-45 12.9
Viral procapsid maturation 10.9 8.4E-45 12.9
Cellular component assembly involved in morphogenesis 10.9 8.4E-45 12.9
Viral infectious cycle 10.9 8.4E-45 12.9
Viral reproductive process 10.9 8.4E-45 12.9
Viral capsid assembly 10.9 8.4E-45 12.9
Viral reproduction 10.9 1.1E-43 12.6
DNA integration 10.9 7.5E-41 11.8
Transposition, RNA-mediated 11.4 2.4E-27 7.0
Transposition 11.4 2.9E-26 6.7
Protein amino acid dephosphorylation 6.5 1.0E-19 9.5
Dephosphorylation 7.0 1.1E-16 7.0
DNA recombination 11.9 8.7E-14 3.4
Phosphate metabolic proc. 14.5 1.7E-11 2.6
Phosphorus metabolic proc. 14.5 3.6E-11 2.6
Amino acid catabolic proc. to alcohol via Ehrlich pathway 2.8 5.4E-11 13.2
Amino acid catabolic proc. via Ehrlich pathway 2.8 5.4E-11 13.2
Oxidation reduction 16.3 6.2E-11 2.4

Table 2.12: Biological processes enriched in the set of proteins related to the
unique S. cerevisiae molecules. Surprisingly, a number of proteins are related
to viral activities, that probably use S. cerevisiae as host cell. There are also
enriched categories for information processing, coherent with the number of nu-
cleotides found, but again part of the same error. The developmental maturation
and cellular component assembly involved in morphogenesis are both associated
to the S. cerevisiae sporulation process, which is unique when compared to the
other organisms considered. The Ehrlich pathway for fuse alcohols is also very
specific to S. cerevisiae.
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ChEBI class % Enrichment

p-value Fold

Steroid 17.8 2.4E-53 5.9
Hydroxy steroid 12.2 3.7E-42 7.3
Lipid 31.3 1.1E-34 2.5
Organic polycyclic compound 18.1 1.2E-31 3.5
Polycyclic compound 20.0 3.6E-25 2.8
Organic hydroxy compound 19.4 3.1E-22 2.6
Alcohol 17.1 1.6E-20 2.7
Oxo steroid 6.2 2.5E-19 6.5
3-hydroxy steroid 5.3 1.6E-15 6.1
Oxysterol 2.1 1.5E-14 26.1
3-oxo steroid 4.3 3.7E-14 7.1
7alpha-hydroxy steroid 2.5 2.1E-12 13.2
Steroidal acyl-CoA 1.9 3.0E-12 21.4
7-hydroxy steroid 2.5 7.7E-12 12.1
Androstanoid 1.9 7.0E-10 14.4

Table 2.13: Enrichment results with the ChEBI ontology for the combined
molecule set of H. sapiens and M. musculus , that do not intersect S. cerevisiae
nor E. coli . Data shows a strong bias towards lipids and particularly steroids.
The enrichment signal becomes much more powerful when combining the H. sapi-
ens and M. musculus regions, providing a better overview of the particularities
of a mammalian metabolome. Contrary to what happens for most other regions
of the Venn diagram of Figure 2.29, these ChEBI categories show even higher
enrichment than the high level ChEBI classes, which is reflected in the very low
p-values.

shows the most enriched categories (these are not the most interesting selected

one, but the actual most enriched ones) for the joint M. musculus and H. sapiens

regions of small molecules that do not intersect with S. cerevisiae and E. coli .

To find relevant small molecules associated with the “unicellular” character of

S. cerevisiae and E. coli , I inspected the union of S. cerevisiae and E. coli that

does not intersect with the two mammals . Out of the 2,235 small molecules in

these regions, 1,005 had ChEBI identifiers. These 1,005 small molecules mapped

to 1,018 different ChEBI identifiers. I found no relevant enrichment beyond

that already seen in E. coli . This indicates that there is no common area of

metabolism that differentiates these two unicellular organisms from the H. sapi-

ens and M. musculus , or if it exists, it is not adequately reflected in ChEBI or in
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the metabolism databases. This again supports the initial idea that S. cerevisiae

metabolism is more influenced by its eukaryota lineage rather than its unicellular

nature.

For an eukaryotic metabolism comparison to E. coli , I retrieved all small

molecules from the union of H. sapiens , M. musculus , and S. cerevisiae that

did not intersect with E. coli . Out of 2,506 small molecules in this set, 1,704

had a ChEBI identifier, mapping to a total of 1,061 ChEBI entities. This set of

molecules did not exhibit any stronger signals than the already observed with the

H. sapiens and M. musculus union. Lipids again were highly enriched.

The Venn diagram of Figure 2.29 shows a core region of 750 small molecules

shared by all organisms, which presumably represents the core primary metabolism.

Inspection of this region through enrichment analysis shows that there is strong

enrichment of phosphorilated entities, specially sugars and nucleotides. This re-

gion shows little lipid enrichment in contrast to the eukaryota regions, and the

enriched lipids tend to be fatty acids and glycerophospholipids, main membrane

components of all living organisms, which makes sense for a core metabolism.

2.5.6 Analysis of the second main mass peak

Earlier in section 2.3.5, Figure 2.6 showed that the masses of molecules from the

four organisms exhibit two main peaks: a first larger peak around 200 Daltons and

a second smaller peak around 800 Daltons. While this shape in the distribution

might still be an artifact of our lack of knowledge of metabolism, it is reasonable

to ask whether there might be a reason for metabolism to have this distribution

in terms of mass.

Through initial manual inspections of the molecules’s names in the 800 to

1200 Daltons range for the H. sapiens unification, I noticed that 120 out of

190 molecules had a co-enzyme A (CoA) structural unit. This is even more

pronounced for M. musculus . Table 2.14 summarizes the result of this exercise

for the four species. Acetyl-CoA plays a key role in metabolism, as it is one of the

main hubs connecting catabolic and anabolic processes[112], connected to amino

acids, lipids, and secondary metabolites. This probably explains the variety of

acyl-CoAs found. The high level of enrichment in Fatty acyl-CoA compounds
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DataSet CoA-bound Total

H. sapiens 120 190
M. musculus 121 158
S. cerevisiae 76 93
E. coli 112 180

Table 2.14: Count of small molecules in the 800 to 1,200 Daltons range, for each
database species unification. The table shows the count for molecules bound to a
co-enzyme A and the total count for the mass range, showing that in most cases
nearly two thirds are CoA bound small molecules.

reflects the relevance of fatty acids as building blocks.

Enrichment analysis through BiNGO – which Table 2.15 shows for H. sapiens –

confirms the finding of a variety of acyl-CoAs, and allows to characterize it in two

main groups: fatty acyl-CoA and steroidal-CoAs. After acyl-CoAs, the analysis

finds a second much smaller group of nucleotides – which Table 2.16 shows. The

same holds for M. musculus and S. cerevisiae, the result of the enrichment is very

similar. In the case of E. coli , the main categories enriched are again the same,

with the exception that pyrroles appear with higher enrichment than nucleotides.
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ChEBI class % Enrichment

p-value Fold

Acyl-CoA 48.3 8.5E-85 29.2
Thiocarboxylic ester 48.3 1.3E-83 27.9
Fatty acyl-CoA 37.6 4.8E-68 33.7
Ester 69.1 4.4E-46 4.4
Unsaturated fatty acyl-CoA 13.4 7.2E-22 29.8
Steroidal acyl-CoA 7.4 5.5E-17 81.9
Hydroxy fatty acyl-CoA 8.1 3.2E-13 31.0
Medium-chain fatty acyl-CoA 6.0 5.2E-13 67.0
Long-chain fatty acyl-CoA 6.7 1.8E-12 42.7
Oxo-fatty acyl-CoA 6.7 1.8E-12 42.7
Acyl-CoA(4-) 7.4 6.4E-12 28.9
Cholestanoyl-CoA 4.0 3.9E-09 76.8
3-oxo-fatty acyl-CoA 4.7 8.2E-09 42.3
Organophosphate oxoanion 12.1 1.3E-08 6.4
Coenzyme 6.7 3.2E-08 15.2
Phosphoric acid derivative 29.5 7.2E-08 2.5
Short-chain fatty acyl-CoA 4.7 7.7E-08 30.3
Phosphorus oxoacid derivative 29.5 9.4E-08 2.5
Phosphorus oxoacids and derivatives 29.5 1.8E-07 2.4
3-hydroxy fatty acyl-CoA 4.7 2.7E-07 24.9

Table 2.15: Top 20 most enriched ChEBI ontology classes and roles for small
molecules in H. sapiens , ranging from 700 Daltons to 1200 Daltons. Some general
classes or roles have been removed.
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ChEBI class % Enrichment

p-value Fold

Adenosine 3’,5’-bisphosphate 4.7 3.2E-07 24.1
Adenosine bisphosphate 4.7 7.7E-07 20.9
Purine nucleoside bisphosphate 4.7 1.5E-06 18.7
Dinucleotide 4.7 1.5E-06 18.7
Ribonucleoside bisphosphate 4.7 1.7E-06 18.4
Nucleoside bisphosphate 4.7 2.4E-06 17.4
Purine ribonucleotide 6.0 1.7E-05 8.5
Adenosine phosphate 4.7 2.2E-05 12.3
Adenyl ribonucleotide 4.7 2.2E-05 12.2
Nucleotide 11.4 2.6E-05 3.8
Ribonucleotide 6.7 2.8E-05 6.8
Adenyl nucleotide 4.7 5.5E-05 10.5
Nucleoside phosphate 11.4 8.0E-05 3.5
Purine nucleotide 6.0 1.3E-04 6.4
Ribose phosphate 6.7 3.1E-04 5.0
Adenosines 4.7 3.1E-04 7.8
Purine ribonucleoside 5.4 3.4E-04 6.4
Ribonucleoside 5’-tetraphosphate 2.0 3.8E-04 43.6

Table 2.16: Most enriched ChEBI ontology classes related to nucleotides, for small
molecules in H. sapiens ranging from 700 Daltons to 1200 Daltons. Some general
classes or roles have been removed. These classes are not the most enriched
(Table 2.15 present those), but those with the higher enrichment that are related
to nucleotides.
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2.6 Conclusion

In this chapter, I introduced a framework and algorithm for consolidating meta-

bolism knowledge in an organism specific way. I show cases in which conventional

comparisons through InChI or SMILES would fail, which requires then an addi-

tional effort in the way we integrate chemical datasets of metabolism. A combi-

nation of structural data and meta data provides an improved way of consolidat-

ing these data sets. With this framework, I integrated three major metabolism

databases for four model organisms. I integrated a number of other resources as

cross references and showed a number of post processing steps that are necessary

to improve the quality of a chemistry based unification of metabolism databases.

The unification algorithm has better results than previously published methods.

The integration of H. sapiens metabolism databases shows that the overlap

of the main metabolism providers (KEGG, BioCyc and BRENDA) is not as high

as expected, sharing each database from half to two thirds of it contents with

the other resources. This leaves still a large amount of data that is unique to

each resource, which implies that there is plenty to gain from putting together

the knowledge of different metabolism databases.

Assessment of the database integration results through two independent meth-

ods shows evidence that the error should remain below 20%. Inspection of partic-

ular regions of the data gives evidence that supports the high level of complemen-

tarity of the metabolism resources suggested by the integration. The unification

of chemical data sets of metabolism is a complex problem, and I think that, even

though our method performs better than other published algorithms, there is still

reasonable room for improvement. I would personally expect to lower the number

of unique chemical entities in the unifications through some enhancements, both

in the unification method and in the data loading and annotation parts.

A comparison of the main metabolism databases for H. sapiens against the

HMDB – which is considered in this text as a metabolome database and not a

metabolism database – reveals a massive amount of chemical entities that are

unique to the HMDB. Inspection of the metabolites unique to HMDB that are

not found in the H. sapiens metabolism databases reveals that the majority are

lipids, many of them isomers with only different saturations and double bonds
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positioning. This can be explained partly because metabolism databases describe

many lipid related pathways as generic reactions. For instance, the first step of the

cycle in the fatty acid β-oxidation1 is a Medium-chain acyl-CoA dehydrogenase,

which converts “a 2,3,4-saturated fatty acyl-CoA” into “a trans-2-enoyl-CoA”.

In “a 2,3,4-saturated fatty acyl-CoA”, the fatty acid moiety normally has 14 to

24 carbons, and it will not contain double bonds in positions 2, 3, and 4. This

means that metabolism databases only include generic molecules in this case,

which represent a diversity of fatty acids, but do not contain all the fatty acid

molecules which match the generic description. In general, most metabolism

databases have the bias of including only chemical entities that are participating

in known reactions, while HMDB only requires evidence that the molecule can

be found in H. sapiens . It is also important to note that metabolism databases

add more than a thousand small molecules that are not present in the HMDB.

Inspection of the four model organisms metabolomes assembled shows partic-

ularities and commonalities – like the concentration of acyl-CoAs in the 800 to

1,200 Daltons – between the chemistry of these organisms. Mass distributions

show that higher eukaryotes, like H. sapiens and M. musculus , have slightly

more complex chemical entities than simpler organisms, as masses tend to shift

towards higher values on average. Enrichment analysis through the ChEBI on-

tology further shows that this complexity in H. sapiens and M. musculus grows

mostly towards the lipids space. On the other hand, enrichment analysis for E.

coli suggest it might specialize more in carbohydrate variants than in lipid com-

plexities. These analyses are of course limited by the coverage that the ChEBI

ontology achieves of the chemistry of the different organisms. It is clear as well

that we need a wider and better ChEBI, and that its ontology is by far one of the

most useful resources for classifying chemical entities and giving them a biological

interpretation.

1Details for this pathway correspond to those found in HumanCyc
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Chapter 3

Text mining methods for

inferring metabolomes

3.1 Introduction

Although online databases, such as KEGG [72], BRENDA [16], Rhea [3] or Bio-

Cyc [11] among many other resources represent metabolism to a wide extent,

there is still a lot of knowledge deeply buried in millions of scientific publications.

Approximately 20% of biological knowledge is normally available in structured

data repositories like databases, the remaining part is hidden in free text1 scien-

tific literature [62].

There are currently 20 million papers deposited in NCBI PubMed2. KEGG,

BioCyc, and BRENDA for H. sapiens point to only 57.5 thousand of these. In

contrast, small molecules dictionaries find hits in approximately 7 million ab-

stracts. Considering that H. sapiens is by far the most studied organisms (more

that 1.4 million abstracts mention it, more than doubling the next mentioned

species3), one could expect an additional reasonable amount of knowledge of

metabolism and small molecules to be uncovered from literature.

1Refers to unstructured text, written normally in a narrative manner, as opposed to struc-
tured text, as deposited organized in a database.

2NCBI PubMed is the main repository of life sciences literature in the world
3I obtained the number of mentions per organisms from the text mining infrastructure

described later.
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The HMDB database contains nearly 8,000 small molecules. Most metabolism

databases contain less than two thousand small molecules that can be assigned

through them to H. sapiens . This leaves at the least some thousands of small

molecules that cannot be retrieved from metabolism databases but need to be

mined from the literature or text books. Furthermore, the rate in which new

literature is generated makes it difficult for these databases, let alone researchers,

to cope with the vast amount of new relationships generated between proteins,

small molecules, and the cell types or tissues in which they reside. Sometimes the

level of knowledge about a particular small molecule is not sufficient to include

it in metabolism databases. This normally happens when the reactions in which

they participate are not well understood.

Most metabolism databases do not provide further biological context to small

molecules than the reactions in which they participate and the enzymes that

could catalyze those reactions. There is rarely any reference in them to cell

types or tissues in which these small molecules can be found. This is of extreme

importance for metabolomics, as the metabolome is different from tissue to tissue

or from cell type to cell type[158]. These localization relations can be addressed

through a text mining approach, in which dictionaries of tissues and cell types

can be used alongside small molecules dictionaries to find relations in free text.

The need to complement what is found in existing metabolism databases with

small molecules mentioned in literature motivates the use of text mining tools to

fill this gap. Although the use of text mining tools is well established in bioin-

formatics, at the time this work started there were surprisingly few examples of

application to metabolome assembly. In this chapter we introduce the develop-

ment of tools that exploit text mining techniques for the proposed aim of inferring

complete metabolomes.

3.2 Background

3.2.1 Text mining terms

Before going into the subject, this section presents a short overview of relevant

terms that readers not familiar with text mining might find useful.
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Grammar: A grammar is a set of rules that describe how certain components

can form more complicated structures within a natural language, explaining

how strings – as words in natural language – can be combined to form higher

order structures – such as phrases or sentences – in that language. Having

a grammar allows to have software that can decide whether a particular

arrangement of strings is correct or not in that language.

Parser: A program or tool that scans a chunk of text for certain defined gram-

matical structures, normally retrieving them for further processing by other

components. These structures are normally defined in a separate grammar,

which tends to be simpler than the original text rules, like the encoding of

simple ways of writing a particular interaction or rules governing how to

write a IUPAC name.

Shallow parser: A tool that labels parts of a sentence with simple syntactic

roles, such as verb phrase and noun phrase, without descending into ad-

ditional detail. Figure 3.1 shows an example, generated with the Brat tag

visualizer [142].

Deep parser: A tool that labels parts of a sentence, characterizing completely

the syntactic roles of each word in the sentence, normally producing a syn-

tactic tree. Figure 3.2 shows an example syntactic tree.

Tagger: A tool that processes text to find particular entities (normally words or

multi-word tokens) according to a large terminology set (as a dictionary), a

set of rules (such as a grammar), or an engine that allows to identify entities.

The output is normally the same text given as input with the recognized

entities “tagged” with the class to which they belong. Figure 3.3 shows an

example, from the web version of the GENNIA Tagger, mentioned in Section

3.2.2.

Part-of-speech tagging: Assignment of a grammatical role (noun, verb, ad-

verb, etc.) to each word of a sentence. Normally a deep parser requires to

do this before generating a syntactic tree.
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Named entity recognition: abbreviated to NER, is the act of assigning a rec-

ognized token to a class of elements: the word “ligase” found in a free text

piece refers to a class of objects called “proteins” or even “enzymes”.

Normalization: In this context, normalization means assigning a database iden-

tifier to a recognized entity name within a sentence. For instance, if a tag-

ger recognizes a protein name, the normalization step would associate that

name with an identifier from a database like UniProt.

The company said it does n't expect the new line 's capacity to adversely affect the company 's existing hot-dipped galvanizing lines.

Steelmakers have also been adding capacity of so-called electrogalvanized steel, which is another way to make coated corrosion-resistant steel.

One of the advantages of the hot-dipped process is that it allows the steel to be covered with a thicker coat of zinc more quickly.

ONCE YOU MAKE UP your mind about an investment, the rest is easy, right?

You just call your broker and say "buy" or "sell."

Dream on.

There are all sorts of ways to give buy and sell instructions to a broker -- and just as many ways to get burned if you do n't know what you 're doing.

So here 's a rundown of the most common types of market orders permitted by the stock and commodity exchanges.

Two things to keep in mind : Not all exchanges accept every type of order.

And even when a specific order is acceptable to an exchange, a brokerage firm can refuse to enter it for a customer.

NP VP NP VP NP NP VP NP NP

NP VP NP PP NP NP VP NP VP NP

NP PP NP PP NP VP SBAR NP VP NP VP PP NP PP NP ADVP

NP VP PRT NP PP NP NP VP ADJP INTJ

NP ADVP VP NP VP VP
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Figure 3.1: Example of a sentence processed by a shallow parser, where only the
main syntactic structures are recognized: noun phrases (NP), preposition phrases
(PP), and verb phrases (VP). This was produced with Brat [142]

S

NP VP

NPVND

NDthe dog ate

the bone

Figure 3.2: Syntax tree, showing the level of characterization that a deep
parser would normally give to the sentence “the dog ate the bone”, image from
Wikipedia. Entities shown are sentences (S), noun phrases (NP), verb phrases
(VP), articles (D), nouns (N), and verbs (V).
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Cancer cells exhibit accelerated rates of metabolism favoring glucose over fatty acid (FA) utilization. For both energy substrates, protein-
mediated transport plays an essential role in facilitating glucose or FA movement across plasma membrane into the cells . Scarce data exist 
regarding the expression of glucose and/or FA transporter in cancer tissue . Therefore , we examined glucose (GLUT-1 , GLUT-3 , GLUT-4) 
and FA (FAT/CD36, FABPpm, FATP-1) transporter expressions at the protein and post-transcript (mRNA) levels in 35 endometrial carcinomas 
(G1, type endometrioid , FIGO I) and compared them with normal endometrial mucosa (n=10) . Endometrial cancer tissue had significantly 
greater protein expression of GLUT-1, GLUT-3, and GLUT-4 and, conversely, lower fatty acid (FAT/CD36 and FATP-1) transporter expression. 
Interestingly, mRNA content closely mirrors the changes, but only for glucose transporters and not fatty acid transporters. These results 
suggest the presence of metabolic switch of energy utilization in endometrial cancers favoring glucose consumption as the major source of 
energy.

(entity types: protein, DNA, RNA, cell_line, cell_type) 

Figure 3.3: Tagged text output visualization, generated by the GENNIA Tagger.
Entities are only recognized as being a cell type, disease or protein, but there is
no normalization (assignment of the identified entity to a database entry).

3.2.2 Existing resources: text mining metabolome knowl-

edge

PolySearch

This tool [18] provides a web search for relating diseases, tissues, cell compart-

ments, gene/protein names, single nucleotide polymorphisms, mutations, drugs

and metabolites. It relies both on text mining algorithms, to process the whole

of NCBI PubMed abstracts, and on existing databases, like NCBI Entrez or

DrugBank[83], to improve and annotate results. The tool ranks results by sta-

tistical scores that evaluate the relevance of the relations. The user can impose

cut-offs for the minimal number of citations where the relations should be found.

PolySearch has an interesting set of thumb rules to limit the extent to which

two terms – like a protein and a disease – can be related. It allows the user to

add specific verbs – such as “accumulates” or “depleted” – that need to be part

of the sentence relating the two terms.

Although it relies on text mining to process all the abstracts in NCBI PubMed,

the size of the small molecules collections is only limited to the Human Metabolome

Database (HMDB). PolySearch is only web accessible, so it cannot be easily in-

corporated as a part of a local pipeline. Despite being an excellent tool due to the

integration of many different biological entities, it fails to fill the gap addressed

here, since it only considers a small set of ∼3,000 small molecules obtained from
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the HMDB. This also makes it highly biased towards H. sapiens , impairing its

use with different organisms.

OSCAR and OPSIN

OSCAR – Open Source Chemistry Analysis Routines[68] – is a Java library for text

mining of chemical entities. Development of OSCAR started in the early 2000’s

and has been mainly aimed at retrieving entities from experimental sections of

Chemistry journals and patents, specially chemical synthesis procedures. OSCAR

works essentially as a shallow parser of chemical names. It combines dictionary

based search with regular grammar based tokenization of chemical names.

This latter functionality, as well as its ability to produce chemical structures

from the identified names (when written in IUPAC format), is provided by the

package OPSIN [93]. OPSIN is the best open sources alternative for identify-

ing chemical names. One of its main drawbacks when it comes to inferring

metabolomes is that “. . . OPSIN does not yet support biochemical nomenclature,

e.g., carbohydrate nomenclature, and hence will have very low recall when pre-

sented with such names.” as the authors state [93].

This should not be a surprise given that OSCAR and OPSIN development has

been historically biased towards the area of experimental chemistry rather than

biochemistry. This however could be improved, as OPSIN’s rules are extensible

without any need to modify its code. OSCAR and OPSIN are available to be used

locally, allowing high-throughput analysis.

When the work for this part of the thesis began, OSCAR 3 was available. This

package was extremely difficult to integrate due to the need of complicated set

ups and an overall unintuitive API. Fortunately much of this was solved in release

4 [68], but this came too late to be integrated into our workflow. The need for

extending OPSIN for general metabolite names also made this tool less attractive

for our endeavour. For these reasons I decided not to use OSCAR nor OPSIN.

WhatIzIt Text Taggers

The WhatIzIt text taggers, available from the text mining group at the EBI, pro-

vide a number of different normalizer taggers for Small molecules, proteins, species
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and other biological entities [125]. Most of these taggers rely on dictionaries, or

large terminology sets, which contain various synonyms and regular expressions

that recognize in free text terms that belong to a database or ontology.

WhatIzIt offers four dictionaries for small molecules: ChEBI, PubChem Com-

pounds, HMDB and OSCAR. WhatIzIt uses UniProt as dictionary of protein

names, and NCBI Taxonomy as dictionary of organisms and taxonomic classes.

The text mining group at EBI has tools and expertise to aid in the generation of

new dictionaries, based on databases or ontologies.

Handling large collections of regular expressions and plain text for concurrent

search is a demanding task in terms of memory and processing. In the case of

WhatIzIt, the underlying technology for handling large collections is provided by

the monq.jfa Java library [82]. This library is a flexible and efficient framework for

deployment of taggers as servers in a distributed environment (like a computer

cluster). The ability to distribute text taggers and be able to use these tools

locally at the EBI cluster are essential to process a corpus like the whole NCBI

PubMed abstracts.

EBIMed

The text mining group at EBI provides EBIMed [126], a web application that

relies on co-occurrences of proteins, organisms, entries of the Gene Ontology and

drugs. EBIMed normalizes occurrences of these biological objects in the NCBI

PubMed abstracts through WhatIzIt text taggers, using UniProt for proteins, the

three Gene Ontology branches (cellular component, biological process and molec-

ular function), MedlinePlus for drugs and NCBI Taxonomy for organisms. Only

sentence based co-occurrences are retrieved, ranking the pairs of co-occurring

entities by the number of sentences that contain them.

The tool provides the user with a table of results, where the interacting bio-

logical entities are shown with a score for the interaction and with a link to the

abstracts and sentences where the co-occurrence was found.

The aim of the tool is mainly oriented for biomedical queries, and is a really

useful at relating proteins, organisms, functions and diseases. Unfortunately, it

does not include small molecules.
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GENNIA Tagger

The GENNIA Tagger [155] provides part-of-speech tagging, shallow parsing and

named entity recognition capabilities. The tagger is a maximum entropy model1,

trained with a corpus containing biomedical journals and newspaper articles.

The authors evaluated the tagger using the GENNIA Annotated corpus of

biomedical abstract[81], as well as the PennBioIE Corpus[98], with very high

accuracies (above 90%). The tagger recognizes protein, DNA, RNA, Cell line

and Cell type entities, with an average F-Score of 71%. However, it does not tag

small molecule names and tissues.

ChemList Chemical Dictionary

ChemList[55] is a text mining oriented chemical dictionary built by integrating

small molecule and drug data from ChEBI, UMLS (Unified Medical Language

System [8]), NCBI MeSH, DrugBank, KEGG, HMDB and ChemIDPlus. The

main purpose of it is to be used as a NER and normalization reference dictionary.

The post processing of the data from the text mining point of view seems

impeccable: they apply seven different filtering rules to the dictionary and a final

manual check of the highly occurring terms. Finally, when used to tag elements

in a corpus, through their tool Peregrin, they apply disambiguation of chemical

names.

The chemical unification was mainly done relying on InChI strings and CAS

numbers. As I commented in Chapter 2, there are several difficulties in unifying

chemical data sets, and using InChI strings does not solve them all. Furthermore,

due to the publication date of this paper, it is very likely that the authors used

plain InChI and not Standard InChI, which exposes this collection to an addi-

tional number of duplicates and artificial merges, as there is no guarantee that

all the source resources used the same parameters for their InChI generations.

This could have been partially alleviated if the authors would have calculated

the InChI strings themselves, but they essentially collected them from the source

1Very often in the field of Natural Language Processing, models based on multinomial
logistic regression are referred to as maximum entropy models. A multinomial logistic regression
is a generalization of a logistic regression, which has a binary outcome, to get multiple outcomes.
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databases. Assessing uniqueness of small molecules by CAS numbers leads to

duplicate as well, in this case they are aware of this issue.

ChemList is available for download and can be used as a dictionary for NER

and normalization of chemical names. However, I decided not to use it as a

chemical dictionary given the consolidation process used. I could manually verify

a number of undesired duplicates and class including compounds that should be

deemed different. The text mining processing techniques that the authors of this

work propose should be replicated when building chemical dictionaries.

NaCTEM Tools

The National Centre for Text Mining, at the University of Manchester, provides

a series of web based tools for shallow and deep parsing.

TerMine: is an automatic term recognition tool [44]. Parses a corpus to find rel-

evant technical multi word terms through part-of-speech, linguistic filtering

(mostly nouns, adverbs and some prepositions are accepted) and statisti-

cal analysis of occurrences. Given a corpus, it generates a list of possible

relevant terms (multi word) found in the corpus, ranked by their relevance.

This is useful for generating an ontology out of a corpus. For our appli-

cation, this tool could be helpful to pre-filter abstracts and obtain terms,

which later filtered by a chemical name recognizer/dictionary would yield

small molecule names mentioned in the corpus. However, through a SOAP

web service access is difficult to process the amount of data required.

MEDIE: is semantic search service [111] which uses a precomputed deep parse

of NCBI PubMed. Enables search patterns in which the user must de-

fine the subject, verb and/or object of the query, retrieving abstracts that

have that pattern. For instance, searching for subject “molecule”, verb

“inhibits” and subject “enzyme”, the system finds results like “Omapatri-

lat is a single molecule that simultaneously inhibits neutral endopeptidase

and angiotensin-converting enzyme”, where the different biological terms

are tagged. In order to resolve ambiguous terms like “molecule” or “en-

zyme”, the processing of NCBI PubMed includes tagging with the GEN-

NIA ontology[81]. MEDIE is developed by NaCTEM collaborators at the
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Natural Language Processing Laboratory at the University of Tokyo. Un-

fortunately, this tool can only be used through a web interface.

FACTA+: is a tool to retrieve direct and indirect association facts between

terms in the biomedical literature [156]. It detects biomolecular events be-

tween compound, protein/gene, disease, symptom, drug or enzyme through

a machine learning approach, which is trained using a corpus with anno-

tated events. Statistics between the associated terms are computed through

a pre-calculated co-occurrence count between all possible terms in each

of the listed classes, done through a dictionary (one dictionary per class)

search. In the query the user defines a query term, a pivot concept and a

target concept. A query term would normally be a particular compound,

protein/gene, disease, symptom, drug or enzyme, pivot and target concept

would be one of these classes of entity. FACTA+ is only available through

a web interface, and does not include support for tissues or cell types.

Unfortunately, NaCTeM does not provide these tools as executables, which

makes the analysis of huge amounts of text impossible.

During the final stages of this work, authors from NaCTEM published a very

interesting study on extracting S. cerevisiae metabolites from literature [109],

based mainly on name entity recognition and then machine learning to rule out

non-metabolites, using a corpus of selected publications for S. cerevisiae. While

this is a sensible way of avoiding the organism disambiguation problem, it is only

applicable for those organisms where such collections of articles can be easily

retrieved.

U-Compare

U-Compare [73] is a workflow environment for Natural Language Processing tasks.

It has a number of components to read corpora, break text into sentences, do shal-

low and deep parsing, named entity recognition and disambiguation. Although

it could be used as a general purpose text mining tool, the main aim of it is the

comparison of text mining workflows, and so most of its visualizers are tailored

for comparison purposes (of running a corpus through one pipeline or the other).
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3.3 Procedure followed

As much as I felt inclined to learn more and more about natural language process-

ing tools, it was more clear that implementing a solution using syntactic parsing

could be too complicated for a first approach to the problem. The problem has

various types of relationships (organisms to proteins, organisms to tissues, or-

ganisms to small molecules, tissues to proteins, tissues to small molecules and

protein to small molecules) and each one of them can be represented by a num-

ber of patterns in natural language. On top of this I aimed at tools that could

process all the NCBI PubMed abstracts in a short time, and many of these tools

did not have the capacity or were not available in a format that I could use for

this purpose.

I decided to take a much simpler initial approach based on named entity

recognition and normalization, that would enable to find all the different types of

relationships in free text, with less details, but generating something that could

be processable for the amount of data that I wanted to inspect. Other works

in the future can dig deeper into particular types of relations and analyze them

from a semantic point of view. My focus is on the generation of organism-specific

small molecules collections that consider relations to biological containments, for

aiding experimental metabolomics in the annotation of features.

Using the tools available from the text mining group at EBI, I built a pipeline

of dictionary based taggers to process the entire NCBI PubMed abstracts collec-

tion. The pipeline includes the following tagger servers, used in this order:

Sentencizer: Recognizes text chunks within the abstract and title sections of

the NCBI PubMed XML export file and breaks it into sentences.

UniProt Tagger: Recognizes protein name and synonyms through a dictionary

based on UniProt. Contains ∼230,000 entries pointing to ∼130,000 different

proteins. Out of these, ∼50,000 point to more than one organism. The

protein name tagger has higher priority than small molecule taggers to

avoid recognizing parts of enzyme names as small molecules.

BRENDA Tissue Ontology Tagger: Tagging server that recognizes tissues

and cell types through a dictionary based on the BRENDA Tissue Ontology.
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This dictionary was not available from the WhatIzIt repository, and was built

from the BRENDA Tissue Ontology1. Contains ∼5,600 entries pointing to

∼3,300 different tissues and cell types.

ChEBI Tagger: Tagging server that recognizes small molecules through a dic-

tionary based on the ChEBI ontology. The dictionary contains approxi-

mately ∼43,000 entries, pointing to ∼11,000 different ChEBI entities.

PubChem Compounds Tagger: Tagging server that recognizes small mole-

cules through a dictionary based on PubChem Compounds. The dictionary

contains ∼195,000 entries, pointing to ∼104,000 different PubChem Com-

pounds compounds.

NCBI Taxonomy Tagger: Tagging server that recognizes organisms and taxo-

nomic names, through a dictionary based on the NCBI Taxonomy database.

The dictionary contains ∼208,000 entries, pointing to ∼170,000 different

NCBI Taxonomy identifiers.

Unless stated, all dictionaries and tagging servers are part of the WhatIzIt

collection, built and validated by the text mining group at EBI and a wide range

of external users.

The pipeline of tagging servers takes as input NCBI PubMed XML export

files, and outputs the same NCBI PubMed XML with annotations of proteins,

small molecules, tissues/cell types and organisms, normalized to the mentioned

databases. A second program written in Java parses this output and stores all

occurrences of these biological entities in a relational database that I designed for

this purpose.

The pipeline runs on the EBI cluster, where I deploy each tagger server on

a different node. The client program feeds the NCBI PubMed XML files to the

pipeline, and then parses the output to load it into the database. The program

runs in a separate cluster node, and parallelizes in six threads the feeding and

recollection process. Figure 3.4 illustrates the complete process. Figure 3.5 shows

1The dictionary was built with partial assistance from Ms. Kalaivani Jayaseelan, who by
that time was an intern student. All the work was carried out under my supervision and
guidance.
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the schema of the database designed to hold the co-occurrences results. All

communication between client and different tagging servers within the cluster is

through TCP sockets.

Client Side

Tagging Servers
Pipeline

Read chunk

Send ~15.000 
pubmed entries

MySQL DB:
PMID, Term,
Sentence, 

Section

Tagged
abstracts

1
2

34

Parse & Store 
occurrences

EBI Text mining group 
software

Figure 3.4: Diagram of the text mining pipeline built to retrieve small molecules
and their co-occurrences with organisms, tissues/cell types and proteins. The
pipeline starts with the client reading a chunk of entries from a directory con-
taining NCBI PubMed XML export files which sends to the tagging servers (for
proteins, small molecules, tissues/cell types and organisms). After going through
all the tagging servers, the submitted text is tagged with these biological enti-
ties. The client application then parses these tags and stores them in the MySQL
database designed. Information stored includes the database and identifier of the
biological entity, the NCBI PubMed ID of the document where it was found, the
section and the sentence number.

The pipeline processed all NCBI PubMed abstracts and titles until September

2009. The whole process took seven days, if it could run without interruptions.

The main bottleneck of the process is the storage of data in the database, and

interruptions of the whole process by communication errors or cluster issues,

requiring the process to be restarted a few times, before a first complete and suc-

cessful run. As the pipeline analyses six or more sets of NCBI PubMed abstracts

at once, but only one process can handle the insertions (otherwise there are col-

lisions when writing to the database), this produces the database bottleneck.
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Figure 3.5: Schema for the database that stores co-occurrences between small
molecules, organisms, tissues, cell types and proteins. The table Entity stores
the biological entities mentioned, normalized by the corresponding databases
(ChEBI and PubChem Compounds, NCBI Taxonomy, BRENDA Tissue Ontol-
ogy, and UniProt respectively). The table Citation stores the identifier for a
NCBI PubMed document. The table Entity has Citation stores a relation mean-
ing that the entity referenced was mentioned in a particular citation and the
table Instance Location stores where that occurrence took place (Sentence num-
ber and section). A co-occurrence between any two biological entities in the
database is computed by joining the Entity has Citation table with itself. Ta-
ble DB Catalogue holds the databases to which the different entities belong, and
DB Stats holds statistics of interactions between these types of databases, neces-
sary for calculating significances of co-occurrences.
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Several strategies – disabling binary logs, disabling keys, dropping constraints,

partitioning, etc. – and tunes were necessary to achieve the seven days running

time.

3.4 Co-occurrences results

I inspected the overall co-occurrences between the different biological entities

that the process considered. Figure 3.6 shows the overall relations between the

dictionaries used.

6.5 M Abstracts
∼19,000 proteins

∼7,500 ChEBI entries
7.2 M Abstracts
∼19,000 proteins

∼59,000 PChem entries

7.0 M Abstracts
∼56,000 PChem entries
∼2,700 tissue/cell types

entries

6.2 M Abstracts
∼7,000 ChEBI entries

∼2,700 tissues/cell types

5.8 M Abstracts
∼186,000 proteins
∼2,700 tissues/cell 

types entries

Figure 3.6: Diagram of the number of entities of each type related through co-
occurrences for the different dictionaries. The diagram shows that approximately
7.2 million abstracts related 19,000 proteins to 59,000 small molecules in Pub-
Chem Compounds. The other relations (arrows) are read likewise.

Figure 3.7 shows an important aspect, the distribution of entity occurrences

for the different dictionaries in the whole corpus annotated. The distribution of

occurrences varies from dictionary to dictionary for different reasons.

The NCBI Taxonomy dictionary has a median number of occurrences much

lower than the rest of the dictionaries. This is partly produced because NCBI
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Taxonomy does not only have organism names, but all the range of taxonomic

names available from super kingdom – like bacteria, archaea or eukaryota – to

sub strains – like Escherichia coli str. K-12 substr. MG1655 ; sub strain is

two levels lower than species. Most of these taxonomic ranges will be seldom

mentioned and represent a big part of the NCBI Taxonomy tree, lowering the

average. Also for NCBI Taxonomy, the supposed outliers with around a 100

thousands to a million occurrences, which in most dictionaries one would blame

to a promiscuous synonym that should be removed, represent H. sapiens , M.

musculus , E. coli and bacteria among few others. None of them had promiscuous

synonyms when checked in the dictionary.

The ChEBI dictionary shows the highest median of co-occurrences per term

among the chemical names dictionaries: slightly below the order of hundreds of

co-occurrences, compared to the nearly one order of magnitude lower of PubChem

Compounds or the HMDB. This is probably due to the higher number and quality

of synonyms in ChEBI. The ChEBI dictionary has on average four synonyms per

chemical entity.

PubChem Compounds is in general recognized to have bad quality and low

number of synonyms [55], the box plot in Figure 3.7 reflects this, as entities are

found only few times (lack of synonyms), has a very skewed distribution and a

very thin and long tail, which is probably symptom of many synonyms being

highly unspecific. This needs to be taken into consideration when later using the

results, as high occurring terms might need to be ignored.

The HMDB has very good synonyms, however a high number of compounds

as we know are lipids, which have historically been represented with different

nomenclatures1[34]. This makes their identification in free text difficult, low-

ering the overall occurrences average. The region above the upper whisker of

HMDB shows a lower density of outliers compared to PubChem Compounds.

Although this could well be due to the higher number of entries in the PubChem

Compounds dictionary, knowing first hand the content of both data sets, and

considering the number of times I have inspected results from both of them, I

1The last IUPAC-IUBMB recommendation for Lipid nomenclature came in 1976, since then
a number of novel lipid classes have been elucidated with no proper systematic nomenclature
covering them.
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would dare to speculate that this is an unspecific synonyms artifact. In contrast

to small molecule name dictionaries, the tissue and cell types dictionary built

from BRENDA Tissue Ontology seems well distributed and with a high median

of co-occurrences. This is probably due to the fact that tissues and cell types,

differently to small molecules or proteins, are a much more constrained vocabu-

lary and is based mostly on Latin roots that have been accepted for very long

now in the life sciences community (so most authors refer to them in a relatively

well controlled way). On top of this, it is rare to have abbreviations for tissues

and cell types; abbreviations sometimes lead to unspecific synonyms.

HMDB ChEBI TAXONOMY PubChem Uniprot BrendaTissue
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Figure 3.7: Box plots of distributions of occurrences of the terms in each dictio-
nary on the NCBI PubMed abstracts until September 2009. Boxes in the box
plot represent the observations in between the first and third quartile of the dis-
tribution, the whiskers represent 1.5 parts of the interquartile range below and
above those quartiles respectively. Middle line of the box represents the median.
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3.4.1 Entity ambiguity

The normalization process in the case of protein names will tag a name recognized

as protein name with all UniProt identifiers that match that name, regardless of

the species. One of the problems of normalizing results of named entity recog-

nition is the assignment of the entity to a particular organism [162]. Although

studies [159; 162] have produced results with good precision and recalls for decid-

ing to which organism a particular entity (protein, gene, etc.) belongs, they have

essentially relied on very good gold standard collections to train their methods.

This was only done for a handful of model organisms.

For H. sapiens a high proportion of citations mention it as the only species,

which simplifies a bit the disambiguation problem for proteins, tissues and cell

types. This does not hold for the other model organisms presented in Figure 3.8,

only half of the time they tend to be the only organism mentioned in the paper.

For this work, given that I only collect co-occurrences and not entire sentences,

considering that I am mainly interested initially in a H. sapiens metabolome to

compare against our gold standard, the programs written disambiguate proteins

by the organisms mentioned in the citation. In the case of H. sapiens this is

relatively safe as most of the abstracts tend to mention it as the only species

(∼70%). For the remaining ∼30% of the citations that mention H. sapiens with

other species, at least more than one third are always mammals.

3.4.2 Significance in text mining relations

I investigated statistics to rank the strength of co-occurrences of biological terms

(proteins, small molecules, tissues, organisms). Works by [33; 119; 133] provide

excellent coverage of the general statistic of co-occurrences, and explanations in

this section reflect my understanding of their treatment.

Most of the statistical theory behind the significance of co-occurrences relies

on a contingency table approach to the problem. What we essentially want to

know is, given two terms T1 = m and T2 = n, that belong to dictionaries Dm

and Dn, whether the amount of evidence in the corpus correlating the terms can
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Cumulative distribution
of different organism mentioned per citation
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Figure 3.8: Cumulative distribution of the number of different organisms men-
tioned per document, shown for different organisms. For H. sapiens , ∼70% of the
abstracts mention a single organism, and ∼90% mention one or two organisms
(one of these H. sapiens).
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Accumulated distribution
of different entities mentioned per citation
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Figure 3.9: Cumulative distribution of the number of different tissues/cell types,
proteins and small molecules mentioned per abstract. 85% of the abstracts men-
tion four or less tissues/cell types, only ∼50% mention just one tissue/cell types.
Proteins (organism disambiguated) show a similar profile. The slower growth of
the small molecule distribution is probably due to their lower frequency of occur-
rence, combined with the fact that chemical names are more difficult to detect
compared to other biochemical entities.
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T1 = m T1 6= m
T2 = n O11 O12 = R1

T2 6= n O21 O22 = R2

= C1 = C2 N

Table 3.1: Contingency table of observed frequencies of co-occurrences. R1 and
R2 denote row totals, C1 and C2 column totals. O11 is the observed number of co
occurrences of terms m and n, O12 the number of co-occurrences between term n
and any term from the dictionary of term m, but not m.

be explained by chance. If this is not the case, we suspect there is a meaningful

relationship between m and n.

Contingency Table 3.1 summarizes the possible outcomes of observing the

co-occurrences of term m with the elements of Dn, splitting the outcome in co-

occurrence being with either n (T2 = n) or with another element from Dn which

is not n (T2 6= n). The same applies for n co-occurring with elements of Dm.

O11 in Table 3.1, corresponds to the observed number of documents, in this case

NCBI PubMed abstracts and titles, where m and n co-occur. Conversely, O12

corresponds to the observed number of documents where n co-occurs with any

other member of Dm, but m. Since the database stores all the occurrences of

terms, we can obtain all Oij values for every pair of terms between any two dic-

tionaries. Given that the computation of the O22 is expensive as requires counting

all co-occurrences of all Dm members with all Dn members, the software written

computes this once and stores the value of this interactions in the database1. R1,

R2, C1, C2 and N are the sum of rows, columns and total of the table respectively.

For a particular co-occurrence of terms m and n then, the software can com-

pute a contingency table of observed co-occurrences. Using this data it builds

a second contingency table that reflects expected levels of co-occurrences of m

and n. Table 3.2 shows how expected co-occurrences Eij depend on the rows and

columns sums, R and C, from Table 3.1.

The significance of the co-occurrence of m and n, as in most statistical tests,

depends on how much the observed values deviate from the expected values.

1The exact value stored is O22 + O11 + O12 + O21, and then each time the software looks
for a particular co-occurrence, it subtracts the particular O11 +O12 +O21 values, yielding O22.
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T1 = m T1 6= m

T2 = n E11 = R1C1

N
E12 = R1C2

N

T2 6= n E21 = R2C1

N
E21 = R2C2

N

Table 3.2: Contingency table of expected frequencies of co-occurrences, calculated
from the values in the observed contingency table. E11 stands for the expected
number of co-occurrences between terms m and n, given the observed totals in
Table 3.1.

Different metrics of this significance make distinct uses of these expected and ob-

served values, through compromises that give them their weaknesses and strengths.

The statistics picked were the Mutual Information Measure, Log likelihood

score and the t-Score, as according to [33], these seem to be the most useful ones,

in that order.

For the Mutual Information Measure, derived from Shannon’s information

content, Equation 3.1 shows how it is defined in terms of the contingency tables.

This is the most popular statistic, and only suffers from giving high rankings

when the number of observations is low (< 3). This is an issue in the noisy case

of text mining, but can be a strength if we are after rare cases. Normally the

approach is to use a cutoff for the minimal number of documents that show the

co-occurrence, or have a second statistic and impose thresholds for both.

MiM = log
O11

E11

(3.1)

Equation 3.2 defines the t-Score, named after the resemblance to a t-Test1, in

accordance to the contingency tables.

t-Score =
O11 − E11√

O11

(3.2)

Finally, Equation 3.3 defines the Log Likelihood (LLH). This statistic di-

minishes the effect of small O11 by comparing through the complete table and

multiplying by all observations over expectations.

LLH = 2
∑

ij

Oijlog
Oij

Eij

(3.3)

1Even though this kind of test would not apply to these tables
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MiM and LLH for BTO Tissues/Cell types
co−occurring with H. sapiens
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Figure 3.10: Log likelihood and mutual information measure scores for the co-
occurrences of H. sapiens and tissues/cell types from the BRENDA Tissue On-
tology. Using the data from BRENDA database, one can select tissues/cell types
that have links in the database to H. sapiens enzymes (left panel) and tissues/cell
types that do not (right panel), which might indicate that they do not belong
to H. sapiens . The color shows the order of magnitude of abstracts that include
that co-occurrence. The graphs show that co-occurrences of tissues/cell types
that have links in the database to H. sapiens enzymes are more concentrated in
areas of higher mutual information and higher log likelihood, with higher number
of abstracts. The left graph shows that the Log likelihood allows to separate the
cases of low number of abstracts that the minimum information measure would
normally rank with good scores (the weakness of this scheme).

Setting a threshold for these statistics, or for the number of documents where

the relations should be found, is not straightforward. While some authors make

recommendations on particular cut-offs, these recommendations are normally

based on the use of particular dictionaries and corpus. In other words, the diver-

sity of terms of a given dictionary and the ubiquity of their occurrences in the

corpora analyzed will influence the behaviour of expected Eij and observed Oij
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values.

This work bases its cut-off on the behaviour of the organisms and tissues/cell-

types dictionaries interaction, measured by the MiM and LLH statistics (Figure

3.10). These dictionaries are suitable to use for this comparison, as a list of

tissues/cell-types that belongs to a particular species can be extracted from the

whole dictionary. The co-occurrences of that list of tissues/cell-types with that

source species can be compared against those of tissues/cell-types that are not

part of the species.

I implemented the scores calculation within MySQL as stored procedures. This

permits to obtain results as shown in Table 3.3, which shows the most significant

co-occurrences between the small molecule Kynurenic acid and tissues/cell types

from BRENDA Tissue Ontology, with just one query to the database. Kynurenic

acid is indeed a relevant metabolite in the nervous systems, which is what the ta-

ble expresses. In a single search we ask for a query entity (in this case a particular

small molecule) and a target dictionary (in this case, BRENDA Tissue Ontology),

and using thresholds for minimal MiM, LLH and sentence distance. Appendix

F contains more examples like this, for both ubiquitous and specific metabolites.

These examples show that ubiquitous metabolites – such as Pyruvate, Lactate or

Taurine – associate with a wider variety of tissues/cell types compared to more

specific metabolites – such as Ursodeoxycholic acid, Pregnenolone, or GABA –

which associate to functionally related tissues/cell types.

These encapsulated queries, given the size of the main table Entity has Cita-

tion which holds more than 200 million records and needs to be joined with itself,

can take between a few seconds to a few minutes depending on the dictionaries

used in the query. I optimized queries and indices, but this seems to be at the

limit of MySQL capacity.

To improve the response time of the queries involving the UniProt dictionary,

the largest one in term count and occurrences count, I indexed each UniProt

entry in the dictionary with the corresponding NCBI Taxonomy identifier for the

organism – each UniProt entry belongs to one particular organism – so whenever

the search is limited by organism, it only retrieves the correct UniProt identifiers.
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Sample Obs. Exp. Total MiM LLH

Cerebral ganglion 222 17.71 5.0E5 2.20 738
Neuron 146 8.29 2.3E5 2.69 572
Hippocampus 44 1.97 5.5E4 3.03 190
Astrocyte 25 0.94 2.6E4 3.29 116
Corpus striatum 26 1.09 3.1E4 3.12 115
Excretion 32 3.80 1.1E5 1.62 80
Spinal cord 25 2.95 8.3E4 1.64 63
Locus ceruleus 11 0.24 6.8E3 4.06 62
Nerve 37 8.06 2.3E5 0.74 55
Cerebral cortex 15 1.22 3.4E4 2.17 47

Table 3.3: Table of Best ranked biological samples (Brenda Tissue Ontology[49]
entries) co-occurring with Kynurenic Acid, a nervous system related metabolite.
In this case, results are sorted by Log Likelihood and are asked to have mutual
information score MiM > 0, log likelihood score LLH > 10 and t − Score >
0. The column Obs. stands for observed number of co-occurrences (between
the sample and Kynurenic Acid), Exp. for expected number of co-occurrences
and Total for the total number of co-occurrences of that sample (Brenda Tissue
Ontology entry) with all other small molecules. Only the term “Excretion” is not
related to the nervous system.
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3.5 Obtaining species specific co-occurrences to-

wards a text-mining metabolome

The data of co-occurrence between the different biological entities represents a

starting point for the generation of collections of metabolites for a species. In

order to build such a collection we need to extract the relevant relations between

the key objects. The database holds data for as many organisms as they are

available in the NCBI Taxonomy dictionary used, as many proteins as the UniProt

dictionary includes and so on for tissues/cell types and small molecules. However

not all of these will be part of a metabolome, not all of these represent context

to small molecules. Figure 3.11 shows the pipeline built to obtain the relevant

objects and relations for a single organism.

Textmining
Database

Tissue
Small Molecule

Tissue/Cell 
type list

Tissue
Protein

Protein
Small Molecule

Set of unique
proteins

Set of unique
Small molecules

Co-occurrences
Tissue

Small Molecule

Co-occurrences
Tissue
Protein

Co-occurrences
Protein

Small Molecule

Textmining
Database

Figure 3.11: Diagram of selection of co-occurrences for a single species. The
process starts with a set of tissues and/or cell types known to that organism.

The method starts with a comprehensive list of tissues and cell types that

belong to the organism of interest, in this case H. sapiens . The software queries

this list of tissues against the database of co-occurrences, limiting by the desired
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organism, to obtain tissues and small molecules co-occurrences and tissues and

proteins co-occurrences. These queries are limited with thresholds in MiM (>

0), LLH (> 10) and sentence distance (≤ 1). These sets of co-occurrences are

stored for later upload to BioWarehouse, both as co-occurrences and as proteins,

tissues and small molecule entries. The set of protein-tissue yields a unique

list of proteins, which the tools queries against the co-occurrences database to

retrieve protein-small molecule co-occurrences, again limited by organism, score

thresholds and sentence distance. Relations and small molecules retrieved are

again stored for later upload to BioWarehouse. The pipeline yields ∼14,000 small

molecules entries from ChEBI and PubChem Compounds.

The co-occurrences approach only gives an idea on how often two terms are

related, but does not imply directly that a small molecule will be a metabolite

of the desired organism. To narrow down the solution to a set that can be more

confidently described as metabolites of the organism, we need to filter out small

molecules which should not be considered metabolites, such as chemicals of indus-

trial use, plastics, adhesives, and others. The case of a H. sapiens metabolome is

particularly difficult, as there are many varied interests in the use or application

of different small molecules.

3.6 Filtering of text mining results

The number of retrieved chemical records (∼14,000, Figure 3.11), impairs a com-

plete manual classification of them, at least in the time frame of this thesis.

Furthermore, the spirit of the project is to generate something that can be eas-

ily applied on other organisms, having to manually classify such a number of

chemical records would make this difficult.

To classify this set of molecules into highly probable metabolites and not

probable metabolites, I used a mixed approach of manual curation and machine

learning methods. I collected a number of meta data features for each Pub-

Chem Compounds or ChEBI entry, relying on the NCBI MeSH chemical branch,

the ChEBI Role ontology branch, some chemical classes of the ChEBI Ontology

and on the appearance of the record in a number of “niche” databases (such
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as databases specializing in drugs, commercial chemicals, pesticides, bacterial

secondary metabolites, etc.). I used a few chemical descriptors to increase the

resolution power between metabolites and non-metabolites. These were natural

product likeness score, number of carbon atoms and number of non C, H, N, O,

S, or P atoms. I computed Tanimoto chemical similarities, through the MACSS

fingerprint, against the set of metabolites unified in Chapter 2. This process also

filters small molecules that have > 500, 000 occurrences in the corpus, to avoid

unspecific tags.

Figure 3.12 shows the annotation procedure (where meta data are collected)

for the chemical entities resulting from the previous pipeline (Figure 3.11). This

annotation process, comprising not only simple meta data but functional and

ontological classification, is necessary not only for the classification process, but

for later inclusion of the selected set of metabolites and surrounding context

into BioWarehouse. The consolidation process implemented in Chapter 2 relies

heavily on adequate meta data to consolidate small molecule sets. The following

sections explore the detail of this annotation in terms of the technologies and

resources used.

3.6.1 Annotating chemical entities through NCBI resour-

ces

NCBI MeSH is the Medical Subject Headings classification system of the NCBI,

which is used by NCBI PubMed to organize and index life science literature. I

explored the branch of NCBI MeSH corresponding to the Chemicals and Drugs

Categories, that organizes the chemical knowledge into a tree of different cat-

egories and applications of the annotated PubChem Compounds entries. This

branch has 16 major terms, to which many entities in PubChem Compounds are

annotated. I selected a sub set of these topics (and sub topics, one level down, for

increased granularity in same cases) as features for the metabolites classification

step.

The aim is to have categories (in this case NCBI MeSH terms) that have a

certain bias or probability of containing either metabolites or non-metabolites.

None of the categories will be exclusive, but if they have a relevant bias, then the
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NCBI MeSH Term Bias

Biomedical and Dental Materials NM
Chemical Actions and Uses:Pharmacologic Actions NM
Chemical Actions and Uses:Specialty Uses of Chemicals NM
Complex Mixtures NM
Hormone Antagonists NM
Inorganic Chemicals NM
Pharmaceutical Preparations NM
Amino Acids, Peptides, and Proteins M
Biological Factors M
Carbohydrates M
Enzymes and Coenzymes M
Hormones M
Lipids M
Nucleic Acids, Nucleotides, and Nucleosides M
Steroids M

Table 3.4: NCBI MeSH terms from the chemical branch that I expect to have
biases towards either metabolites or non-metabolites. Column Bias shows the
expected bias, either towards metabolite (M) or non-metabolite (NM). It is im-
portant to clarify that while I expect a certain bias from each NCBI MeSH term,
this will be defined by the classification algorithm when using the training data
that is provided to it.

later classification machine learning methods will weight them adequately. Table

3.4 contains the selected NCBI MeSH terms (topics and sub topics).

The annotation pipeline also retrieves a collection from PubChem Compounds

called NCBI BioSystems. The NCBI BioSystems set of PubChem Compounds

entries corresponds to small molecules present in the NCBI BioSystems project

at NCBI (described in section 2.3.1.5, Chapter 2). The pipeline relies on the

NCBI E-Utils web services to retrieve PubChem Compounds terms for each NCBI

MeSH term and for the NCBI BioSystems collection.

The pipeline maps ChEBI small molecules to NCBI MeSH terms (and NCBI

BioSystems) through cross references that the ChEBI entry might have to Pub-

Chem Compounds. Compounds in PubChem Compounds link to external da-

tabase entities (such as ChEBI) through PubChem Substances. Using NCBI

E-Utils, the pipeline retrieves PubChem Substances entries for each PubChem

Compounds entry, and then for each PubChem Substances entry, cross refer-
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ences to ChEBI and other databases detailed in the next sections. Lucene indices

store the relations between PubChem Compounds entries and the resulting ex-

ternal database identifiers for later query. This allows to make the web service

call to NCBI E-Utils just once (or once every some defined period of time, like a

month for instance), speeding up the process, as querying local Lucene indices is

much faster than querying a service through the web.

As mentioned, none of the headings or databases listed comprise only metabo-

lites or non-metabolites, but each category will probably have a different tendency

towards any of these two outcomes. For the same reason, we need to add more

attributes that allow a trained machine learning method to resolve.

3.6.2 Annotating chemical entries with the ChEBI Ontol-

ogy

The ChEBI Ontology organizes chemical knowledge for more than 27,000 chemi-

cal classes and small molecules, through different relationships. Besides its main

chemical classification, the ChEBI Ontology has a branch of roles which is par-

ticularly useful for resolving metabolites from non-metabolites.

I selected high hierarchy elements of the Role branch of the ChEBI Ontology

as features for the classification of chemical entries. The software classifies a

ChEBI entry into one of these categories if the entry has a “has role” relationship

to that role in the ontology, or if that relationship can be “reasoned” from the

ontology. The pipeline extracts these relations for a given ChEBI entry, using

the ChEBI OWL Ontology through the OWL API [57].

Assignments of roles within the ChEBI Ontology are unfortunately rather

scarce, only ∼15% of ChEBI entities with structure have a role assigned in the

ontology. Figure 3.13 shows the accumulated distribution of the number of ChEBI

entities that have roles assigned. I investigated ways to increase the number of

assignments.

Software packages known as Semantic Reasoners can infer new relationships

within an ontology that are not explicitly mentioned, starting from existing state-

ments in that ontology. This process is called reasoning or semantic reasoning.
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Role/Class # Bias

Aetiopathogenetic role
Agrochemical NM
Antimicrobial agent NM
Buffer NM
Cofactor M
Detergent NM
Disinfectant NM
Drug metabolite M
Dye NM
Fixative NM
Flavouring agent NM
Food emulsifier NM
Fragrance NM
Fuel NM
Fuel additive NM
Hormone M
Hormone antagonist NM
Indicator NM
Label NM
Metabolite M
Mimotope
Pesticide NM
Pharmaceutical NM
Pharmacological role NM
Pheromone M
Photochemical role
Probe NM
Protein denaturant NM
Secondary metabolite M
Solvent NM
Surfactant NM
Sweetening agent NM
Tracer NM
Xenobiotic NM

Table 3.5: Selection of ChEBI roles and classes that one could expect to have
relevant biases towards metabolites and non-metabolites. Column Bias shows
the expected bias, either towards metabolite (M) or non-metabolite (NM). It is
important to clarify that while I expect a certain bias from each ChEBI role or
class term, this will be defined by the classification algorithm when using the
training data that is provided to it.
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Figure 3.13: Accumulated distribution of the number of direct assignments to
ChEBI entities with structure that the ChEBI roles have. The graph shows that
∼75% of the roles have 10 or less ChEBI entities assigned. As of this version
of ChEBI (Feb. 2012), there are 39 ChEBI roles with more than 29 assigned
molecules with structures, some examples are: herbicide (30 molecules), opioid
analgesic (33), local anaesthetic (36), mutagen (38), antibiotic (40), H1-receptor
antagonist (53), secondary metabolite (65), metabolite (87), epitope (176), and
finally fluorochrome (411).

139



3. TEXT MINING METHODS FOR INFERRING
METABOLOMES

Through reasoning, one can increase the number of assignments of Roles to ChEBI

entities.

For instance, the ChEBI entity 1-phenanthrol (CHEBI:27528) does not have a

role assignment. 1-phenanthrol is an instance of the class phenanthrenes (CHEBI-

:25961), which has a role as xenobiotic. A direct query to ChEBI for a role for

1-phenanthrol yields no results, yet through the reasoner we can get the xenobiotic

assignment1.

When the reasoner fails to assign a role to a ChEBI entry, the pipeline uses a

ChEBI entry to role assignment produced through Hearst patterns[54]. This as-

signment was provided by Adam Bernard, fellow PhD student at the text mining

group at the EBI. One example of Hearst patterns for this type of assignment

would be:

<small molecule noun> is a <role or class noun>

This pattern would be found in these phrases:

‘‘pyruvate is a metabolite’’

‘‘aspirin is a drug’’

When none of the previous attempts result in a role assignment, the pipeline

searches against the original text mining database. In this case, it retrieves co-

occurrences between the ChEBI record (or a PubChem Compounds record) and

ChEBI roles. Only very frequent, high scoring and same sentence results are

retrieved, to avoid false positive role assignments.

As the aim is to annotate roles to as many chemical records as possible, to

improve the classification of molecules, I annotated PubChem Compounds entries

in the result with a role if they had a ChEBI cross reference that can be assigned

to the role by the same method.

3.6.3 Annotation of chemical entries using KEGG resour-

ces

The method uses KEGG in two ways to aid in the classification of small molecules

into metabolites or non-metabolites. The KEGG COMPOUND database con-
1This example is the simplest case, called a direct assertion
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KEGG BRITE Term Bias

Carbohydrates M
Lipids M
Nucleic Acids M
Peptides M
Cofactors M
Steroids M
Alkaloids NM
Terpenoids NM
Flavonoids NM
Hormones/Transmitters M
Antibiotics NM
Pesticides NM
Pesticides/Herbicides NM
Plasticizers/Plastics NM
Phytochemical Compounds NM

Table 3.6: KEGG BRITE terms selected with expected biases towards metabo-
lites and non-metabolites.

tains mainly metabolites, and hence we considered the annotation against a com-

pound in KEGG as a niche database biased for metabolites. It also uses KEGG

DRUG and KEGG GLYCAN as niche database that could tell us something

about the nature of the small molecules to classify.

Additionally, KEGG provides a hierarchy of biological entities named KEGG

BRITE, which contains a few branches organizing chemical knowledge. I retrieved

the KEGG COMPOUND, DRUG and GLYCAN identifiers for each of the KEGG

BRITE categories in Table 3.6.

3.6.4 Annotation of chemical entries with niche databases

I selected a collection of niche databases to annotate chemical entries. Besides

the text mining results classification, retrieving these cross references is useful

for the unification step, which makes use of external identifiers for discriminating

whether two molecules of equal connectivities are the same or not. The databases

are listed and described in the following enumeration:
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EINECS: The European Inventory of Existing Commercial chemical Substances.

It is mainly cross referenced by PubChem Compounds.

HSDB: The Hazardous Substances Data Bank. It is mainly cross referenced by

PubChem Compounds.

HMDB: The Human Metabolome Database. Although not used for the classi-

fication step, it is used for later validation and is useful as a general cross

reference. It is accessible through both ChEBI and PubChem Compounds

entries.

ZINC: an open database for virtual screening compounds. It is expected to be

mainly a source of synthetic lead compounds, and is regularly used [28; 64]

in the literature as source of non-metabolites small molecules. It is cross

referenced by both ChEBI and PubChem Compounds.

EPA Pesticide: The US Environmental Protection Agency (EPA) has a collec-

tion of small molecules used as pesticides, herbicides and insecticides. This

contains both synthetic and natural molecules. In the case of H. sapiens ,

probably none of the metabolites should be listed here, but in the case of

some plants, bacteria, insects and fungus it might well be the case that

some metabolites are part of this database. H. sapiens could be exposed to

some of these metabolites in some conditions, and hence they might be de-

tected in samples. However, for the sake of this exercise, I assume that this

database mostly holds metabolites that should not be found in H. sapiens .

BRN: The Beilstein Record Number. This is mainly collected as a useful cross

reference, and it is not used as a classification feature.

KEGG Compound: The main collection of small molecules in the Kyoto En-

cyclopedia of Genes and Genomes, the Compound collection (also called

Ligand collection), holds mostly metabolites that can be mapped to bio-

chemical reactions, with some exceptions.

KEGG Drug: Drug collection of the Kyoto Encyclopedia of Genes and Genomes.

It can be accessed both from PubChem Compounds and ChEBI.
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CAS: The Chemical Abstracts Service registry number. As with BRN, it is only

kept as a useful cross reference, and not used as a classification feature.

ChEMBL: is a database of bio-active, drug-like, small molecules. It contains

both synthetic and natural molecules, some of which could be metabolites

of the organism in question (for instance, some hormones in H. sapiens are

used as drugs).

ChemIDplus: A collection of nearly 380,000 small molecules, which includes

compounds tested for toxicity, chemicals causing cancer and/or birth de-

fects, hazardous pollutants, controlled substances, pesticides and in general

substances that would be of interest for regulatory agencies (many parts

of it are actually provided by regulatory agencies). This collection proba-

bly contains very few H. sapiens metabolites, but some plants and fungus

secondary metabolites.

KEGG Glycan: A collection of experimentally determined glycan structures.

LIPID MAPS: Nature Lipid Maps is one of the largest collections of lipid struc-

tures that have been detected experimentally.

BioCyc: A collection of metabolism databases for several organisms. Chemi-

cal structures contained here are mostly, if not all, metabolites, as to be

included they need to participate in a reaction.

UM-BBD: The University of Minnesota Microbial biocatalytic reactions and

biodegradation pathways. Holds mostly xenobiotic chemicals and informa-

tion on how they are degraded by microorganisms.

The presence of a molecule in one of these databases cannot guarantee, nor

completely rule out, that a small molecule might be a metabolite, and further that

it might be a H. sapiens metabolite. However, the fact that a molecule belongs to

one of these collections gives an implicit probability of being a metabolite. The

aim of using these collections is to serve as features in the classification, they add

or subtract to the overall probability of a molecule being a metabolite or not.
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3.6.5 Chemical descriptors used to classify

Although a big effort was done to collect relevant meta data for each of the

entries, many of them will have none assigned for many reasons. ChEBI roles for

instance, are sparsely annotated in the ChEBI database, let alone those roles be

migrated to PubChem Compounds entries, which in many occasions do not exist

in ChEBI.

There are probably a number of unknown chemical characteristics that would

either make a small molecule a metabolite. However, it is difficult to come up

with a good set of structural characteristics, as chemistry is varied and complex.

Some attempts have been done in the past on classifying small molecules as either

closer to lead compounds, drugs or metabolites [28], or to calculate how much a

small molecule resembles natural products or synthetic molecules [31]. In [28],

the major resolving features between Drugs and metabolites are LogD (the two

phase partition coefficient), atom count and Tanimoto similarity through the

MDL Public Keys fingerprint. In [64] an NP-Likeness scorer is built based on

circular atom signatures. In [95] authors use 32 physicochemical descriptors from

the MOE commercial chemical package to discriminate metabolites into different

classes (within metabolism). However, I have no access to that software, and the

documentation does not explain clearly how to derive them.

I calculate the number of carbons (non-metabolites tend to be distributed

towards bigger molecules [28]), the number of non CHNOSP atoms (I expect non-

metabolites to have more) and the NP-Likeness [64]. I calculate the Tanimoto

similarity between each molecule and all the molecules in the metabolites retrieved

in Chapter 2.

3.6.6 Machine learning for chemical entries classification

After manually and semi manually curating ∼2,800 chemical entries (out of the

14,000), a machine learning approach was used to try to classify the remaining

11,000 entries as metabolites or non-metabolites. The classification was done

using 101 attributes (annotation of ChEBI roles and classes; NCBI MeSH Terms;

KEGG BRITE categories; presence in niche database; chemical descriptors). For

those categories that were equivalent across the different classification systems,

144



the method used merged versions of them.

The first step is to choose a regression method to use with the data. In

general, one should always start with linear methods, as they do not suffer from

high dimensionality issues and over fitting as non linear methods. If a problem is

reasonably linearly structured, a linear classification should normally work better

than non linear methods. As a rule of thumb, only when linear methods fail, one

should step into non linear methods.

I used the RapidMiner machine learning environment[103] to try a few different

methods with the data set. Given the simplicity of the environment, it is easy to

build several models, cross validate and compare the models validation to pick

the best one. Most of my understanding of machine learning methods comes

from the excellent treatment of the subject given in [7; 52]. I used the following

methods:

Decision Trees: are highly interpretable classifiers, that work by successively

splitting the data set in two parts according to conditions on the attribute

values. This classifier yields very good results in certain data conditions.

Having sparse categorical attributes (without a value set for many of the

entries) or too many non categorical attributes sometimes can lead this

method to poor results, mainly due to over fitting the data. A key decision

in binary trees are the tree size and the splitting criteria. Even though this

is a highly non linear method, it is so widely used in this kind of problems

that is reasonable to try it.

SVM (linear and non linear): support vector machines, or SVM, generate

hyperplanes in a multidimensional space, based on example points for each

of the classes that one wants to classify, that produce the best separation

of those classes. Once a good set of example points (that produce good

separation hyperplanes) has been selected and hyperplanes generated, new

values are localized in the space to see in which region (class) they fall

into. Whether an SVM is linear or not, depends on the kernel function

used for the internal products (which is in the linear case is a dot prod-

uct), which can lead to have non linear boundaries in the original space (in

the separation space, the boundaries will always be linear). Linear SVM
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is different to Linear Discriminant Analysis (LDA) in that LDA computes

the boundaries based on all the points of a class (using the centroid and

co-variances), whereas SVM only uses sets of points from the class that are

close to the boundaries, which locally gives a better solution, and has less

computational cost.

Logistic regression: As the SVM, the logistic regression method also generates

linear hyperplanes that act as boundaries between classes. This method

transforms the output of a regular linear regression through a logit func-

tion1, which maps the entire domain to a continuous range [0, 1], understood

as the probability or confidence of an event happening (for instance, the

probability of being a metabolite). This makes logistic regression specially

fit for binary classification problems, like the one we have.

Random forests: Is an ensemble method in which many random decision trees

are generated, and a majority vote decision – from the trees – is taken for

each of the submitted points to be classified. Random forests aim at re-

ducing the high variance of noisy methods (like decision trees) through the

averaging produced by voting, without changing the bias too much. The

method grows trees by randomly selecting a subset of the attributes. When

there are few relevant attributes and many noisy attributes, the proba-

bility that at each selection the method will choose mostly uninformative

attributes is high, producing a poor performance of the method. There are

some claims that random forests cannot over fit data by construction [52,

p. 596].

Linear perceptron: It is the simplest form of a neural network, which maps

an input vector to a binary output through a sigmoid function (and a dot

product with a weight vector). This makes it very similar to the logistic

regression, however the main difference is that the perceptron uses a scale

factor accompanying the input value which controls the “activation rate”.

The scale factor is learnt from the data as well.

1The logit function is f(x) = 1
1+ex
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I used 10-fold cross validation for every method on the ∼2,800 examples, using

stratified sampling. Alternatives to 10-fold cross validation is the leave one out

method, which is more computationally demanding as it builds N models, and

probably worse at judging the regression method on the data, as all the models

will be relatively similar if N is big, as it is in this case.

Figure 3.14 shows the methods performance according to ROC curves for

the 10-fold cross validation. The best method was SVM (linear and non-linear),

closely followed by Logistic Regression. Decision trees, as expected, had a very

high variance, and were probably over fitting the example data. Random forests

performed even worse than random picking (lazy guessing in Figure 3.14).

Figure 3.14: ROC comparison graph showing the performance of the different
methods tried on the training and validation data set. I used a 10-fold cross
validation strategy, with stratified sampling, to asses the methods capability of
predicting the data set. The best performing methods were Support Vector Ma-
chines and Logistic regression. Random forests performed even worse than ran-
dom choosing (lazy guessing), probably because many of the attributes chosen
might not be that informative.
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Attribute Weight

Tanimoto Similarity MACSS -1.555
Non CHNOSP count 1.228
BioSystems collection -1.156
Carbon count 0.889
ChemIDplus 0.849
Drug 0.769
NP-Likeness -0.673
BRITE Peptides -0.61
ChEBI Nucleoside -0.592
EPA PESTICIDE 0.538
ChEBI Carbohydrate -0.529
BiologicalMolecule -0.5
MeSH Enzymes & Coenzymes -0.489
Brite Hormones & Transmitters -0.487
Carbohydrates 0.419

Table 3.7: Top 15 influential attributes in the logistic regression model. Tanimoto
similarity is against the set of H. sapiens metabolites collected in Chapter 2.
Negative weights indicate tendency towards metabolites.

Table 3.7 shows the most important attributes according to the Logistic re-

gression model.

Table 3.8 shows the most relevant attributes according to the linear SVM

model.

Using the HMDB as a final check, we find the best cut-off point for both

regressions and for a union of both models (if either of them decided the molecule

a metabolite, then it is classified as metabolite). Figure 3.15 shows the sensibility

and specificity of the prediction compared to the HMDB for the logistic regression

model, for different cut-off points. Figure 3.16 shows the same for the support

vector machine regression.
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Attribute Weight

Tanimoto Similarity MACSS -0.546
Carbon Count 0.426
BioSystems -0.4
Non CHNOSP count 0.36
Tanimoto 10 -0.355
NP-Likeness -0.326
ChemIDplus 0.319
Biological Molecule -0.252
EPA PESTICIDE 0.237
Tanimoto 1-10 -0.219
Drug 0.203
ChEBI Carbohydrate -0.175
ChEMBL 0.166
ChEBI Role aetiopathogenetic role 0.166
Brite Peptides -0.164

Table 3.8: Top 15 influential attributes in the support vector machine regression
model. Tanimoto similarity is against the set of H. sapiens metabolites collected
in Chapter 2. Tanimoto 10 refers to the average distance calculated to the 10
more proximal elements in distance in the metabolites collection. Tanimoto 1-10
refers to the difference between the most proximal distance and the Tanimoto 10
average. Negative weights indicate tendency towards metabolites.
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Sensibility and specificity against HMDB
for different cut−offs. Logit metabolite classifier.
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Figure 3.15: Sensibility and specificity for a varying cutoff of the logistic regression
based classifier, when the result is compared against HMDB. A cut-off of 0.85 for
the classifier (above this value is a metabolite, below is not) provides a reasonable
compromise, where sensibility and specificity are above 80%.
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Sensibility and specificity against HMDB
for different cut−offs. SVM metabolite classifier
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Figure 3.16: Sensibility and specificity for a varying cutoff for the SVM based
classifier, when the result is compared against HMDB. A cut-off of 0.65 for the
classifier (above this value is a metabolite, below is not) provides a reasonable
compromise where both sensibility and specificity are above 80%.
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3.7 Main Results

3.7.1 Comparison against the HMDB and database unifi-

cation

Using the unification method proposed in Chapter 2, I compared the HMDB data

set and the database unification for H. sapiens with the text mined generated

metabolome. Figure 3.17 shows the intersection of chemical entities between

these three sets. The text mining effort adds entries existing on HMDB that the

database unification did not provide.

Enrichment analysis through BiNGO using the ChEBI mappings for the unique

region of text mining small molecules (785 had ChEBI identifiers) reveals that

this set of small molecules includes many exogenous natural products that are

used as drugs or that are part of diet. Metabolism databases tend to concentrate

more on endogenous metabolites, whereas the text mining derived metabolome

produces more exogenous molecules that affect H. sapiens . As with other H.

sapiens sets, this portion of small molecules also shows some level of enrichment

of lipids and particularly steroids. Tables C.4, C.5, and C.6 in Appendix C show

these results.

The same region, but through 1973 different PubChem Compounds identi-

fiers, mostly complementary to the previous ChEBI subset, shows enrichment

in nucleotide-like, biological factors, lipids, hormones, coenzymes, steroids, and

pharmaceutical preparations. There is far less over representation in the Pub-

Chem Compounds set of exogenous natural products. Tables C.5 and C.6 from

Appendix C present these results.

3.7.2 Small molecules and tissues/cell types

The distribution of small molecules with strong co-occurrences to tissues/cell

types is long tailed: most small molecules show strong associations with less

than 5 tissues/cell types; a very small number show strong associations with even

hundreds of tissues/cell types. The same applies when the data are inspected

from the tissues perspective.
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Figure 3.17: Small molecule intersections for the database consolidation, HMDB
and Text mining results for H. sapiens . The text mining collection discovers
nearly ∼500 additional small molecules from HMDB not found in the databases.
Text mining additionally provides more than 2,000 new small molecules that
could be part of a H. sapiens metabolome.
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Unfortunately the need to impose restrictions at the level of organism, and the

need to require high scores to avoid very promiscuous terms, reduce the evidence

of co-occurrences between small molecules and the biological containers. As a

result of this, examples like the one of Kynurenic Acid, visible before the two

pipelines and machine learning methods are applied, loses most of it signal once

these filtering algorithms are applied.

Figure 3.18 shows two graphs of strong co-occurrence relations between tis-

sues/cell types of the central nervous system1 and small molecules. The graph

to the left shows the relations when only direct small molecules to tissues (con-

strained by organisms and co-occurrences scores as explained previously) are used.

In this graph there are in general few assignments per tissue, which does not make

it wide enough for the generation of metabolomes at the tissue and cell type level.

The box plot in the lower part of the same Figure 3.18 shows the distribution of

the degree (number of connections) for this case (Direct), both for small molecules

and tissues/cell types.

A way of alleviating the low level of direct connectivity is through the use

of protein co-occurrence, which can relate small molecules to proteins and then

proteins to tissues, producing a transitive relation of small molecules to tissues.

The graph to the right in Figure 3.18 shows small molecules to tissues relations,

when stepping through proteins co-occurrences, for the central nervous system

related tissues/cell types. The effect, shown by the graph, is that the use of

protein relations recruits an important number of additional small molecules,

and further connects them more densely to tissues. This can be seen in the

graph as many more blue squares, representing small molecules, can be seen now

in the central region of the graph, compared to the other case where the blue

squares are more densely located in the perimeter of the graph. The box plots

in the same Figure show, for both small molecules and tissues, how the degree

is considerably increased in the case were protein relations (“Through proteins”)

are used compared to the case without proteins (“Direct”). Another interesting

outcome is that tissues that are related tend to get clustered together. In the

right graph, there are two big clusters of red squares, one of them belongs to

1To retrieve all tissues/cell types within the central nervous system, I descend through the
BRENDA Tissue Ontology starting from the term “Central nervous system”.
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different major brain parts, while the other belongs to cell types that derive from

glial cells. In the same graph, another smaller red cluster forms, that contains

the hypophysis, the adenohypophysis, and other glands of the central nervous

system.

The inclusion of proteins in the relation, albeit increases the number of small

molecules than can be associated to tissues/cell types, also tends to make the

set of small molecules less specific to the set of tissues queried. Lets explore an

example comparing liver related tissues/cell types and brain related tissues/cell

types. The BRENDA Tissue Ontology allows to obtain tissues and cell types

related to each of these two organs by descending through the ontology starting

from “liver” and “brain” terms.

Table 3.9 contains comparison of the enrichment in ChEBI Ontology cate-

gories between small molecules related to brain (and derived tissues) and related

to liver (and derived tissues), for the portion of small molecules that have a ChEBI

identifier. The table shows nearly no difference when stepping through proteins.

Only slight re-arrangements of the relevance of some classes are seen, but mostly

the top 20 most enriched small molecule categories for both tissues/cell types

collection are the same. This is indication of a shared core metabolism, and

smaller unique sections of it for each tissue, as one would expect maybe. This is

reasonable when compared to results from [144], where gene sets in H. sapiens

that are completely tissue specific are normally below 100 genes; less than 1%

considering a conservative estimate of 20,000 protein coding genes.

From this same set of molecules, using those with PubChem Compounds

identifiers, there is a core of 963 shared entries (from both small molecules related

to liver and brain), 126 entries unique to brain and 171 unique to liver. The same

exercise with those small molecules that have ChEBI identifiers, yields a core of

700 shared ChEBI entries, 74 unique entries to brain and 130 unique to liver.

Enrichment analysis of these ChEBI sets shows a slight enrichment of steroids in

the unique liver collection, no major groups are enriched in the unique brain part.

However, looking closer into the set of molecules, Kynurenic acid and dopachrome

are examples of molecules that appear in the list of unique brain entries that might

make some sense. These numbers again reflect the idea of a core metabolism and
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Tissues/cell types

Small molecules

Direct small molecule - tissue/cell type 
co-occurrence relations for central 
nervous system.

Small molecule - tissue/cell type co-
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Figure 3.18: Graphs show co-occurrences between tissues/cell types belonging to
the central nervous system, in red, and small molecules, in blue. Nodes that are
farther from the centre tend to have lower degree (count of connections). Left:
graph displays direct tissues to small molecules co-occurrences. Right: graph
presents the interactions when tissues to proteins, and proteins to small molecules
co-occurrences are considered. Stepping through proteins considerably increases
the number of small molecules related to a tissue, and improves the clustering
of tissues. The right graph main tissue clusters correspond to brain parts and
glial-related cells. Box plots show how the level of connectivity of both chemicals
and tissues increases when moving from direct co-occurrences to protein mediated
co-occurrences.
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Class # p-value Fold %

B L B L B L B L

steroid 1 1 1.2E-14 8.8E-19 3.1 3.4 9 10
molecular messenger 2 2 1.9E-12 1.9E-13 4.7 4.7 5 5
hydroxides 3 3 4.8E-12 1.1E-12 1.5 1.5 34 34
alpha-amino acid 4 4 7.8E-12 3.4E-12 4.3 4.2 5 5
biological role 5 5 1.2E-11 4.4E-12 1.7 1.7 26 26
eicosanoid 6 8 1.5E-11 5.8E-11 6.5 6.1 3 3
fatty acid derivative 7 9 1.6E-11 6.4E-11 6.5 6.1 3 3
oxo steroid 8 6 5.1E-11 1.8E-11 4.6 4.6 4 4
steroid hormone 9 10 2.7E-09 9.4E-11 8.0 8.3 2 2
3-oxo steroid 10 11 1.3E-08 2.9E-10 5.2 5.4 3 3
hydroxy steroid 11 7 2.0E-08 3.4E-11 3.2 3.5 5 6
chemical role 12 17 7.9E-08 7.5E-08 1.5 1.4 29 28
prostanoid 13 19 3.6E-07 7.2E-07 6.7 6.3 2 2
lipid 14 13 4.1E-07 2.5E-08 1.6 1.6 20 20
drug 15 24 5.4E-07 7.4E-06 1.9 1.8 11 10
physiological role 16 21 6.1E-07 1.6E-06 5.0 4.7
hormone 17 16 7.4E-07 3.7E-08 4.0 4.2 3 3
pharmaceutical 18 31 8.6E-07 1.2E-05 1.9 1.8 11 10
agonist 19 14 1.1E-06 2.8E-08 3.5 3.8 4 4
tetrahydrofuranol 20 38 1.7E-06 4.8E-05 2.8 2.5 5 4

Table 3.9: Top 20 enriched ChEBI Ontology categories for small molecules related
to brain, when using protein co-occurrence to produce a small molecule to tissue
relation. The table shows the results for brain (B) and liver (L). # stands for
the ranking of the category in the enrichment for either brain (B) or liver (L).
Corrected p-value corresponds to the p-value after Benjamini-Hochberg correction
for false discovery rate. Fold is the number of times that the category is enriched
in the sample compared to the overall ontology. % shows the portion of the
sample that falls in that category.

variable smaller parts for each type of tissue.

Results change markedly if direct small molecules to tissues/cell types are

considered (instead of stepping through proteins), for both liver and brain. For

liver and associated tissues/cell types, Table 3.10 shows that steroids, cholanoids,

lipids and bile acids are among the most enriched ChEBI categories. In the case

of brain and associated tissues/cell types, Table 3.11 enrichment shows neuro-

transmitters, molecular messengers, and nucleosides1 among the most enriched

1There is research showing that nucleosides might play important roles in the neuronal
functions of the brain: [76; 86], to name a few.
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ChEBI Class % Enrichment

p-value Fold

steroid 14 9.0E-12 4.6
cholanoid 5 1.1E-09 16.3
organic polycyclic compound 14 1.5E-06 2.8
lipid 25 2.5E-06 2.0
hydroxy steroid 7 1.0E-05 4.3
oxysterol 2 1.3E-05 27.2
bile acid 2 1.3E-05 43.0
biochemical role 18 1.9E-05 2.2
organic cyclic compound 46 2.0E-05 1.5
oxacycle 16 6.8E-05 2.2
hydroxy-5beta-cholanic acid 2 7.4E-05 27.8
nutraceutical 2 8.3E-05 17.8
1-benzopyran 6 2.5E-04 4.0
drug 13 2.8E-04 2.3
nucleoside 6 2.8E-04 3.9
benzopyran 6 3.2E-04 3.8
biological role 26 3.6E-04 1.7
antioxidant 3 3.9E-04 9.9
5beta-cholanic acids 2 3.9E-04 18.3
pharmaceutical 13 4.1E-04 2.2

Table 3.10: Top 20 ChEBI enriched categories for small molecules collected from
direct co-occurrences to liver derived tissues and cell types. Steroid metabolism,
bile acid generation (cholanoid is a parent category for bile acids), and nucleoside
synthesis are known processes to occur in liver cells. Also the processing of drugs
and other complex xenobiotics.

ChEBI classes and roles. Intersects, both at PubChem Compounds compounds

as well as ChEBI entries are proportionally much smaller compared to the unique

parts.

Using protein results and gene expression repositories, it is feasible to evaluate

how much sense the co-occurrence results make. The list of proteins that co-

occurs with liver related tissues/cell types, contains approximately 723 UniProt

entries. Out of this collection, ∼86% of them show either up or down regulated

expression in at least one experiment in the ArrayExpress ATLAS gene expression

repository for “liver” (Experimental Factor Ontology entry EFO 0000887). Using

the gene expression module from DAVID with the same set of proteins, ∼21%
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ChEBI Class % Enrichment

p-value Fold

molecular messenger 8 1.4E-07 7.6
neurotransmitter 4 1.3E-06 23.0
organonitrogen compound 47 1.3E-06 1.7
nucleoside 8 2.0E-05 5.3
tetrahydrofuranol 8 2.6E-05 4.7
pharmaceutical 16 2.6E-05 2.7
drug 16 3.6E-05 2.7
oxolanes 9 6.9E-05 4.1
2’-deoxyribonucleoside 3 1.7E-04 16.6
heteroarene 20 2.0E-04 2.2
pyrimidine nucleoside 4 2.4E-04 9.2
N-glycosyl compound 8 2.7E-04 4.0
reactive oxygen species 2 2.7E-04 37.2
organic amino compound 20 2.7E-04 2.1
pharmacological role 9 2.7E-04 3.4
agonist 5 5.7E-04 5.3
deoxyribonucleoside 3 6.8E-04 11.9
pyrimidine 2’-deoxyribonucleoside 2 1.6E-03 22.2
reactive nitrogen species 1 1.6E-03 46.5
tryptamines 2 1.8E-03 20.7

Table 3.11: Top 20 ChEBI enriched categories for small molecules collected from
direct co-occurrences to brain derived tissues and cell types.
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of the mapped proteins had high levels of expression in liver according to the

GNF Human Affymetrix Array U1333A [145], and ∼40% have expression in liver

according to the UniProt tissue annotation.

Repeating the same analysis for brain related tissues/cell types, which includes

564 proteins with UniProt entries, ∼92% of them showing expression changes in

at least one experiment in the ArrayExpress ATLAS gene expression repository

for “brain” (Experimental Factor Ontology entry EFO 0000302). UniProt tissue

annotation shows no major enrichment for brain or nervous systems tissues/cell

types (but for plasma, blood, liver, lung, and placenta). Slight enrichments in

UniProt annotation are seen for fetal brain cortex, Cajal-Retzius cells (which are

a type of neuron), cerebellum, fetal astrocytes, and Alzeimer’s patients cortex.

The GNF genes to tissues arrays [145] show high expression of these proteins in

a number of brain related tissues, such as globuspallidus (25%), sub thalamic

nucleus (27%), cerebellum (73%), and occipital lobe (22%), among others.

Figure 3.19 shows a complete overview look at the small molecules to tis-

sue/cell types relations selected for H. sapiens . This is a hierarchical cluster-

ing of both tissues/cell types and the related small molecules, through their co-

occurrences. While the data of co-occurrences classifies together nearly half of

the participating tissues/cell types, in aggregated categories such as “Digestive”,

“Nervous system”, or “Reproductive system”, it does not seem to have the same

classification power to gather related small molecules together. Only a few small

clusters, one of “eicosanoids” and another of “fatty acids” could be identified.

Figure 3.20 shows the same approach of clustering applied to the small molecules

to tissue/cell types relations when stepping through proteins. While in this case

the amount of relations is much higher, the clusters that can be formed for tis-

sues/cell types are much smaller. Apparently, the use of proteins tends to gener-

alize the data, losing some specificity.
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Figure 3.19: Clustering of small molecules and tissues/cell types using their co-
occurrences relations. Direct small molecule to tissue co-occurrence relations are
informative enough to allow clusterization of approximately half of the tissues/cell
types into adequate biological clusters. The largest clusters belong to different
cancer cells (71 entries, yellow band), related to reproductive system (67 entries,
red band) and nervous system (32 entries, green band). There are approximately
14 additional clusters of tissues/cell types, having on average approximately 9
tissues/cell types each. In contrast, there are only four small clusters of small
molecules that have some relation between its participants: two clusters with
eicosanoids (25 and 6 molecules), a cluster of iodine-thyronine related molecules
(20 molecules), and a cluster of fatty acids (10 molecules). In many cases, these
clusters include exceptions, but most of the participants belong to the theme of
the cluster.
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Tissues and cell types
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Figure 3.20: Clustering of small molecules and tissues/cell types using protein
co-occurrences relations. Protein mediated small molecule to tissue co-occurrence
relations are less informative than in the direct case to allow clusterization of the
tissues/cell types into adequate biological clusters, as less color bands and of less
length can be seen in the tissues clusters, compared to the direct case shown in
Figure 3.19. Adding proteins to the method increases the number of relations
that can be obtained between small molecules and tissues/cell types. This is
shown by a heatmap that has many more correlations (red points), compared to
the previous heatmap in Figure 3.19.
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3.8 Conclusions

I developed a text mining software infrastructure, based on WhatIzIt dictionar-

ies for Proteins (UniProt), Small Molecules (ChEBI and PubChem Compounds),

Tissues (BRENDA Tissue Ontology) and Organisms (NCBI Taxonomy). The

software retrieves occurrences of these terms from NCBI PubMed abstracts and

titles until September 2009. The infrastructure stores occurrences in a relational

database designed for this purpose. Information on the entity seen – either a

protein, small molecule, tissue/cell type or organism – and its location – arti-

cle identifier, section and sentence number – are stored on this database. Co-

occurrences of these terms are obtained through queries to the database. Nearly

200 million appearances of terms in the literature were captured in the database

(which roughly equates to 10 terms annotated per article). The whole process

takes nearly a week, where the bottleneck in terms of speed is the insertion of

data into the MySQL database.

Dictionaries of small molecules, proteins and tissues show different behaviours

in terms of the distribution of their co-occurrences. This is due to a number of

factors, as how often they are really mentioned but also how hard can it be to

detect each kind of name and how rich are the different dictionaries in terms of

synonyms. Some of these dictionaries show as well many promiscuous entries.

There is an important need for better dictionaries of small molecules, with wider

coverage and better selection of synonyms.

I wrote a pipeline in Java to extract an organism’s small molecule collection

in the least possible time, including the co-occurrence between small molecules

and proteins, tissues and the organism name. The pipeline also captures co-

occurrences of protein to tissues and tissues to organisms. A second pipeline

annotates the retrieved text mining metabolome with external references and

functional categories.

Finally, I used machine learning methods to classify results of the second

pipeline as either metabolites and non-metabolites. I selected a confidence cut-off

by comparison with the HMDB. I loaded resulting metabolites and their interac-

tions into BioWarehouse.

This effort retrieves approximately 6% of the missing HMDB entries, that
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the unification of metabolism databases could not explain. While it still leaves a

significant part of the HMDB unexplained, it generates a number of additional

candidates, albeit of lesser quality, but that could prove valuable if they are

identified by experimentalists in the described organism.

Small molecules retrieved through text mining tend to be much more biased

towards external molecules to the organism, such as natural products used as

drugs or through dietary intake, more than towards endogenous molecules. This

is reflected by the enrichment analysis of the small molecules that are provided

by the text mining solution and that are not part of metabolism databases or the

HMDB.

The use of text mining towards metabolome inference has still a number of

unsolved problems and issues that need to be improved. Both co-occurrence

analysis and more sophisticated methods, rely heavily on the use of dictionaries

of terms, which in some cases can be very deficient in terms of specificity. It is

essential to improve the quality of dictionaries, specially for chemical molecule

names and protein names, which show many spurious results. In this work I

decided to have as starting point already built dictionaries, as they have been

used and published, and it was clear to me through my time researching the field

that building them was a laborious and demanding task, which required as well a

level of experience with those resources that I did not have back then. However,

as I advanced in this work, and confronted the many situations in which the

dictionaries produced spurious results, it became more and more clear to me that

the biggest improvements in the retrieval of data, currently would come from

the improvement of the dictionaries. Especially since this would allow to relax

other restrictions in terms of co-occurrence quality that emanate from the poor

specificity of the dictionaries.

Another important problem is deciding to which organism a particular ab-

stract/paper belongs to. The inability to decide this produces ambiguity in the

biological entities associations to organisms, as many times abstracts mention

more than one organism. Here, natural language processing tools would be useful,

to either decide by document or sentence, and assign an organism or taxonomic

range. While for H. sapiens nearly ∼70% of the abstracts that mention it have it

as the only organism, this number drops dramatically under ∼50% for most other
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organisms.

The use of proteins to generate more small molecules to tissues relations has

interesting particularities. For what the data analyzed showed, the use of proteins

allowed to greatly increase the number of relations between small molecules and

tissues/cell types. However, this comes at the cost of generalizing the small

molecule set. The small molecules set harvested through the use of proteins to

molecules and proteins to tissues relations showed a bigger general core region,

a shared region of small molecules by most tissues, and smaller, tissue/cell type

specific small molecule collections. On the other hand, direct small molecule to

tissues co-occurrences produced set of small molecules that seemed to be mostly

unique or more relevant to those tissues.

In this chapter we can see once again the enormous relevance of ontologies and

classification systems, as vehicles to the understanding and interpretation of the

big piles of data that the methods used can generate. There is a strong need for

better chemical molecule knowledge organization, that can cover more molecules

and hence make this type of analysis more robust.
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Chapter 4

Constrained chemical

enumeration

So far I have introduced methods that rely on the chemistry of existing databases.

However, to date, many experimentalist in metabolomics find thousands of peaks

that cannot be assigned to known small molecules in any of the databases. While

this has a number of reasons, it is also partly because of the many molecules that

are yet to be discovered. In this chapter I attempt to find candidates for these

unknowns.

The first approach is metabolic neighbourhood. It relies partly on the fact

that many enzymes are promiscuous to accept variants of their most commonly

known substrates. The idea is taken to the extreme to produce as many small

molecules as possible in a few chemical transformation steps, starting from an

initial metabolome. The method uses generic reactions known to be present in

the reactome and enumerates possible instances based on small molecules known

as well to be part of the reactome.

Bacterial secondary metabolism produces a wide range of chemical compounds

with a number of interesting properties. Providers of survival advantages in the

biochemical warfare, many of these small molecules have a range of applications

as antibiotics, anti-tumoral activity, anti-fungals, and herbicides among other

uses. An important class of these bacterial secondary metabolites are polyketides,

which are synthesized in huge enzymatic factories called polyketide synthethases
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(PKS). I explore the problem of PKSs, as they have a very nice “co-linearity”

property, in which the order of the domains in the long PKS sequence can be

used to predict the structure of the resulting polyketide. I step into a particular

type of PKS for which this “co-linearity” rule does not apply, due to evolutionary

differences, and work towards contributing to produce a rule set for this type

of PKS. This is an example of a complicated case in metabolism, where very

particular and non-obvious reaction rules need to be followed in an exact order

to actually reach such small molecules. This kind of molecules could be hardly

achieved by following the first reaction enumeration process that I propose in this

Chapter, as it would require many iterations, which is hard to achieve with the

first method.

Generated small molecules by metabolic neighbourhood are compared against

what is found through other approaches, as these molecules have an organism

specific bias. The other case is shown here as example of more complicated

generation scenario which requires a more targeted approach.

4.1 Reaction enumeration

4.1.1 Enzyme promiscuity

Enzyme promiscuity goes against what is classically taught in courses and text

books: that enzymes are mostly specific and can accept only one or a few sub-

strates to catalyze their conversion. Classically, only a small portion of enzymes

are acknowledged to catalyze different activities or accept many different sub-

strates, considering promiscuity as an exception to the rule. However experts in

the field are claiming that enzyme promiscuity is more a rule than an exception

[79; 80].

The concept of enzyme promiscuity refers to the ability of many enzymes to

catalyze transformations that differ from those for which they evolved to catalyze.

According to [60], enzyme promiscuity can be classified in substrate promiscu-

ity, where enzymes can accept a range of substrates without changing the applied

transformation, catalytic promiscuity, where chemical transformations exerted

are different to the native activity, and contextual or conditional promiscu-
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ity, which means that enzymes change their targets and activities in a different

environment.

Historically, enzyme promiscuity has been studied from two different perspec-

tives: evolutionary and application. The first approach was the evolutionary

one, where enzyme promiscuity was related to the evolutionary path of enzymes.

In this field, experts argue that, initially, the primordial enzymes must have

been very versatile, allowing to catalyze many different activities with the same

machinery. These primordial catalyzers evolved by duplication, mutation and se-

lection, into more constrained catalyzers that at the expense of losing generality

became very efficient at particular transformations and were positively selected

for them. Research in enzyme evolution also suggests that there is a mechanism

operating that supports promiscuity starting from specialized enzymes. A model

is proposed in [80] which suggests that specialist enzymes are duplicated, lose the

selection pressure for their specialist function, became generalists again through

mutations, and then acquire novel catalytic activities for the host organism.

Generally, researchers in evolution tend to neglect the substrate promiscu-

ity, classifying it as multi-substrate specificity [80], rather focusing on the cat-

alytic promiscuity. Those interested in the enzymatic applications of promis-

cuity – such as [60] – tend to be more open when it comes to definitions, and have

less trouble embracing substrate promiscuity and conditional promiscuity

as feasible categories of enzyme promiscuity.

From a kinetic point of view, there is probably no question about the existence

of promiscuity, but rather when do we start accepting an activity or substrate

processing in terms of the reaction rates. Normally, what is seen is that native

substrates show consumption or turn-over rates that are various orders of magni-

tudes higher than promiscuously accepted substrates [80]. The net effect is that

the flux of those natives reactions will be higher than those relying on alternative

substrates, in other words, enzymes prefer some small molecules over others. This

does not mean that the promiscuous activities will be totally neglected, specially

if the native substrates are scarce, and alternative substrates are abundant. Even

though compared to native substrates, promiscuous substrates are much more

slowly catalyzed, there is still a huge gain compared to the spontaneous scenario.

I propose methods of assessing the likelihood of the new molecules to actually
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exist, although the definitive answer lies on what experimentalist might find to

prove or disprove these molecules.

In the reaction enumeration work, I centre mostly in the more conservative

view of promiscuity – substrate promiscuity – where the reaction mechanism

stays the same, but where the enzyme is able to process many different sub-

strates within the same reaction mechanism. Using the reaction mechanism en-

coded in generic reactions associated to the organisms, and using small molecules

known to be present in the organism, I build a system to enumerate new small

molecules which result from applying the reaction mechanisms to the known small

molecules. This process is iterated, using again the same reaction mechanisms

and the new molecules produced in the previous iteration.

4.1.2 Existing tools

4.1.2.1 KEGG RPAIR and RDM Patterns

The RPAIR part of KEGG consists of reaction pair mappings through atom-

atom mapping of the participants of a reaction. Reaction pairs associate sub-

strate molecules to product molecules where there is at least one atom of the

substrate molecule that is present in a product molecule. For instance, Figure

4.1 presents the reaction pairs for reaction ATP:D-hexose 6-phosphotransfera-

se (EC number 2.7.1.1). Using the knowledge represented in the reaction pairs

(constant part, reaction center, changing part), different transformations can be

applied to molecules that match the relevant regions of the applied reaction pair.

This is how KEGG E-zyme[167] works to generate new reaction paths between any

two small molecules provided.

For doing the atom-atom mapping, KEGG first assigns atom types to each

atom. Atom types reflect the element and the valence state that an atom is

currently in, given its bonding circumstances. Atom types are not shown in

Figure 4.1 to simplify the diagram.

RDM Patterns are a codification of the reaction pair mappings concerning

the atom type1 changes of the reaction centre (R), of the difference atom (D),

1KEGG atom type definitions can be inspected online at the web address
http://www.genome.jp/kegg/reaction/KCF.html
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and for the matched atom (M). Each reaction pair has one RDM pattern (many

reaction pairs will have the same RDM pattern). For instance, for reaction pair 1

in Figure 4.1, the RDM pattern is O2c-O1c:P1b-*:P1b-P1b. This represents that

the reaction center – oxygen in red – goes from a P-O-P configuration (coded as

O2c) to a P-OH configuration (coded as O1c); the difference atom – phosphate in

blue – goes from a P-O configuration (coded as P1b) and leaves the pair (coded

as *); the matched atom – phosphate in yellow – goes from a P-O configuration

and remains in the same configuration. RDM patterns are more general than

reactions pairs, they imply less restrictions on what a molecules needs (just the

reaction centre and neighbouring atoms) to participate in a reaction.

4.1.2.2 BNICE

BNICE [53] is a reaction enumerator scheme which uses accumulated reaction

knowledge from KEGG. Through the use of Ugi matrices to encode reactions,

BNICE generalizes reactions according to the EC Number classification, up to

the third level. In many occasions, the authors find that reactions classified

through EC Number do not fit well in the generalization and create new classes to

accommodate them. According to the publication, they summarize the chemical

reaction diversity housed in KEGG (for the 2005 version) through less than 250

generalized reactions.

The authors of BNICE use it to obtain new biosynthetic pathways for amino

acids biosynthesis. In general, they observe that the natural pathways tend to

be more favourable in terms of Gibbs Energies than the inferred pathways (set of

reactions produced by BNICE), for the same pairs of initial precursor to amino

acids.

The tool is an excellent approach for exploiting the enzyme promiscuity prob-

lem towards the generation of novel molecules that could be present in a reactome.

Unfortunately, BNICE is not available for use, neither as a web application nor

as a downloadable application.
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Figure 4.1: Diagram of reaction pairs for reaction ATP:D-hexose 6-phosphotrans-
ferase (EC number 2.7.1.1). The reaction can be expressed with three different
reaction pairs. The first reaction pair shows the transition from ATP to ADP by
removal of the last phosphate group. The red atom – the linking oxygen between
second and third phosphate groups – is the reaction centre for this reaction pair.
The phosphate in yellow next to it shows the beginning of the constant part
(in green) in the reaction pair, while the phosphate in blue shows the beginning
of the non-constant region in the reaction pair. The same applies to the other
two reaction pairs: red atom is the reaction center, yellow is the first common
or matched atom, blue is the first different or unmatched atom. Each of these
reaction pairs are used to explain many different reactions.
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4.1.2.3 Mariboes

MaRiBoEs[24] is an engine for reaction generalization and enumeration which

builds considerably on top of the reaction pair knowledge existing in KEGG.

MaRiBoEs improves the codification of reaction rules in RDM patterns introduced

by [110] (Figure 4.1 shows an example), by adding a simple stereo chemical check

and fingerprint distance check to decide whether a new compound can be modified

by a reaction rule encoded in the RDM pattern of a reaction. Furthermore, they

extend the RDM pattern concept to include all the unmatched atoms in the

reaction pair, and not only those that are directly connected to the reaction

centre. Authors use BRENDA to generate their extended RDM patterns, due to

the richness of the reaction mechanism deposited there.

The stereo chemistry check proposed consists of rotating the molecules so that

the major axes of both molecules are aligned in the x - y plane, and then checking

the z coordinates of the atoms to see if they are the same.

MaRiBoEs is implemented in MATLAB, which is a major drawback for using

it, as it does not integrate well with the rest of Java based tools and APIs used

for other parts of the project. MATLAB is also a commercial package, and hence

running MaRiBoEs requires to have a MATLAB license.

4.1.2.4 ChemAxon Metabolizer

The Metabolizer package from ChemAxon is a Java software that relies on JChem

library to predict metabolic fate of a given small molecule, given a library of

reaction mechanisms. Metabolizer is a commercial software, ChemAxon provides

a preview version with a reduced library of reactions. The software presents a

GUI that asks the user to submit up to 100 small molecules. Apparently it can

calculate a few levels of iterative applications of the reaction mechanisms of the

supplied library. It also has some way of assessing the metabolic stability of

the generated metabolites. There is no technical documentation available that

describes how Metabolizer works.

Metabolizer also offers a command line access and an API access for Java.

It is unclear whether Metabolizer could cope with dealing with several hundreds

structures and few hundred reactions, as it is required in the application that I
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intend to give to it.

4.1.2.5 CDK Enumerator Library

The CDK Enumerator Library is a Java library which relies on the CDK to enumer-

ate generic reactions products for defined substrates. The library can be used also

as a standalone application with a graphical user interface that allows the user to

load a generic reaction and a small set of small molecules. The CDK Enumerator

Library is also exposed as a module in the CDK-Taverna workflow environment.

CDK Enumerator Library heavily relies on the use of substructure searches

for detecting repeated features and variable length regions, as described in [153].

While this is fine for a user interface based use, where the user loads only a handful

of generic reactions and structures to enumerate, this can be a major issue when

running at the whole metabolome level. These substructure comparisons are

handled with the CDK isomorphism module.

The CDK Enumerator Library is open source and available to be integrated into

other Java packages. It is however not directly suitable to run problems at the

complete metabolome level, but being open source, improvements can be made

towards this end.

4.1.3 Method: Generation of metabolites

Given a set of generic reactions (reactions with at least one generic reactant and

one generic product) that belong to an organism or biological containment, and

a set of non-generic molecules from that same biological containment, I want to

list all possible new metabolites that those reactions can produce when applying

them to those metabolites. To apply a generic reaction to a non-generic small

molecule, the only requirement is that the non-generic small molecule fits into

the template provided by one of the generic reactants of the reaction.

Starting from the CDK Enumerator library [153], I built a pipeline for the

enumeration of generic reactions. This pipeline consumes generic reactions, either

from a BioWarehouse data set or a provided MDL RXN file, and non-generic

molecules, either from a BioWarehouse data set or a provided MDL MOL V2000

file.
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Originally, the authors of the CDK Enumerator Library conceived it for a

lighter use in which a user would load a generic reaction and a few non-generic

molecules into a GUI, and the GUI then shows the enumeration result. For the

number of reactions and molecules a user can analyze through a GUI, the design

of the CDK Enumerator Library is adequate. However, when hundreds of generic

reactions and hundreds of non-generic molecules are to be crossed, the CDK

Enumerator is too slow. I introduced a number of improvements, both inside

the CDK Enumerator Library and around it, to make it dramatically faster (and

feasible) for the task at hand.

4.1.3.1 Use of fingerprints to limit substructure search

The original implementation of the CDK Enumerator Library used the CDK

Universal Isomorphism Tester, to check whether the generic molecule template

is a substructure of the non-generic molecule. For a few reactions and a small

number of molecules, this is reasonable, however, for the scale of the problem

proposed this is prohibitive as each substructure search is expensive. Because

of this, I introduced a filtering step that would pre-screen the whole collection

of non-generic metabolites against the generic elements of the reactions being

enumerated, reducing the number of expensive substructure searches.

However, in the CDK there is no Fingerprint method that can be used to

decide, given a generic and a non-generic molecule, whether the generic molecule

can be a substructure of the non-generic molecule, as all the fingerprint imple-

mentations make use of the variable region, assigning it to calculations that would

change one or more bits of fingerprint. For this reason, I modified the clique-path

based CDK Fingerprint to make it generic molecule friendly, allowing to check

whether a generic molecule could be a substructure of a non-generic molecule

given. I named this fingerprinter, MarkushAwareFingerprinter. This was used to

dramatically reduce the number of substructure searches done.

Given the bits resulting from applying the MarkushAwareFingerprinter to

a generic and to a non-generic molecule, we say that the generic molecule is

contained in the non-generic molecule if all “1” bits of the generic molecule are

turned on in the non-generic molecule. Figure 4.2 illustrates how the fingerprinter
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works, and how it is used to rule out structures that cannot be compatible with

the generic structure that the pipeline is processed.

4.1.3.2 Use of a better substructure search library

Even though I reduced the number of substructure searches for the enumeration

problem, still each time that the fingerprint screening accepts a new molecule for

applying a generic reaction, substructure searching is invoked. On top of this, for

some cases, this search can be particularly expensive (for instance, very big query

molecule with many repeated parts that also appear in the target). Given the

number of substructure searches done, the complexity of them, and considering

that they are one of the most processor intensive parts of the enumeration, it

makes sense to find faster ways of performing it.

Recently the Small Molecule Subgraph Detector (SMSD) [124], an improved

library for substructure and isomorphism search, was released. The authors claim

that it can be as much as 5 times faster than the CDK original implementation,

and even solve some cases that the CDK Universal Isomorphism Tester cannot

resolve. In order to make my reaction enumeration faster, I changed the CDK

Enumerator Library to use the SMSD substructure search capabilities, instead of

the CDK solutions.

The SMSD Substructure search library implements a series of algorithms for

the substructure problem, from which the library chooses according to the char-

acteristics of the problem presented. Additionally, the SMSD can rank the atom

atom mapping solutions provided as result of the substructure search through

different criteria, such as bond energies and stereo chemistry.

4.1.3.3 Better control of structures accepted

The CDK Enumerator Library had no control on whether a non-generic small

molecule would have protruding parts, in regions other than the variable markush

region, that did not appear on the generic structure. Figure 4.3 shows an example

of a generic structure, and two non-generic structures, where one of them fits

perfectly with the generic specification and the other is almost identical but for
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Figure 4.2: Diagram for the markush-aware fingerprinter, which is a modification
of the classic CDK Fingerprinter, but that neglects R regions (the R regions
are not included in the fingerprint or set of bits). The Fingerprinter produces
all the cliques of a given molecule, without adding any R groups found. The
fingerprint signals with bits turned on the appearance of certain sub structures.
For a new molecule to contain the template generic structure, a necessary but not
sufficient condition is that when the same fingerprinter is applied, all the “1’s” are
conserved, as in the second bit set shown. If there is a “1” that changes to “0”,
then the proposed non-generic molecule cannot be compatible with the generic
structure. If fingerprints are compatible, then a substructure search makes the
final deciding comparison.
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an additional phosphate group that is not part of the R-group. I implemented

additional checks to control this feature, enabling both the enumeration with

extra protruding parts or exact matches.

O       

       

       

       

OH       

HO       

       
O       P       

O       –       

O       

O       

P       

O       –       

O       –       

O       

NH       2       

       

N       
H       

N              

       

O       

N       
N       

       

O       

O       

O       
HO       

OH       
O       –       

O       –       

O       –       

O       –       
       
O       

O       

O       

O       

       
       

       

       

P       

P       

P       

NH       2       

       

N       
H       

N              

       
       

O       

N       
N       

       

O       

       

       
       

OH       

HO       

       
O       P       

O       –       

O       

O       

P       

O       –       

O       –       

O       

R1       

Additional
protruding
part.

R-group region

Perfect match for 
the generic
molecule.

Not a perfect match for 
the generic molecule, 
additional parts exist.

Figure 4.3: Diagram of a generic molecule with a match without any additional
groups but those located in the R group, and with a partial match due to a
protruding phosphate group in the non-generic molecule that is not present in
the generic molecule, nor is part of the R-group region.

4.1.3.4 Mapping of multiple markush regions

In reactions where there is more than a markush region, the CDK Enumerator

Library makes the match between different markush regions by the label of the

R-group: the library assumes that “R1” in the reactants should be mapped to

“R1” in the products, “R2” in the reactants to “R2” in the products and so on.

While this might be a reasonable assumption for reactions that are loaded to a

GUI and inspected by the user, this is problematic for an automated pipeline,

as in many cases this mapping assumption does not hold. For instance, Figure

4.4 shows a generic reaction from HumanCyc where the direct mapping by labels
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cannot be used.

Figure 4.4: Generic reaction for which the generic atom labeling does not allow
a correct mapping.

Using chemical signatures [35], I implemented a mapper for generic reactions

that solves this problem. Figure 4.5 illustrates the algorithm used – for the same

reaction shown in Figure 4.4 – to map the generic regions between reactants and

products. For each generic group in the reactants, the mapper calculates the

signatures at a minimum height of the non-generic atom attached to the generic

group. Signatures for reactants and product atoms are compared, towards finding

a unique mapping. If the mapper finds a unique map for an atom attached to a

markush group, the mapping is accepted. For all those reactant atoms attached

to markush groups for which the mapper cannot find a unique match at the

product side, the mapper recalculates their signatures increasing the height by

one, the same with the remaining unmapped product atoms attached to markush

groups. The mapper compares, keeps the unique matches, and repeats signature

comparison for the unmapped increasing the height. It is important to start with

low initial heights, because a markush group close to a reaction bond break or

creation might not be mapped. Not mapping the generic atoms in a reaction

means it cannot be used in the enumeration.

All mappings are stored in the reaction by means of modifying the markush

group label to the adequate numbering (R1, R2, R3, etc), so that the CDK

Enumerator Library can deal with them adequately. When there are elements

that cannot be mapped, the reaction is neglected.
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Figure 4.5: Algorithm used to map generic reactions, when more than one R-
group is found in the reactants.

4.1.3.5 Multi-processor support and distribution

Given that I introduce a number of steps for filtering results, as following sections

show, there are many algorithms that can be executed in parallel. Making use of

multi-core processors, I make the whole enumeration process faster by designing

the pipeline in a concurrent manner. The enumerator parallelizes the finger-

print calculations and comparisons, the mapping of multiple markush regions,

the expensive substructure searches within the main enumerator, and each of the

filtering steps detailed later.

However, making the process parallel is not enough to produce results in

reasonable time (less than five days per iteration), so I built this pipeline in a

distributable fashion. Normally, to distribute the execution of a program it is

necessary to split the data. In this case, both the set of generic reactions and

non-generic small molecules can be partitioned, so that each different node in

the cluster can handle a subset of the problem, and try all the non-generic small

molecules on them. Shell scripts are in charge of distributing Java jobs across the
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cluster, segmenting the generic reactions and non-generic small molecules. Given

that each reaction must get the chance of being applied on each small molecule,

the number of distributed jobs is the product of the number small molecules and

reactions partitions, for each iteration. As the number of molecules grow with

the iterations, this generates an increasing number of separate execution jobs.

Figure 4.6 illustrates the distribution process across iterations.

The only case in which reactions and small molecules cannot be partitioned

is when a generic reaction contains more than one generic reactant. All these

reactions are submitted separately with the complete set of small molecules.

4.1.4 Methods: limiting the generated results

Stretching the concept of enzyme promiscuity can generate many spurious results.

There is a need to narrow down or at least rank the resulting molecules and

reactions, to distinguish those molecules that might have more chances of existing

in nature. As part of this pipeline, I introduce three methods that could be used

for filtering or ranking reactions and small molecules.

4.1.4.1 Gibbs Energies of Formation and Reaction

The Gibbs Energy of Reaction predicts whether a reaction can proceed in a

particular direction. For a reaction

aA+ bB → cC + dD (4.1)

the Gibbs Energy of Reaction is calculated from the Gibbs Energy of Forma-

tion of each of the participants

∆RG
0′ =

∑

i

viG
0′
f,i (4.2)

The stoichiometric factor vi is negative for reactants and positive for products.

In [100], a group contribution method was developed to calculate the Standard

Gibbs Energy of Formation of any chemical structure, provided it could be com-

pletely described by the groups. Later on, [63] further extended the method to
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Figure 4.6: Diagram of the distribution of the reaction enumeration jobs across
the clusters, by iteration. Initially generic reactions and non-generic small
molecules are retrieved from the database, to be split into smaller sets. A shell
script generates the number of proper enumerator jobs submissions to the number
of molecules and reaction files, for each iteration as files are ready.

182



include more groups. These works were only possible due to the existence of a

plethora of Gibbs Energy measurements for individual compounds, mostly due

to the works of [1; 2; 47], among others.

For biochemical reactions, it is important to consider the pH and ionic strength

of the solution, as reactions do not occur really at zero ionic strength as it is done

in most measurements. The Standard Transformed Gibbs Energy of Formation

[1; 2] accounts for these variations. The methods of [100] and [63] do not allow to

calculate the Transformed Gibbs Energies. For a biochemical reaction to proceed,

the Transformed Gibbs Energy of Reaction needs to be below zero, or, be coupled

to other reactions where the net output is a Transformed Gibbs Energy below

zero.

Once Gibbs Energies of Formation are calculated, there are certain precautions

when calculating Gibbs Energies of Reaction. The reaction needs to be balanced,

hopefully avoiding scaling issues, as the stoichiometric coefficient play a role in

the reaction energy. The Transformed Gibbs Energy of Reaction considers the

protonation equilibrium within the different pseudoisomers, so it is not necessary

to balance protons for this type of energy. Gaseous carbon dioxide also needs

to be treated as the dissolved species that conform it in solution. None of these

considerations are solved by the works of [100] and [63].

Unfortunately, at the time of this work, there was no implementation avail-

able of the group contribution method for the calculation of Gibbs Energies of

Formation for small molecules. By extension, there was no available software to

deal with chemical reactions for calculating Gibbs Energies of Reaction (neither

Standard or Standard Transformed).

For this task, I completed and improved work started by Dr. Kai Hartmann at

the Cologne University Bioinformatics Center, a Gibbs Energy calculator which

was based on the group contribution method of [100]. I extended the method

to incorporate the additional data and groups in [63], generated an improved

multiple linear regression for the group contribution and completed the ability

of the software of converting Gibbs Energies to Transformed Gibbs Energies,

among others. Appendix D gives further details of the Gibbs Energy calculator

implementation.

The software calculates the Gibbs Energy of Formation of any given molecule
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provided that all of the atoms in the molecule can be mapped to one of the

groups used. Having calculated the Gibbs Energy of Formation, we devised –

with Dr. Hartmann – a mathematical way to calculate the Transformed Gibbs

Energy of Formation, relying on pKa estimations produced by the JChem library.

Additionally, I implemented in the package routines for dealing with complete

reactions, including any balance or species adjustment necessary to calculate the

Standard Transformed Gibbs Energy of a reaction.

4.1.4.2 Known connectivities

For each new molecule generated, the pipeline calculates its InChI Connectivity

and compares it against Lucene indexes prepared for ChEBI, HMDB, PubChem

Compounds and KEGG, to find matches in these databases. If the enumeration

produces a molecule that has known connectivity, then it might be more likely

to exist. The pipeline records as result the number of equivalent connectivities

found on each database.

4.1.4.3 Downstream transformations

Using the PredictTransform engine – developed by Asad Rahman at Janet Thorn-

ton’s group at the EBI – I look for small molecules generated that might be further

metabolized once produced. Based mostly on KEGG reaction pairs – which dis-

cover reaction centers as Figure 4.1 shows – and the SMSD, this tool predicts

which reactions could further consume a given metabolite. This prediction is

based on structural comparisons and the identification of reaction centers – of

the eventual reaction to be applied – in the queried molecule. The engine pro-

duces a list of EC numbers of the reactions that are most likely able to metabolize

the small molecule presented.

I couple the output of PredictTransform with a look up of the EC numbers

produced in a Lucene index that contains EC numbers to organism mappings,

to accept only those EC numbers that are known to occur in the organism of

interest. I generated this index by parsing the complete UniProt (SwissProt +

trEMBL) protein dump file. The rationale here is that if the metabolite can be

further processed by other enzymes in the organism, then is more likely to be
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real.

4.1.5 Method: Main procedure

Starting from all the unique small molecules – in terms of Standard InChI –

gathered from the Text mining and database unification produced in the pre-

vious chapters, and from a set of generic reactions obtained from the database

unification, the engine iterated three times. The first iteration starts from the

mentioned reactions and small molecules, the second iteration again uses the same

reactions, but on the unique small molecules generated on the first iteration and

that are not part of the original set of small molecules. The same process re-

peats on the third iteration, starting from the molecules generated on the second

iteration.

The pipeline separates small molecules into groups of up to 200 molecules,

leaving each group in a file. The same occurs with reactions, producing groups of

up to 50 reactions, left each group in a file as well. While these files are produced

from data in the database, the need for distributing the reaction enumeration in

the cluster prohibits the direct extraction of the small molecules and reactions

from the database by each distributed job. This is because the database can

only accept a limited number of connections, which constrained the number of

distributed jobs that could be generated. For this reason, reactions and small

molecules are divided into files, which are accessed in parallel by the different

instances of the enumerator that run on different nodes of the cluster.

As an iteration ends, a helper application written in Java collects all the results

from the finished distributed jobs, and unifies them. This includes identifying

molecules that are equivalent – in terms of Standard InChI – and assigning them

the same identifier, so that they are not duplicated when running the following

iteration. The pipeline neglects molecules for the next iteration if they have

the same Standard InChI of a molecule that has been already used in previous

iterations.

All results – generated small molecules, the reactions that generate them,

and meta data about small molecules and reactions including the results of the

processes mentioned in sections 4.1.4.1, 4.1.4.2, and 4.1.4.3 – were analyzed using
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4. CONSTRAINED CHEMICAL ENUMERATION

Molecules Reactions

Iteration Fed Used Produced Fed Used Produced

1 3,920 2,965 8,378 253 44 11,568
2 8,378 7,962 22,881 253 64 46,949
3 22,881 21,627 73,358 253 70 205,696

Table 4.1: Summary of results for the three iterations executed with reaction
enumeration pipeline. Fed are all molecules or reactions given to the engine; Used
are only those that the engine actually utilized on each iteration; Produced stands
for the newly generated molecules or reactions (considering as a new reaction the
use of a particular non-generic molecule in a generic reaction). While molecules
used and produced are unique, reactions produced are not unique.

R to find potential useful relations between the generated molecules, reactions,

and the methods that could help in filtering molecules generated.

4.1.6 Reaction enumeration results

Enumeration of small molecules based on known rules can lead to an exponential

rate of generation of small molecules. Table 4.1 shows the details of molecules

and reactions generated.

Given that a metabolome has normally associated a mass maximum threshold,

Figure 4.7 shows how the mass of generated molecules tends to distribute towards

higher masses as iterations proceed. Still, most of the generated small molecules

within three iterations tend to remain mostly <1,500 Daltons. Box plots in Figure

4.8 display the same effect, indicating where the median, first and third quartiles

of each set of molecules are located. Both graphs include only unique molecules

generated on each iteration.

Also, as the iterations proceed we see an increase not only of mass of the

molecules, but of their complexity. As each iterations generate new molecules,

more reactions with different EC numbers are able to match the generated mole-

cules, introducing reaction mechanisms in posterior iterations that were absent in

previous iterations. Bar plots in Figure 4.9 point this out: as iterations advance,
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Mass distributions
for molecules generated on each iteration
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Figure 4.7: Density of the masses for molecules generated during each iteration.
As iterations proceed, generated molecules distribute towards heavier masses.
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4. CONSTRAINED CHEMICAL ENUMERATION

Mass distributions
for molecules generated on each iteration
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Figure 4.8: Box plots of the masses for molecules of each iteration.

new reaction mechanisms under the categories of transferases (EC Group 2.-.-.-),

hydrolases (EC Group 3.-.-.-) and isomerases (EC Group 5.-.-.-) are seen to act on

the small molecules of the previous iterations. Interestingly, none of the iterations

see the action of lyase mechanisms. It is also notable that while the iterations

show a tendency to increase the average mass of molecules that they produce, none

of the iterations display more than one different ligase mechanism, which would

normally be associated with mass increases, leaving most of this responsibility of

mass increases to the present transferases (as both oxidoreductases and hydrolases

would not normally generate much heavier molecules).

The increment in molecule complexity also makes the produced structures less

similar to known molecules, or to molecules that could be further metabolized by

the enzymes in the organism. The bar plot in Figure 4.10 shows that as iterations

advance, less and less molecules generated resemble those in ChEBI, PubChem

Compounds, KEGG, HMDB, and less molecules are predicted to be target of
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Different EC Numbers applied per Iteration, by EC Group
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Figure 4.9: Bar plot shows the number of different EC numbers that each iteration
uses, grouped by the EC group that the EC numbers belong too. The first EC
group corresponds to oxidoreductases, the second group to transferases, the third
to hydrolases, the fourth group – absent in the iterations – corresponds to lyases,
the fifth group to isomerases, and the sixth group to ligases. NG stands for no EC
group. Transferases, hydrolases, and isomerases show relevant increases of unique
EC numbers used between iterations, representing an increase in the complexity
of the pool of small molecules as the iterations proceed.
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4. CONSTRAINED CHEMICAL ENUMERATION

Molecules with equal connectivity to databases
or with predictied downstream reactions, per Iteration
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Figure 4.10: Bar plot shows how the number of links to databases – through
equal connectivity – diminishes as iterations advance. This also applies to the
number of molecules for which downstream reactions could be predicted in the
same organism. Even though the number of molecules with predicted downstream
reaction seems to increase from Iteration 1 to Iteration 2, normalizing by the total
number different molecules generated per iteration would illustrate a proportional
decrease from Iteration 1 to Iteration 2.
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further processing by enzymes in the system.

Beyond the participation of unique EC numbers, it is important to know

how many times each EC number is participating on each iteration. Certain

EC numbers with simpler generic reactions probably participate more often than

others with more complex requirements in their markush structures. Table 4.2

shows the different EC numbers, and the numbers of times they participate on

each iteration, from the higher to lower frequency. Data in the table illustrates

that EC number 1.1.1.1 – the oxidoreductase reaction where an alcohol group is

transformed to an aldehyde group – is responsible for nearly half of the reactions

enumerated on each of the iterations. Reaction EC number 1.1.1.2 closely fol-

lows, responsible for ∼20% of the reactions enumerated on each iteration. The

remaining ∼30% of reactions tend to be distributed within the remaining 57 EC

numbers seen in the enumeration. This happens because there are a few generic

reactions which do not impose a lot of restrictions on potential molecules (the

Markush structure is simple), like reactions where “an alcohol” – R-OH – partic-

ipates, which matches any molecule with an hydroxyl group. On the other hand,

many generic reactions use complex Markush structures – such as an α-L-fucosyl-

(1,2)-β-D-galactosyl – which impose more restrictions on potential molecules.

As iterations proceed, there is also a phenomenon of decreased Gibbs Energies

of Formation, as Figure 4.11 shows. There is normally no correlation between the

Gibbs Energies of Formation of a small molecule and its mass, so this must mean

that the reactions being used in the iterations tend to form more substructures

in the molecules which show low energies. While it is true that Gibbs Energies of

Formation are relative terms, having molecules with lower relative energies can

imply that the reactions leading to them find favourable equilibriums towards

products formation, and would not require much coupling from the thermody-

namic point of view.

If one considers the match in connectivity against one of the databases, or

the fact that the metabolite could be further processed by other reactions in the

same reactome, as evidences of a molecule being real, then reactions that can

lead to small molecules with evidence can be compared to those reactions that do
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4. CONSTRAINED CHEMICAL ENUMERATION

Iteration 1 Iteration 2 Iteration 3

EC # % # % # %

1.1.1.1 5,819 49.2 21,618 45.9 108,623 52.8
1.1.1.2 3,040 25.7 8,967 19.1 37,256 18.1
1.2.1.3 227 1.9 6,498 13.8 27,047 13.1
2.4.1.1 89 0.8 1,243 2.6 7,049 3.4
3.2.1.2 87 0.7 1,048 2.2 6,617 3.2
2.1.1.49 907 7.7 2,464 5.2 5,619 2.7
3.2.1.20 74 0.6 848 1.8 4,940 2.4
1.1.1.21 229 1.9 666 1.4 2,802 1.4
2.4.1.144 75 0.6 314 0.7 1,378 0.7
6.2.1.3 389 3.3 457 1.0 761 0.4

Table 4.2: Number of occurrences (#) of EC numbers in the reactions of each
of the 3 iterations, including the percentage (%) that each EC number covers –
in terms of reactions – for each iteration. Few EC classified reactions – most of
them oxidoreductases that generate more that ∼70% of the enumerated reactions
– dominate the enumeration. The whole process is represented by 57 EC numbers,
this table shows only the Top 10 in terms of participation (Table G.1 in Appendix
G shows all EC numbers). EC numbers are sorted by the number of occurrences
(#) in the third iteration.
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Distribution of Transformed Gibbs Energies of formation
for molecules generated on each iteration
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Figure 4.11: Density of transformed Gibbs Energies of Formation for molecules of
each iteration. As iterations advance, there is a clear shift towards lower energies.
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not lead to small molecules with evidence. Separating by iterations, Figure 4.11

illustrates a displacement towards lower Transformed Gibbs Energies for reactions

that lead to small molecules that show evidence of being real. This seems to be

consistent between all three iterations.

Transformed Gibbs Energy of Reaction
for reactions leading to a small molecule with/without evidence
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Figure 4.12: Density plot shows the distribution of Transformed Gibbs Energies
of Reaction for reactions leading to small molecules with evidence – either a
connectivity match with a database or a prediction of downstream transformation
– of being real molecules, and without it. Reactions generating molecules that
could exist display a slight tendency to be in regions of lower energy, compared
to reactions leading to small molecules for which there is no evidence. Plots are
divided by iteration.

While it would be tempting to generalize this result into “reactions that pro-

duce molecules existing in nature tend to have lower Transformed Gibbs Ener-

gies”, further inspection shows that this shift might be an artifact of the par-

ticipating reactions in the enumeration. The consistent peak at ∼165 kJ/mol is

due mostly to the many reactions enumerated from EC number 1.1.1.1 (82,997

fall in 140 to 200 kJ/mol, overall iterations, 1.9% of them lead to a molecule
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that could be real), and then followed by reactions enumerated from EC number

1.1.1.2 (18,008 reactions with between 140 kJ/mol and 200 kJ/mol, 6.3% leading

to a possibly real molecule).

Again using the distinction between molecules that show some evidence of

potentially being real (database connectivity and downstream transformation),

and sorting reactions according to the ranking of participation given in Table

4.2, Figure 4.13 shows the fraction of molecules with evidence that each reaction

class has per iteration. As iterations progress, each reaction has fewer chances of

producing a molecule that resembles existing molecules. Also, the more reactions

are enumerated for an EC number (lower rank number implies that the reaction

generated a higher number of enumerated reactions, EC 1.1.1.1 for instance is

ranked 1st), the lower the fraction of reactions leading to molecules resembling

existing molecules. This slight tendency is gradually lost as iterations progress.

The most important motivation of the application of generic reactions is to

produce new molecules that could be considered as part of the metabolome of an

organism. To asses this, I compared the generated results of the three iterations

to the molecules in the metabolism database unification metabolome, text mining

metabolome, and the small molecules present in the HMDB. While the iterations

start from molecules in the metabolism database unification and text mining,

at each step only the molecules that were not present in the initial step were

collected.

Figure 4.14 summarizes these comparisons – using connectivities – through

Venn diagrams. In the first diagram to the left, it can be seen that while there is

a big overlap of approximately ∼900 molecules to both the database unification

and text mining collections, the unique overlap with HMDB is much lower. The

three overlaps only represent a minor fraction of the total connectivities generated

by the enumeration part. The diagram to the right in Figure 4.14 shows that

by limiting the enumeration result to molecules with evidence of existing, the

total number of different connectivities generated by the enumeration pipeline

can be reduced to 6.2% of its size, probably to a set of molecules with higher

confidence of belonging to the metabolome. Figure 4.15 gives more detail on

how these same overlaps are when splitting the data by iterations, showing that
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Percentage of reactions leading to
a small molecule with evidence of existing
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Figure 4.13: Scatter plots display the fraction of small molecules produced by
the different reactions – as ranked in Table 4.2 – that show evidence of being real
small molecules; either that they have a connectivity match against a database
or a predicted downstream transformation. A lower rank number means more
reactions enumerated (EC number 1.1.1.1 is ranked 1st).
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as iterations proceed, the number of intersections with the previous resources

decreases.

Figure 4.14: Venn diagrams of small molecules produced by the database unifi-
cation, text mining, HMDB and the reaction enumeration scheme, using connec-
tivities only. Left: Diagram built using the complete enumeration result. Right:
Diagram built using the enumeration result limited to small molecules that show
either similar connectivity to known molecules or predicted downstream reactions
– which are labeled as “With evidence”. Limiting results to these small molecules
“with evidence”, reduces the set of unique molecules generated by the enumera-
tion to 6.2% of its original size, presumably to molecules with higher chances of
being real. Figure G.1 in Appendix G shows the same exercise using Standard
InChI instead of connectivities.

4.1.7 Reaction enumeration conclusions

Enumeration of reactions to produce new molecules from a starting metabolome

is a highly intensive task from a computational point of view. This is mostly

due to the high number of substructure comparisons required and the use of

PredictTransform. On top of this, while the enumeration possibilities increase

heavily at each enumeration step, nature only uses very few of them, mostly

constrained probably by enzyme specificity. While there is evidence that enzymes
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4. CONSTRAINED CHEMICAL ENUMERATION

Figure 4.15: A: Decomposition of the left Venn diagram in Figure 4.14 by itera-
tions of the enumeration. B: Decomposition of the right Venn diagram in Figure
4.14 by iterations of the enumeration. This shows that Iterations 1 and 2 generate
most of the intersections with the joint database unification and text mining set,
and with the HMDB set, while Iteration 3 produces the higher ratio of unique to
intersected molecules. Figure G.2 in Appendix G shows the same exercise using
Standard InChI instead of connectivities.
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can behave promiscuously, this level of promiscuity must be very low compared to

the overall possibilities that the chemical enumeration constrains, as it becomes

very difficult to find known molecules through the application of transformation

rules on existing molecules. This is more and more clear as the enumeration

proceeds through the iterations – departing from the original molecule set – and

less and less known connectivities can be obtained.

Partly the lack of verifiable results that the pipeline obtains from enumerat-

ing reactions can be due to the choice of transformations made. Limiting only

to transformations that are present as generic reactions was a first step towards

the problem. This allowed me to focus on the construction of the software infras-

tructure and on exploring methods for limiting results. This same infrastructure

could be used with generalization of reaction mechanisms – encoded as markush

structures – within in a metabolic system. This requires an in-depth analysis of

reaction’s structures. The legacy of this work is a software that is highly paral-

lelized and distributable to face this challenge at the complete metabolome and

reactome level.

Better rules are needed for limiting the application of certain reactions that

only require minimal substructures to be present, as in the case of the oxido

reductases EC numbers 1.1.1.1 and 1.1.1.2, which produce so many enumerated

molecules that are not viable and that consume so much of the computing power

in posterior iterations. The reduction of these enumerations through the intro-

duction of more advanced, manually introduced, chemical rules could give room

for faster iterations and hence deeper analysis.

With all these caveats, the pipeline for enumeration still generate in 3 it-

erations ∼5,000 different chemical connectivities with some evidence that could

syndicate them as being real molecules. Out of these set of ∼5,000 connectivities,

nearly a thousand show equivalents in metabolism databases, the text mining

based metabolome and the HMDB overall. This represents a reduction of nearly

20 times from the original size of total different connectivities generated by the

enumeration. This set of molecules is feasible to be incorporated in a metabolome

database, as a very low confidence data set that offers more alternatives for de-

tected but unidentified molecules.
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4.2 Polyketides

Polyketides are complex small molecules, produced mainly by secondary metabo-

lism in bacteria and fungi, and have a wide variety of applications. Huge modular

enzymes, called polyketide synthases (PKS), assemble polyketides through a se-

ries of elongation steps, where malonyl-CoA derivatives are added (but only a

C2-unit is incorporated due to decarboxylation), similar in a way to fatty acid

synthesis. Examples of well known polyketides are erythromycin or tetracyclines.

Polyketides in general have found applications as antibiotics, anti-tumoral agents,

anti-fungals, insecticides and growth factors, among others.

I decided to study polyketides as an example of a complicated case in metabo-

lome enumeration.

Polyketide synthases (type I, modular) are divided in modules, each of them

produces an elongation and modification to the growing backbone of the polyke-

tide [65]. These modules are composed of a set of domains, as Figure 4.16 shows,

that characterize the type of modification produced by the module. These do-

mains – valid for modular and iterative PKS – are:

KS: Ketosynthase domain, receives the growing chain from the previous mod-

ule’s ACP domain. It then interacts with the ACP domain of its own mod-

ule through a Claisen condensation in which the polyketide is elongated

with the building block (normally acetyl-CoA or malonyl-CoA) bound to

the ACP. This reaction leaves the KS domain free and the growing chain

attached to the ACP domain of the same module.

AT: Acyl-transferase domain, binds the acyl building blocks to be added to the

ACP domain.

KR: Ketoreductase domain, optional domain which follows to KS domain action,

reduces the keto structure left by KS by protonating the double bonded

oxygen introduced as part of the previous added acyl module.

DH: Dehydratase domain, which is optional, removes an hydroxyl – producing

a double bond in the chain – from the building block that the previous

module inserts. Normally follows the action of a KR domain in the same

module that generates the hydroxyl.
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ER: Enoylreductase domain – another optional domain which follows the action

of a DH domain – removes the double bond introduced in the previous step

in the chain.

MT: Methyltransferase domain, methylates the linking carbon (-CH2-) between

the newer and older groups added.

ACP: Acyl-carrier protein domain, always present, holds the growing chain dur-

ing most of the synthesis process. All other domains act on the chain while

this is attached to the ACP domain. Other than the ACP, only the KS

domain holds the growing chain at some point. This happens when the

previous module’s ACP hands over the chain to the following module’s KS

domain, which in turns transfers it to its own module ACP domain (pro-

ducing the elongation). The ACP domain, before receiving the growing

chain from the KS domain, accepts the building block provided by the AT

domain.

The close relation observed by the order of modules, and their domains, with

polyketide chemical structures known to be synthesized by some of these enzymes

have driven the community to a “co-linearity” rule, which can predict the struc-

ture of the polyketide starting from the sequence of the PKS enzyme. This is

however mostly valid for a certain type of PKS – type I modular cis-AT PKS –

and for other related synthases (such as fatty acid synthases).

There are many different types of polyketide synthases. In type II these

domains are not in the same open reading frame and act as separate proteins. In

contrast, in type I – our main interest – the domains are part of the same protein.

Type I can be further divided in iterative and modular; iterative PKS reuse the

same module on the same molecule, over and over again; modular PKS – our

main interest within type I – have several modules and the growing polyketide

chain traverses them in linear order. While type I iterative PKS are known to

be present in fungus – responsible of producing molecules such as aflatoxin B1 –

and eubacteria, type I modular are mostly present in eubacteria.

Within type I modular PKS, there are two variants: cis-AT PKS and trans-

AT PKS, a relatively less studied variant than the first one. trans-AT PKS are
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Figure 4.16: General polyketide synthase (PKS) domain architecture. The mod-
ular PKS is divided in modules which contain domains, these determine the
transformations that the PKS produces on the growing polyketide carbon chain.
This figure is an adaptation from Figures found in [65] and [108]. These rules are
applicable to cis--AT PKS systems mainly.
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the main focus of this work.

4.2.1 trans-AT Polyketide synthases

trans-AT PKS enzymes differ from other PKSs in that they do not have acyl-

transferase (AT) domains within its modules, instead this function – transference

of the acyl groups to the ACPs – is performed by external enzymes that have this

AT domain [65]. Because it is not performed by the same enzyme in situ, it is

said to be a transference in trans.

While the widely studied cis-AT PKS evolved mostly through vertical gene

transfer1 trans-AT PKS evolved through horizontal transfer2 of domains and

modules[108] between different organisms. When classified phylogenetically, cis-

AT PKS domains tend to cluster together by the final polyketide molecule they

produce (Figure 4.17 from [128]), while trans-AT PKS domains tend to cluster

together by the substrate they receive from the upstream module (Figure 4.18

from [108]).

These two parallel evolutionary pathways imply a number of differences be-

tween these two classes of type I polyketide synthases. One of the first practical

consequences is that the “co-linearity” rule used for cis-AT PKS (Figure 4.16) is

not directly applicable to trans-AT PKS. There are as well other domains that do

not appear in trans-AT PKS, besides the AT domain, such as the ER domain[108].

Also the trans-AT PKS has unique variants of KS domains, such as the KS0 do-

main, which only makes the chain grow without any modification (KS0 domain

transfers the growing chain to the downstream module without modifying it).

In the case of trans-AT PKS, as mentioned previously, our collaborators re-

cently showed [108] that the evolution of KS domains is coupled to substrate

specificity. Because of this, they implied that to undercover the sequence of sub-

strates used to build the polyketide, it would only require to inspect the KS

domains present in the PKS sequence, in contrast to what happens in the cis-AT

1The most common gene transfer method, by inheritance in reproduction
2In horizontal transfer, genetic material is transferred from one organism to another unre-

lated one through plasmids or other mobile elements, using mechanisms such as transduction,
transformation, or bacterial conjugation among others.
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(17, 18). This priming is catalyzed by initiation PKS modules, which
vary depending on the priming unit. Commonly found in these
initiation modules are homodimeric KSs (related to the KSIII
enzymes that initiate fatty acid biosynthesis in bacteria) (17, 19) and
acetyl-ACP thioesterases (AATEs; often referred to as AT ho-
mologs) (20). These KSs catalyze the first chain elongation cycle,
whereas the AATEs prevent mispriming of the KS-CLF by an
abundant acetate unit (20). Similar to post-PKS tailoring steps, the
primer unit can also profoundly affect the biological activity of the
polyketide. An example is frenolicin B, which is identical in
structure to kalafungin with the exception of a propyl substituent
instead of a methyl group. Frenolicin B has excellent antiparasitic
activity, whereas kalafungin is much less effective (21).
Horizontal gene transfer. An earlier phylogenetic comparison of
PCR-amplified KS fragments and 16S ribosomal DNA from 99
actinomycetes isolated from soil has been reported. The tree
topologies for the two sets of sequence tags had little correlation
with each other. Thirteen isolates with identical 16S rDNA se-
quences had diverse aromatic PKS genes that fell into six different
antibiotic groups. Conversely, two strains with divergent 16S rDNA
sequences had very similar KS sequences (22). Thus it appears that
bacterial evolution and polyketide evolution are independent of
each other, and that horizontal gene transfer is a driver of aromatic
polyketide diversity in nature.

Based on the above biosynthetic considerations and the knowl-
edge that horizontal gene transfer is present in these systems, we
focused our analysis of evolutionary relationships on KS, CLF,
priming KS and AATE homologs, and downstream tailoring en-
zymes found in bacteria. By subjecting these genes and correspond-
ing proteins to phylogenetic analysis, we could assess the role of
horizontal gene transfer as opposed to coevolution between genes
and gain further insights into how diversity of bacterial aromatic
polyketides is achieved.
KS and CLF evolution. The evolutionary relationship between KS and
CLF sequences of KS-CLF heterodimers has been noted (23).
Subsequent structural and mutagenesis studies have verified and
elaborated on the hypothesis that the CLF arose from duplication
of an ancient KS gene and subsequently evolved to fashion a well
shielded binding pocket for a highly reactive polyketide chain that
can grow only to a defined length (24, 25). Previous phylogenetic
analysis has revealed that all KS sequences formed a distinct clade
separate from the CLF sequences, suggesting that the het-
erodimeric pair had only evolved once. It was also noted that, within
both the KS and CLF clades, the spore pigment proteins diverged
early on from corresponding antibiotic PKS sequences (23). CLF
sequences had a faster divergence rate than KS sequences, despite
the fact that these two genes are usually adjacent to each other in
gene clusters and are frequently translationally coupled. As chain
length is a driver of polyketide diversity (26), this faster divergence
is consistent with its pivotal role in the evolution of new antibiotic
activities.

We wanted to reinvestigate the evolution of KS and CLF by
incorporating a much larger dataset than was previously available
(23). For our analysis, only KS and CLF sequences were included
whose biosynthetic product (or chain length in the case of spore
pigments) has been characterized. This product led to the inclusion
of 33 KS and CLF sequences, including the putative KS and CLF
sequences encoding for a four-carbon building block of the alkaloid
aurachin found in a Gram-negative bacterium, Stigmatella auran-
tiaca (27). Two sets of phylogenetic analysis were performed (28).
The trees depicted in Fig. 1 are Bayesian phylograms generated
from DNA sequences that were aligned based on the respective
protein sequences, as trees prepared with this method were judged
to be most accurate but not perfect. Less accurate were parsimony
trees based on protein sequences, but it was argued that if both
methods gave a similar result one could be confident that the key
conclusion was reliable. Therefore, we conducted both sets of
analysis so that the reliability of the results could be evaluated.

The phylogram of the KS and CLF sequences is largely in
agreement with the previously reported results (Fig. 1A). The 32 KS
sequences from actinomycetes fell within a defined clade with
strong support from both methods, and the aurachin CLF homolog
AuaD along with the 32 other actinomycete CLF sequences fell
within a supported clade. Therefore, newer data still support the
premise that all KS-CLF heterodimers are descendants of a com-
mon ancestor. Interestingly, both the aurachin KS and CLF se-
quences fall outside of the actinomycete KS and CLF clades. The
biochemical properties of these proteins need to be investigated, as
they might not function as true KS-CLFs. In the KS and CLF clades
[Fig. 1B and supporting information (SI) Fig. 6], the antibiotic
resistomycin KS and CLF sequences (29) have diverged the furthest
from all other KS and CLF sequences, respectively. Resistomycin is
the only bacterial aromatic polyketide that has a discoid structure
catalyzed by the action of several CYCs. This finding suggests that
ancestral KS-CLF pairs may have served to produce antibiotics or
compounds with other biological activities from which other roles
such a spore pigment formation arose later. All other antibiotic
gene sequences share a common ancestor with the spore pigments,
as was found (23).

A question of obvious evolutionary interest in the context of
aromatic polyketide biosynthesis is: At what point in their evolution
did the catalytic specificity of PKSs diversify? Arguably the most
important driver of polyketide structural diversity is the backbone
chain length. The longer a polyketide chain, the greater are the
degrees of freedom for it to undergo alternative modes of cycliza-
tion (for an example, see ref. 11). Examination of the KS and CLF
trees (Fig. 1B and SI Fig. 6) clearly shows that the chain length

Fig. 1. Phylogenetic tree of 33 KS and CLF sequences. (A) The entire tree with
the KS and CLF clades indicated is shown. Support for the clades is indicated
by posterior probability (Bayesian)/bootstrap values (MP). (B) Phylogenetic
tree of the KS clade found in A. Next to the taxon name the sizes of the
respective polyketide and the primer unit are given. Ac, acetate; Pr, propi-
onate; Bu, butyrate. Estimate of chain length is indicated by *.

4596 ! www.pnas.org"cgi"doi"10.1073"pnas.0710107105 Ridley et al.

Figure 4.17: Phylogenetic tree for KS domain sequences from cis-AT PKS, from
[128], used with permission from the author. The cladogram shows that the KS
domains cluster by the final polyketide they produce, in contrast to the case of
trans-AT PKS, where KS domains cluster by the chemical substrate they process
(Figure 4.18). The cladogram illustrates the association between polyketide pro-
duced and clades with colours and underlines in the Taxon Chemotype box and
in the tree. “Copyright (2008) National Academy of Sciences, USA.”
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Figure 3 Bayesian cladogram of full-length KS domains from trans-AT PKSs. KS numbering refers to the position within the gene cluster starting from the
upstream end; for example, LkcKS3 is the third lankacidin KS domain. The cis-AT KS4 from the erythromycin PKS was used as outgroup. Probability values
40.6 are shown at the nodes. Clade types are shown in roman numbers together with the main substrate type. Entries in bold have substrates predicted
from published structures or the architecture of preceding canonical modules. KS0: nonelongating KSs lacking the HGTG histidine. For the remaining
entries, polyketide structures are not known. For detailed information on substrate stereochemistries and function and origin of gene clusters, see
Supplementary Table 1. Abbreviations: Bae, bacillaene; BT, uncharacterized PKSs from B. thailandensis; Chi, chivosazol; Dif, difficidin; Dsz, disorazol;
GU, uncharacterized PKSs from Geobacter uraniumreducens; Lkc, lankacidin; Lnm, leinamycin; Mln, macrolactin; Mmp, mupirocin; Onn, onnamide;
Ped, pederin; Ta, myxovirescin. Entries marked with a lozenge have predicted substrate specificities that are incongruent with their phylogenetic position.
In this case, deduced substrates are specified in parentheses.

4 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A R T I C L E S

Figure 4.18: Phylogenetic tree for KS domain sequences from trans-AT PKS,
from [108], used with permission from the publisher. The cladogram shows that
the KS domains cluster by the chemical substrate they process, in contrast to
the case of trans-AT PKS, where KS domains cluster by the final polyketide they
produce. Labels with roman numerals represent each of the clades, which in
turn are accompanied by the upstream module substrate structures that each KS
domain clade accepts.
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PKS scenario, which requires reading all the domains of each module. Uncovering

the sequence of substrates that the subsequent KS domains accept in the PKS

sequence allows to hypothesize the final polyketide generated, much in the same

way that the “co-linearity” rule can be used in the case of cis-AT PKSs.

4.2.2 Marine sponge’s endosymbiont’s trans-AT PKSs

Marine sponges, such as Theonella swinhoei , have been noticed to produce a

rich array of polyketides[41]. In this project, together with our experimental

collaborators, Prof. Joern Piel and his research assistant Eric Helfrich from the

University of Bonn, we were interested in unravelling the rules that govern the

synthesis of polyketides by the symbiont bacterial1 flora of marine sponges. We

focus on trans-AT polyketide synthases.

The Piel-group assembled initially a collection of 138 KS domain sequences

of bacterial trans-AT PKS [108]. In the case of trans-AT type PKS, the authors

showed that these KS domain variants recognize only specific substrates, con-

straining the transformations that can occur modules upstream in the synthesis

of a growing polyketide. The authors subdivided the 138 KS domains in a phy-

logenetic tree, which clades2 matched almost entirely with the different chemical

specificity for substrates. This means that only knowing the order of KS domains,

and neglecting the rest of the participating domains, it is possible to predict the

structure of the produced polyketide. Hence, given a new polyketide synthase

sequence, recognizing the different types of KS domains, module after module,

allows to hypothesize the structure of the resulting molecule.

Later on, the Piel-group assembled a second collection of 423 KS domains

from trans-AT PKSs, which produced initially 28 KS types, and later through

further analysis, more than 40 KS types – or clades in the phylogenetic tree –

associated to different substrate specificities. Through my work I mostly used

this set of 423 KS domains aligned.

1While there is evidence that the main polyketide producers in the marine sponges are
bacteria, this has not been completely proved; yet it is the most probably scenario, according
to our collaborators

2A clade is a subgroup of sequences or objects that belong all to a common branch in a
phylogenetic tree
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Given that it is expected that most polyketide structure are yet to be discov-

ered, specially in the case of marine sponges endosymbionts, one of the first tasks

was to aid in the discovery of new PKS sequences in metagenomic samples of ma-

rine sponges. This was achieved through the design of degenerate PCR primers,

for the amplification of PKS sequences by recognition of unique sequences present

in the KS domains, similar to those already collected.

A second sub-project consisted on the identification of key residue positions

of the trans-AT KS domains, that could be strongly related to the chemical

specificity of each KS type defined. This serves two purposes: to aid in the protein

engineering modifications of the known sequences, to produce new variant KS

domains with desired properties; and generate a simple code – as presented in [15]

for non ribosomal protein synthases – that aids researchers in the identification

of the KS domain of interest.

4.2.3 PCR Amplification of novel PKS sequences

Using the alignment of KS domains, we were interested in producing degenerate

primers for nested PCR that would amplify variants of KS domain from bacterial

meta genomic samples of marine sponges. Given the huge diversity of species that

can be found on this kind of sample, there is no definitive nucleotide sequence

for the KS domain. Because of this, we designed primer candidates starting from

the protein consensus sequence for each KS domain variant.

A degenerate primer does not have a totally defined sequence, where certain

positions of the primer can have different bases. This is normally achieved at the

synthesis process, whenever the design has a degenerated position, the chemical

synthesis will add any of the specified bases, producing a mixture of different

primers which represent the degenerate primer. This has of course a dilution

effect, as the signal of amplification is more and more diluted as more degenerate

positions are used (because the mixture of primers becomes more and more het-

erogeneous). Also, as more degenerate primers are used, there are higher chances

of unspecific binding. Because of this, the degeneracy needs to be minimized as

much as possible. Degenerate primers are normally used in microbial ecology, or

where primers are designed starting from an amino acid sequence, as in this case.
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After an initial search, I found a few tools that could be eventually suitable

for designing the required primers.

CODEHOP[129] is the most widely used program for generation of degenerate

PCR primers. It introduced the idea of making a more conserved 5’ end of the

primers to increase binding chances, accepting most of the degeneracy after half

or two thirds of the length of the primer. This tool relies strongly on having a

good codon usage table for the organism being pursued (even distinguishing from

different probabilities of codons for the same amino acid, which normally requires

a reasonable sample of coding sequences). Unfortunately this level of information

is not available in our problem (we do not know which bacterial species we are

amplifying for). CODEHOP makes no specificity check against negatives through

sequence alignments.

DePiCT[163] builds on the work done in CODEHOP and incorporates the

clustering process to obtain consensus sequences. DePiCT builds clusters accord-

ing to the length of the primers required, and hence would modify the clustering

previously obtained, which maps very well to chemical specificity. This tool intro-

duces an interesting idea of splitting primers to reduce the degeneracy. DePiCT

is implemented in Perl, using BioPerl. A copy of the source-code of DePiCT was

not provided on request.

MAD-DPD[107] is a degenerate primer generator which tackles the problem

from an optimization point of view. MAD-DPD works on alignments of nu-

cleotides instead of protein, and hence does not deal with the back translation

problem, and cannot be used directly in our case. This tool does not consider

sequence specificity issues outside of the given source sequences, and makes no

thermodynamic considerations either.

HYDEN[91] is another degenerate primer generator tool. As in MAD-DPD,

HYDEN authors make a strong mathematical development of the complexity be-

hind the problem, and focus on the coverage provided by the primers. They how-

ever neglect important technical aspects such as thermodynamics of the primers

and their specificity when compared against negatives. HYDEN works on ge-

nomic sequences and not protein sequences as our problem required.
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PKS Primers Methods

Given that none of the tools completely fitted the problem to solve, I implemented

a program in Java, which relies on BioJava[56] and other libraries, to produce the

degenerate primers starting from consensus KS protein sequences. The following

paragraphs explain the algorithm of the program, which Figure 4.20 illustrates

as well.

The group of Prof. Piel provided a multiple alignment of 423 keto-acyl syn-

thase (KS) protein domains, representing the phylogenetic classification of them.

This alignment was given separated in 28 clades, each of them matching most of

the time a defined chemical substrate specificity.

From each clade, using the alignment, I generated a consensus string – which

Figure 4.19 illustrates – with support above 70%. This means that the consensus

sequence only has an amino acid in a position, if the multiple alignment for the

clade showed that same amino acid for more than 70% of the sequences that

participated in the alignment. If there was no consensus for a position, a gap is

introduced in the consensus string.

                           1 [        .         .         .         .         :         .         .         . 80 
 1 KirKS4_lHdiM   100.0%     DPIAVIGMAARLPG-SRDLDDFWNHLVAGDDLVTDVPADR-WDWRSLP--PDVLAR---------RGGFISD-VDMFDPL    
 2 KirKS1__Ac      47.5%     APIAVIGMAGRFPGAASVSE-LWDLLGRDEDAIRDIPIDR--WDTAAH--PDLVG----------RAALLDD-IRRFDHE    
 3 KirKS5_dH       56.4%     DDVAIVGMAGLLPGSDDLDE-FWAHLAAGDDLVTEIPADR-WDWRRIH--GDPEPGEFRTT--ARWGGFLRR-VDLFDAD    
 4 LnmKS7_R        53.0%     AEIAVIGIAGVFPGSADTDE-FWEHLAGGVDLVRPVPKDR-TAIRANP--ATRELR----------GGFLDS-VDTFDAR    
 5 CpyKS4          53.1%     EPVAIVGLAGVFPG-SKDLREFWEHLARGADLVTPVPADR-P----------YLRID-GRE--SWRASFISG-VDRFDAA    
 6 ChiKS2_dH       53.4%     EPIAVIGMSGVFPA-SDSVDELWSHLEAGRDVIEVIPRDR-WNWEEHW--ASSEELD-KTA--VRWGGFMKH-VDRFDAA    
 7 SGKS8_mchB      51.0%     FPIAVIGASGRFPG-APDLDAYWANLAAGTDQVTAFPVDR-YD-EEYA--RIVEASDFPRH-----AGVLDG-VDAFDAA    
 8 LkcKS4_dH_eD    40.7%     GRYAVVGMSGIMPA-GENLADFWRLLVENGSAIRPVERWK-----------------NRDR--QYFAGTIDD-HDAFDHS    
 9 KirKS6_Agly     50.2%     PPVAIIGVGARLPA-SGSLQEFWIHLAEGRDLTAPYPLER-GFSARVF--PERF-----------RGSFVRD-VDAFDAG    
10 KirKS9_KdM      57.2%     DPVVIVGMAGTLPG-SADLDEFWAALERGGDLFTEVPADR-WDAREHH--GDPAAHPERTR--VTRAGFIGG-IDRFDPL    
11 LkcKS1_Agly     42.2%     GRLAIVGLSAVLPG-GPDPDAFWQTLLDGRDCVTPAPAGR-----------------GLPG---EFAGFLPG-VRGFDAR    
12 CACIKS7         57.2%     EPIAIVGMAAVLPG-SEDLDAFWRHLVAGDDLITPVPDDR-SDLRADP--RTRDIR----------GGFLVD-VRSFDAA    
13 MigKS3          48.9%     DAVAIVGAAGRFPG-ADDLDTFWQQLRAGEDLIADYPGDR-FDGGPYA--EVVARADFPKF-----AGRIEG-VDRFDAD    
   consensus/100%            ..hsllGhuuhhPu.s...t.hW..L.ts.s.ht.h...+ .......  ...........  ...uuhh.t hc.FD..    
   consensus/90%             ..lAllGhuuhhPu.u.s.p.hWt.L.tstDhht.hPhtR .......  ...........  ...uuhl.t lchFD..    
   consensus/80%             t.lAllGhuuhhPu.uts.c.aWttLhtGtDhlpshPh-R .......  ...........  ...uuhlts lctFDst    
   consensus/70%             tslAllGhuuhhPG uts.-tFWtpLhtGtDhlpshPtDR ...t...  ...........  ...uGhlps VDtFDst    

Figure 4.19: Section of a multiple alignment of proteins sequences – belonging
to a particular KS domain type – which illustrates the concept of a consensus
string. Each column of the protein alignment is inspected, if the same residue
is repeated beyond a certain threshold, then the consensus (at that threshold)
includes that residue in that position. Consensus sequences for 70 to 100% are
shown below the main alignment. Image generated with MView [9]

For each 70% consensus sequence corresponding to each clade, the software
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visits the entire sequence through a sliding window of a defined length (between

5 and 6 amino acids), discarding windows with gaps.

Using the standard IUPAC translation table for bacteria (table id 11 according

to BLAST nomenclature), for each window with no gaps, the software calculates

the degeneracy, which is simply the product of number of codons at each position

of the amino acid sequence. If the degeneracy was above a set threshold (for

primers of length 5 aa, we accepted degeneracy up to 512; for length 6 aa, we

accepted degeneracy up to 600), the window was discarded.

The software then compares each accepted window against a sequence library

generated using gapped > 50% consensus sequences corresponding to each clade,

but the one being used. I use the Smith-Waterman [137] local sequence alignment

algorithm – through the water implementation in the EMBOSS[127] bioinformat-

ics package – for doing the sequence comparison. The pipeline uses the actual

algorithm instead of heuristics like BLAST[4] as both the query sequence (win-

dow of at the most 6 amino acids) and the library of sequences (normally a few

hundreds amino acid sequences of length ∼400 aa) are reasonably small. Using

the algorithm guarantees finding the best solution.

If the short amino acid window did not match any of the other clades (identity

> 70%), then the software keeps the amino acid sequence, to be used as a clade

resolving primer. On the other hand, if the sequence similarity to other clades is

above the threshold, then the tool makes a further sequence comparison, but this

time against gapped 70% consensus sequences corresponding to each of the other

clades. If the amino acid window shows in this case complete sequence similarity

to other clades, then the amino acid window is kept as a candidate for a general

KS primer (otherwise, discarded). At this point is good to remember that for a

specific PCR amplification, only one of the two primers used has to be totally

specific, the other one needs to hybridize of course, but can be less specific.

Having visited all 70% consensus sequences (one per clade), the tool has a set

of amino acid windows, both specific and general, that can be used for primer

generation for each clade. However, not all pairs of amino acid windows are

compatible. Melting temperature, specificity, secondary structure and distance

restrictions apply.

Distance restrictions are easy to tackle: the two windows separation needs to
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be within a range, so that the PCR amplified region is between a minimal and

maximal length. Specificity restrictions are also straight forward: at least one of

the two amino acid windows needs to be specific for the clade, or, for less specific

pairs of windows, the specificity intersect of the two primers has to be only the

desired clade.

Melting temperatures for primers are calculated at the nucleotide level, where

the actual binding occurs. This means that for each amino acid window, the pro-

gram computes all degenerate nucleotide back translations. For each nucleotide

back translation, the written tool uses MELTING [88] to estimate its Tm, or melting

temperature. The melting temperature of a probe is defined as the temperature

at which half of the probe will be binded to its reverse complementary, and half

will be free in solution.

Given that each amino acid window has a set of Tm estimations for each

possible back translation, the tool produces a score for each primer pair – for

pairs that fulfilled the distance and specificity constraints – which depends on the

level of overlap of the distributions of Tm. The higher the distribution overlap,

the higher the score. I designed an additional score that combined the melting

temperature equivalency score, specificity and level of degeneracy of the primer

pair, allowing to rank all the primer pairs for each clade.

PKS Primers results

With the different restrictions for the primer generation agreed with our collab-

orators (length of the primers, maximum degeneracy, and specificity thresholds),

for an alignment of 28 total clades, we managed to generate primer pairs that

covered 9 clades.

Using the provided degenerate primer pairs for the different clades of KS do-

mains, my collaborators pursued the identification in the wet lab of new PKS

sequences, that contained the previously identified clades, in meta genomic sam-

ples of marine sponges.

Previously my collaborators designed the degenerate PCR primers manually.

According to their results, the introduction of the automatic method increased in

30% the rate of successful amplifications of KS sequences, specific for the desired
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clades. The automatic generation also eliminated completely the non specific (to

a clade) amplifications.

4.2.4 Identification of relevant residues in KS domains

In [15] researchers defined a simple way of coding domains for a non-ribosomal

peptide synthases (NRPS) based on the most relevant amino acid positions.

These were amino acid positions that were close to the catalytic centre and

seemed to be specific for the function of each of the sub members of the pro-

tein family that coded for this NRPS. So, different combinations of residues in

those positions map to different types of NRPS.

Inspired in the NRPS work from [15], and given the richness of the multiple

alignment of KS domains, we were interested in identifying residues in the differ-

ent clades that would be responsible for specific substrate specificity. My central

hypothesis here was to aim at positions that were highly conserved within the

clades, and in the largest number of clades possible, but not conserved in the over-

all alignment. These should be the residues that explain the particular specificity

of each KS domain variant, as they are conserved within the clade (so all known

versions of that KS domain have a particular amino acid in that position), but

essentially different across diverse clades (so they show what is different between

clades).

Relevant KS residues methods

The first approach I followed to identify relevant positions was based on informa-

tion content. The information content for a column j in a sequence alignment,

defined as Equation 4.3 shows, reflects how much the occurrences of symbols in

the permitted alphabet deviate from expected occurrences in that column j. In

Equation 4.3, i is the index for the alphabet, which contains Na letters, Pi,j is

the frequency of symbol i in column j, and Qi the expected frequency for symbol

i. A column in the alignment, has a relevant information content if it deviates

(
∑

i Pi,j >>
∑

iQi) from the expected occurrences. Normally a column with high

information content in an alignment is considered important as it has a high level
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Figure 4.20: Pipeline for primers generation, based on the KS domain variants
alignments. Sequences that had exact matches with several clades were paired
with specific ones to increase the number of clades resolved. Pairs required mini-
mal distances and were ranked according to the mean and variances of their cal-
culated melting temperatures, as each amino-acid primer has several nucleotide
representatives.
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of conservation.

ICj =
Na∑

i

Pi,jlog
Pi,j

Qi

(4.3)

I implemented a Python script, using BioPython, to retrieve all positions of the

alignment that showed conservation above 70 % in at least 10 clades. For all those

positions, information content is calculated for each clade that does not present

a gap for the position and for the overall alignment. The top 20 positions of

the alignment that maximize the average clade information content over general

information content were selected.

However, this method did not pick, among the highest ranked, those positions

that were separating the most clades, nor those that were closest to the catalytic

centre.

Through an R program, I implemented a second approach consisting on it-

eratively choosing the residue position (or column in a sequence alignment) j

that maximized the diversity of conserved sequences, which I defined as shown in

Equation 4.4:

Dj =
∑

i∈Rj
Ci,j

∑

i′∈Rj ,i′>i

Ci′,j (4.4)

where Ci,j is the number of clades with residue i in position j of the alignment,

and Rj is the ordered set of all residues appearing in the alignment in position j.

I call this method simply Diversity by position.

SDPClust [101] is a published method that aims to identify specificity deter-

mining residues from protein families through phylogeny methods. I applied this

software to the same data set.

Relevant KS residues results

I evaluated the performance of the methods in two ways. The first was to asses

how good was each method in distinguishing between different clades (resolving

clades by finding positions in the alignment that would tell them apart). The

less positions of the alignment required to resolve between the highest amount
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of clades, the better. Figure 4.21 presents the results for this evaluation for the

different methods.

Evaluation of methods
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Figure 4.21: Graph of the number of clades that are separated by the first 20
positions picked of each method. The closer the points approach a fraction of sep-
aration of one, the better. Inf. Cont. stands for the information content method,
which uses 70% consensus sequences; SDPClust corresponds to the published
method. The Position Number refers to the order in which they are drawn by the
methods, so Position Number one would be the first position (or column number)
of the alignment that each method draws (which can be a different position for
each method)

The second validation compared the chosen positions with the expected cat-

alytic centre, the more chosen positions in the catalytic centre, or close to it, the

higher score. The catalytic centre region for the KS domains alignments was hy-

pothesized by my collaborators at Bonn – based on previous work by [147; 148]

– visualizing the 3D structures deposited for a cis-AT KS domain with a pro-

tein structure viewer that allowed the selection of residues that were at a defined

distance from a point in the model.
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Each of the positions picked by the different methods were compared to the

positions of the alignment expected to be within a 10 Angstrom vicinity of the

catalytic centre. If the residue was in the 10 Angstrom vicinity, a score of 10 was

awarded to the position. If the residue was within a window of variable length

in the sequence of a residue known to be in the 10 Angstrom vicinity, a score

of 1 was awarded. With this scoring scheme, and variable window length from

1 to 5, I compared the methods. Figure 4.22 displays the results of scoring the

different solutions based on the proximity of the chosen residues to the catalytic

centre, where we can see that the information content based picks are the worst

performing, but that the Division by position method implemented outperforms

the published method (SDPClust method).

Currently our collaborators at the University of Bonn are making use of these

selected residues for protein engineering tasks. There were however no relevant

results at the time of this writing.

4.2.5 Annotation of trans-AT KS domains through hidden-

markov models

With the aim of enlarging our database of trans-AT KS domains, and advancing

towards a software that predicts a polyketide structure starting from a trans-AT

PKS gene (or protein) sequence, I proposed a method for finding more trans-AT

KS domains in existing protein sequences, and be able to assign them to the

clades classifications that we have.

Currently, protein domain resources like PFam[122] and InterPro[61] group

KS domains in families that are very general. These domain families encompass

both cis and trans-AT type KS domains, and also include within the same domain

description all the variability of chemical substrate specificity. In contrast, the

clades from the KS domain multiple alignment that I have access to nicely capture

chemical substrate specificity. KS domains existing in prime protein resource like

PFam and InterPro, cannot characterize new PKS sequences to the level of detail

that our clades permit.

To harness this predictive power, the knowledge existing in our KS domain
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Figure 4.22: Graph shows the scores that the different methods get when com-
pared against the list of residues that were at 10 Angstrom distance of the cat-
alytic centre of the KS domain. Higher scores are better. The window size refers
to the maximum distance in amino acids were the method would award score for
proximity to the catalytic site. For all windows sizes, the Diversity by position
outperforms the SPDClust method.
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alignment needs to be re-encoded in a format that is amenable to sequence sim-

ilarity. The most widely used way of characterizing protein domains is through

the use of hidden Markov models, particularly through the HMMER[42] imple-

mentation. Both PFam and InterPro heavily rely on HMMER built models.

However, as I intend to separate different KS domains by the substrate speci-

ficity that they might have, it is important to separate the individual KS clade

signal – coming from the amino acid positions that are relevant to each individ-

ual KS clade – from the general KS signal, coming from conserved residues that

are important for every or most KS clades. Removing this general signal allows

the method to score a new domain, increasing the sequence similarity only due

to specific residues. Using too many general KS residues in the model might as

well produce many results that are linked to either cis-AT PKS, non-ribosomal

peptide synthases (NRPS), or even fatty acid synthases.

This also allows one to differentiate three types of scenarios for a new KS

domain in study. The first scenario would be that the newly detected KS domain

can be considered part of the trans-AT family and belong to a specific known

clade, getting a high score both for the general trans-AT KS domain model and

for a specific KS clade domain model. A second scenario, where the new sequence

has a KS domain that belongs to the trans-AT group but forms part of an undis-

covered clade, should score high in the general model but low in the different

clade models. Finally, a third scenario, where the new domain is a KS domain

but does not belong to the trans-AT group, with low scores for both the general

KS domain model and even lower for every clade model.

HMM-based annotation of KS domains: Methods

I removed the residues from the individual clade alignments (transformed the

symbol into an X) every time that the residue showed a conservation above a cer-

tain threshold in the overall or general KS domain alignment (423 KS alignment

provided). Figure 4.23 illustrates the reduction of general KS domain signal for

a particular KS domain clade, for a section of the KS domain alignment.

To check that removing residues that were well conserved in the overall align-

ment does not affect the signal of the individual clades, I did a leave-one-out
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1 80
1 KirKS4_lHdiM 100.0%
2 KirKS1__Ac 47.5%
3 KirKS5_dH 56.4%
4 LnmKS7_R 53.0%
5 CpyKS4 53.1%
6 ChiKS2_dH 53.4%
7 SGKS8_mchB 51.0%
8 LkcKS4_dH_eD 40.7%
9 KirKS6_Agly 50.2%
10 KirKS9_KdM 57.2%
11 LkcKS1_Agly 42.2%
12 CACIKS7 57.2%
13 MigKS3 48.9%

consensus/100%
consensus/90%
consensus/80%
consensus/70%

[ . . . . : . . .
DPIAVIGMAARLPG-SRDLDDFWNHLVAGDDLVTDVPADR-WDWRSLP--PDVLAR---------RGGFISD-VDMFDPL
APIAVIGMAGRFPGAASVSE-LWDLLGRDEDAIRDIPIDR--WDTAAH--PDLVG----------RAALLDD-IRRFDHE
DDVAIVGMAGLLPGSDDLDE-FWAHLAAGDDLVTEIPADR-WDWRRIH--GDPEPGEFRTT--ARWGGFLRR-VDLFDAD
AEIAVIGIAGVFPGSADTDE-FWEHLAGGVDLVRPVPKDR-TAIRANP--ATRELR----------GGFLDS-VDTFDAR
EPVAIVGLAGVFPG-SKDLREFWEHLARGADLVTPVPADR-P----------YLRID-GRE--SWRASFISG-VDRFDAA
EPIAVIGMSGVFPA-SDSVDELWSHLEAGRDVIEVIPRDR-WNWEEHW--ASSEELD-KTA--VRWGGFMKH-VDRFDAA
FPIAVIGASGRFPG-APDLDAYWANLAAGTDQVTAFPVDR-YD-EEYA--RIVEASDFPRH-----AGVLDG-VDAFDAA
GRYAVVGMSGIMPA-GENLADFWRLLVENGSAIRPVERWK-----------------NRDR--QYFAGTIDD-HDAFDHS
PPVAIIGVGARLPA-SGSLQEFWIHLAEGRDLTAPYPLER-GFSARVF--PERF-----------RGSFVRD-VDAFDAG
DPVVIVGMAGTLPG-SADLDEFWAALERGGDLFTEVPADR-WDAREHH--GDPAAHPERTR--VTRAGFIGG-IDRFDPL
GRLAIVGLSAVLPG-GPDPDAFWQTLLDGRDCVTPAPAGR-----------------GLPG---EFAGFLPG-VRGFDAR
EPIAIVGMAAVLPG-SEDLDAFWRHLVAGDDLITPVPDDR-SDLRADP--RTRDIR----------GGFLVD-VRSFDAA
DAVAIVGAAGRFPG-ADDLDTFWQQLRAGEDLIADYPGDR-FDGGPYA--EVVARADFPKF-----AGRIEG-VDRFDAD
..hsllGhuuhhPu.s...t.hW..L.ts.s.ht.h...+ ....... ........... ...uuhh.t hc.FD..
..lAllGhuuhhPu.u.s.p.hWt.L.tstDhht.hPhtR ....... ........... ...uuhl.t lchFD..
t.lAllGhuuhhPu.uts.c.aWttLhtGtDhlpshPh-R ....... ........... ...uuhlts lctFDst
tslAllGhuuhhPG uts.-tFWtpLhtGtDhlpshPtDR ...t... ........... ...uGhlps VDtFDst

1 [ . . . . : . . . 80
1 KirKS4_lHdiM 100.0% DPXXVIXMAXRLXG-XRDLDDFXNHXVAXDDLVTDVXADX-XDWRSLP--PDVLAR---------RXXXISD-VDMXXPL
2 KirKS1__Ac 54.1% APXXVIXMAXRFXGAXSVSE-LXDLXGRXEDAIRDIXIDX-XWDTAAH--PDLVG----------RXXXLDD-IRRXXHE
3 KirKS5_dH 61.6% DDXXIVXMAXLLXGSXDLDE-FXAHXAAXDDLVTEIXADX-XDWRRIH--GDPEPGEFRTT--ARWXXXLRR-VDLXXAD
4 LnmKS7_R 58.8% AEXXVIXIAXVFXGSXDTDE-FXEHXAGXVDLVRPVXKDX-XAIRANP--ATRELR----------XXXLDS-VDTXXAR
5 CpyKS4 58.4% EPXXIVXLAXVFXG-XKDLREFXEHXARXADLVTPVXADX-X----------YLRID-GRE--SWRXXXISG-VDRXXAA
6 ChiKS2_dH 58.9% EPXXVIXMSXVFXA-XDSVDELXSHXEAXRDVIEVIXRDX-XNWEEHW--ASSEELD-KTA--VRWXXXMKH-VDRXXAA
7 SGKS8_mchB 57.0% FPXXVIXASXRFXG-XPDLDAYXANXAAXTDQVTAFXVDX-XD-EEYA--RIVEASDFPRH-----XXXLDG-VDAXXAA
8 LkcKS4_dH_eD 50.8% GRXXVVXMSXIMXA-XENLADFXRLXVEXGSAIRPVXRWX-X---------------NRDR--QYFXXXIDD-HDAXXHS
9 KirKS6_Agly 56.5% PPXXIIXVGXRLXA-XGSLQEFXIHXAEXRDLTAPYXLEX-XFSARVF--PERF-----------RXXXVRD-VDAXXAG
10 KirKS9_KdM 63.2% DPXXIVXMAXTLXG-XADLDEFXAAXERXGDLFTEVXADX-XDAREHH--GDPAAHPERTR--VTRXXXIGG-IDRXXPL
11 LkcKS1_Agly 50.9% GRXXIVXLSXVLXG-XPDPDAFXQTXLDXRDCVTPAXAGX-X---------------GLPG---EFXXXLPG-VRGXXAR
12 CACIKS7 62.1% EPXXIVXMAXVLXG-XEDLDAFXRHXVAXDDLITPVXDDX-XDLRADP--RTRDIR----------XXXLVD-VRSXXAA
13 MigKS3 56.4% DAXXIVXAAXRFXG-XDDLDTFXQQXRAXEDLIADYXGDX-XDGGPYA--EVVARADFPKF-----XXXIEG-VDRXXAD

consensus/100% ....ll.hu.hh.u.....t.h.....t..s.ht.h.... ....... ........... ......h.t hc.....
consensus/90% ....ll.hu.hh.u...s.p.h.t...t.tDhht.h.ht. ....... ........... ......l.t lch....
consensus/80% t...ll.hu.hh.u..ts.c.a.tt.ht.tDhlpsh.h-. ....... ........... ......lts lct..st
consensus/70% ts..ll.hu.hh.G .ts.-tF.tp.ht.tDhlpsh.tD. ...t... ........... ......lps VDt..st

Section of 80 aa of alignment for a single KS clade that 
contains 13 KS domain sequences:

Same section of alignment, 
after removal of residues with 
complete KS consensus > 70%. 

The complete KS domain alignment 
includes 423 KS domain sequences, 
including > 40 KS clades like the one 
shown above.

Positions left (no X's replaced) can have high consensus for the single KS domain clade 
alignment, but they do not exhibit high consensus for the complete KS domain 
alignment. Hence they could be relevant for the specific functionality of the clade.

Figure 4.23: Multiple alignments illustrate the effect of removing residues from
a KS clade domain alignment, for positions of the alignment that have a general
or complete KS domain sequence consensus above a certain threshold
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4. CONSTRAINED CHEMICAL ENUMERATION

cross validation with the hidden Markov models of each clade (having removed

the general KS signal).

To choose the level of support of the general alignment that should be used as

cut-off to remove general signal, I inspected the distribution of sensitivities when

the cut-off for conservation changes from 40% to 90%.

Using the HMM models with the reduced general KS signal, I wrote a pro-

gram in Python, named KSDomainPredictor, which receives a sequence – either

nucleotide or protein – and uses HMMER to search these sequences against these

models. The program first uses the general HMM model for KS domains (an

HMM model built from the alignment of the 423 KS domains sequences) to de-

fine regions in the submitted sequence that should be KS domains. Then – using

the reduced signal models – assigns each of these regions to the particular trans-

AT KS domain with the best HMMER alignment. KSDomainPredictor produces

a GenBank file with the submitted sequence annotated with the assigned KS

domains.

To define cut-offs for the E-value of each of the HMM models to be used by

KSDomainPredictor, I compared the results of aligning the built models against

known trans-AT PKS sequences and cis-AT PKS sequences, for each KS domain

HMM model. To this end, I selected sequences from UniProt which contained

general KS domains, and either contained (for cis-AT PKS) or not contained (for

trans-AT PKS) AT domains. I excluded sequences with other domains associated

to fatty acid synthases and non-ribosomal peptide synthases. I selected all these

domains from the InterPro database; Table 4.3 details these domains. Addition-

ally, the query restricted results by taxonomy to bacteria – TAX ID 2 from NCBI

Taxonomy – and to sequences of at least 1,000 residues. These queries yielded

815 putative UniProt trans-AT PKS sequences and 3,577 putative UniProt cis-

AT PKS sequences1. These sequences are the complete protein sequences, and

not just the KS domains.

I built BLAST databases from the two sets of sequences retrieved. Through

BlastP I compared the 423 KS domain sequences to the 815 putative trans-AT

PKS sequences. I selected all those PKS sequences that did not have 100%

1These numbers are correct for July 2012
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Query

InterPro ID Name Type trans cis

IPR020841 Polyketide synthase, beta-ketoacyl syn-
thase domain

KS Req. Req.

IPR018201 Beta-ketoacyl synthase, active site KS Req. Req.
IPR014030 Beta-ketoacyl synthase, N-terminal KS Req. Req.
IPR014031 Beta-ketoacyl synthase, C-terminal KS Req. Req.
IPR016038 Thiolase-like, subgroup KS Req. Req.
IPR018201 Beta-ketoacyl synthase, active site KS Req. Req.
IPR016035 Acyl transferase/acyl hydro-

lase/lysophospholipase
AT Avoid Req.

IPR020801 Polyketide synthase, acyl transferase
domain

AT Avoid Req.

IPR001227 Acyl transferase domain AT Avoid Req.
IPR014043 Acyl transferase AT Avoid Req.
IPR016181 Acyl-CoA N-acyltransferase AT Avoid Req.
IPR013114 Beta-hydroxyacyl (acyl-carrier protein)

dehydratase, FabA/FabZ
FA S Avoid Avoid

IPR013624 Non-ribosomal peptide synthetase NRPS Avoid Avoid

Table 4.3: List of InterPro domains that constrained queries for UniProt putative
trans-AT PKS and UniProt putative cis-AT PKS sequences. All the KS domains
are included in an OR statement, so that at least one had to appear, the same
for AT domains in the cis case. “Req.” stands for Required; “FA S” for Fatty
Acid synthesis; “NRPS” for Non-ribosomal peptide sequence.
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4. CONSTRAINED CHEMICAL ENUMERATION

similarity to the provided KS domains, to avoid validating with the same PKS

sequences from where the provided domains came from. This search left 604

putative trans-AT PKS sequences for positive validation; named this set UniProt

trans-AT PKS selection.

Also from my collaborators, I obtained a list of 587 KS domains belonging

to cis-AT PKSs. BlastP of these 587 KS domains produced zero hits with 100%

sequence similarity to the 815 putative trans-AT PKS sequences (actually, only

one of the domains had more than 75% sequence similarity to one of the 815 PKS

proteins). BlastP of these 587 KS domains aligned with 100% sequence similarity

to 520 of the 3,577 putative UniProt cis-AT PKS sequences, which were selected

as a negative validation set; named UniProt cis-AT PKS selection.

HMM-based annotation of KS domains: Results

The leave-one-out cross validation analysis shows through Figure 4.24 that there

was no major loss of sensitivity for most of the 45 KS domain clades when re-

moving the general KS signal. The HMM models could still detect successfully

most other members of its own clade, even when highly conserved residues at the

general KS level were removed.

Regarding the threshold for removing general KS signal, there is a gain in

moving the threshold from 40% to ∼70%, but then there is no major gain in

sensitivity when moving the consensus threshold from 70% to 90%. Graphs in

Figure 4.25 show this, both for the average sensitivities (over the different clades),

which tend to be always very high, but also for the third quartile, the lower

whisker (Q3 + 1.5IQR) and lower outliers. So 70% seems a reasonable cut-off,

which increases specificity (as the models rely less in residues that are probably

conserved across all of them) and does not loose too much sensibility compared

to the cases where nearly no residues are removed (90%).

KSDomainPredictor executed on both set of PKS proteins: UniProt trans-AT

PKS selection and UniProt cis-AT PKS selection. Figure 4.26 shows the E-value

distribution of the trans-AT KS domains assignment through HMM models for

both sets. The distribution of the exponent of the E-values for most of the
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Figure 4.24: Graphs of the impact on sensitivity of HMM models by removal of
residues that have above the threshold conservation in the general KS domain
alignment. In most cases, removing KS wide conserved residues does not impact
in the ability of the HMM models of most clades to recognize sequences that
should belong to that clade as first results.
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KS clades is higher for the UniProt trans-AT PKS selection – meaning better

alignment results – compared to the UniProt cis-AT PKS selection, which in

some cases even do not show up for some particular clades.

This is a very positive result, as our software preferentially recognizes trans-

AT KS domains over cis-AT KS domains, which would be the closest sequences

that could confound the method. This result is an important milestone for our

future work on mapping the identified KS domains in putative trans-AT PKS

sequences into an actual chemical structure produced by the polyketide synthase.

The next step is a detailed phylogenetic analysis to incorporate the best hits

produced by the HMMER models for each of the clades, making their signal more

robust, and eventually splitting some of the clades into more specific substrate

specificity. Once this is done, the step from the domain predictor written dur-

ing this work, to an actual polyketide chemical structure generator is direct, as

most of the clades have been mapped to their preferred substrates. This will

be achieved through a combination of our KSDomainPredictor tool and a soft-

ware based on the CDK to produce a chemical structure based on the found KS

domains for new sequences.

4.2.6 Polyketides conclusions

The field of polyketides is of immense interest for the community due to the

applications that these complex small molecules have. Our increasing ability to

understand how polyketides are synthesized generates exciting new opportunities

for the engineering and synthesis of molecules that otherwise it would be very

complex to generate.

My work, on the automated generation of PCR primers for use in the amplifi-

cation of new PKS sequences, contributes towards the discovery of new polyketide

variants in marine sponge symbiont’s meta-genome. In this area, our collabora-

tors have had increases in productivity due to the tools that I developed. We

are currently planning a revised version of this software that incorporate more

features, inspired in existing solutions that were left for future releases, and by

what our collaborators have learned from using the initial primers.

The identification of relevant KS domain residues in a clade specific fashion
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has potential to guide – by allowing to focus in a few residue positions – protein

engineering studies towards new synthesis possibilities. The methods I imple-

mented proved to have better chances – compared to a published method – of

identifying residues that were both close to the putative reactive center of the KS

domain and that also show evidence of being relatively specific for each of the KS

domains.

My work on the generation of general-signal-reduced KS HMM models builds

towards an improved model that allows to map newly discovered trans-AT PKS

sequences to the polyketide that they can synthesize. trans-AT PKS have been far

less studied that their cis counter parts, which means that our work in this area

could be of great impact in the diversity of polyketides that could be discovered,

understood and even at some point synthesized through recombination of PKS

modules.
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Chapter 5

Conclusions

5.1 Summary and Conclusions

Mapping metabolomics results with known small molecules is a difficult problem.

This is due to a wide range of obstacles: different technologies address different

parts of the metabolome and have different sensitivities, the stability of small

molecules is varied, the metabolome itself changes very rapidly, the range of

concentrations spans various orders of magnitude, etc. These obstacles affect the

experimental side and/or the posterior bioinformatics analysis of the results.

In the bioinformatics side, we recognized three major challenges posed by

metabolomics: the need for data standards, a better integration with other omics,

and the need for better reference metabolome databases. My work centered on

that last challenge. In the past years, the major landmark in that part of the

field was the introduction of the Human Metabolome Databases, HMDB, which

increased the number of small molecules that could be easily associated to H.

sapiens by four times, compared to other resources previously available.

Producing resources like the HMDB for more organisms is very important

for the advancement of metabolomics and its integration with the other omics.

However, these type of resources are very intensive in manual curation, and for

the same reason are both expensive and slow to develop. In this work I explored

methods to come up with extensive collections of small molecules in an organism-

specific fashion and in the most automatic possible way. While my results might

not have the in-depth annotation that entries in HMDB have, it is a good starting
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point for curation efforts, as it integrates various important sources of data, and

the procedure can be applied to many other organisms. Results are highly cross

referenced to relevant chemical and metabolism databases, and include many

synonyms and abbreviations. The pipeline annotates small molecules with tissues

and cell types.

The exploration of the bioinformatic possibilities for generating complete

metabolomes visited three areas: unification of metabolism databases; text min-

ing of small molecules, proteins, tissues, and organisms; enumeration of reaction

mechanisms; and a revision of a complicated example in metabolism: polyketides.

The results can be divided in different quality levels, ranging from high qual-

ity data for metabolism databases, medium quality for text mining, and finally

lower quality for enumerated small molecules. As with any automatic method,

there is a trade off between human intervention, scope, and quality of the results:

more automatic methods yield more results, but of lower quality. For that rea-

son, both text mining and reaction enumeration results are filtered to produce a

selection. Candidate small molecules in the medium and lower quality set could

be considered of better quality, if found in metabolomics experiments. The meth-

ods I proposed, generate a few thousand additional candidate small molecules to

those present in the HMDB: ∼1,600 from metabolism databases, ∼2,400 from text

mining and more than ∼4,100 from reaction enumeration.

5.1.1 Integration of Metabolism Databases

Through the integration of the small molecules from different metabolism re-

sources, we learn that there are many parts of them that are complementary. For

this reason, there is an important gain in including all the resources, instead of

using any one of them. Even though it is true that the merge process has errors,

which might lead to higher levels of intersection between the resources, bound-

aries found for the level of error showed that, at the most, 20% of the unified

groups of molecules could be wrong, and probably much less than that.

Metabolism databases unified for H. sapiens manage to explain ∼15% of the

HMDB small molecules. Additionally, these databases together produce more

than a thousand small molecules for H. sapiens that are not part of HMDB.
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Comparisons against the HMDB, of the three unified metabolism databases

for H. sapiens , shows that their main difference in terms of coverage is the high

amount of lipids in HMDB (nearly 3/4 of it are lipids). The fact that metabolism

databases include only small molecules that participate in known reactions, and

that many reactions involving lipids in these databases are generic, explain partly

why metabolism databases miss so many lipids.

A closer look on different organism’s metabolites – using enrichment analysis

– reveals that higher eukaryotes like H. sapiens and M. musculus possibly have a

higher complexity of small molecules towards lipids. In contrast, E. coli shows a

higher complexity expanding to carbohydrate variants. Analyses here are partly

limited by the coverage of the ChEBI ontology and the NCBI MeSH chemical

annotations for small molecules in PubChem Compounds. There is a strong need

to improve these resources, to be able to make better enrichment analysis.

5.1.2 Text mining for metabolomes

Through the use of dictionaries for organisms, tissues, proteins, and small mo-

lecules, the text mining module built recovers on its own ∼15% of the entries

in HMDB, including ∼6% of the missing HMDB entries (486 small molecules)

that the database unification of chapter 2 was not able to explain. The text

mining approach covers approximately one third of the entries generated by the

database merge. The approach generates 2,422 small molecules that could be

part of a H. sapiens metabolome, but that are not part of neither the HMDB

nor the metabolism database unification. Many of these molecules seem to be

exogenous, in contrast to what happens in the case of database merge.

The use of protein co-occurrences, increases the number of small molecules

that can be associated to tissues. This increase however comes at an expense. The

inclusion of proteins makes the small molecule to tissue associations less specific,

producing a wider and more general set of small molecules, given a tissue. Direct

small molecule to tissue relations generate smaller sets of small molecules that

are more specific to the tissue. Particular examples inspected – liver and brain

related small molecule sets – show that small molecule sets obtained through

proteins are closer to a core metabolome shared by tissues, while direct tissue to
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small molecule retrieval generates tissue specific molecule sets. Also, direct small

molecule to tissue co-occurrences form better thematic clusters of tissues than

protein mediated co-occurrences.

An important legacy from this part of the work is the software that exe-

cutes the entity name recognition, tagging, normalization, and analysis of co-

occurrences for all NCBI PubMed abstracts. This is a starting point for improve-

ments in later work.

The results shown are obtained after a series of filters and scores that attempt

to cope with the high level of noise of the text mining data. The main compo-

nent of this noise seems to be the existence of unspecific synonyms – mostly

in small molecules and protein dictionaries. This problem can be resolved by

building better dictionaries, where complete names can be semantically distin-

guished from abbreviations, and promiscuous synonyms filtered out, among other

improvements. Another important difficulty, is to decide to which species an ab-

stract is referring. This probably requires the use of natural language processing

methods. These improvements should be part of more specialized follow up work

in text mining. Probably the greatest gain, in terms of quality of the results,

would come from improving the used dictionaries.

5.1.3 Reaction enumeration

The process of reaction enumeration is very demanding in terms of computational

power, due to the algorithms used and the combinatorial explosion of the chemical

space. To tackle it at a metabolome-wide level, I have built a framework based

on existing open source technologies and cheminformatics tools, to make it more

efficient, parallel, and distributable across a computer cluster.

The reaction enumerator generates more than 100,000 different new small

molecules in three iterations, starting from molecules in the text mining collection

and in the metabolism databases integration (both for H. sapiens). It uses generic

reactions from H. sapiens , as found in the integration of metabolism databases.

As iterations proceed, generated small molecules deviate more and more from

the original set of molecules. The complexity of molecules also increases, as new

reaction mechanisms participate in iterations two and three, that were absent in
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the previous iterations. Higher masses are seen as the iterations advance, most

of them still within the small molecule range.

The fraction of the HMDB that the reaction enumeration manages to match is

much lower than the two previous cases – database unification and text mining.

Only considering small molecules that have some evidence of being real, this

method produces the largest amount of candidate small molecules to form part

of the metabolome, but of lower quality than the other two approaches.

5.1.4 Polyketides discovery

The work presented in this part, contributes towards understanding better the

rules governing trans-AT Polyketide synthases, which have been less studied than

their cis-AT PKSs counter parts. trans-AT PKSs followed a different evolutionary

path, which makes most of the rules known for cis-AT PKSs not applicable to

them.

The pipeline I wrote for the generation of primers for trans-AT PKS KS do-

mains proved very valuable to our collaborators, increasing the number of working

specific primers by ∼30%. These primers allow our collaborators to discover novel

variants of KS domains within PKSs sequences, in the symbiont bacterial flora

of the marine sponge Theonella swinhoei , as well as in other metagenomes. Im-

provements such as higher clade coverage, and newer features inspired by other

solutions are part of an upcoming version.

Another source for the discovery of new trans-AT PKS associated KS domain

sequences are the many new bacterial sequences deposited everyday in the se-

quence repositories. To exploit this, I wrote a software relying on hidden Markov

models to identify particular variants of trans-AT PKS associated KS domain

sequences. The identification resolution of this software goes beyond the capabil-

ities of the established protein domain databases, and it is a milestone towards

both a semi-automatic trans-AT PKS associated KS domain database and an

automated molecule generator for trans-AT PKS sequences.
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5.2 Field-related conclusions

While chemical ontologies and classification schemes are potentially very useful,

chemical databases have a serious deficit in the amount of small molecules that

are adequately annotated with these ontologies. For instance, a high proportion

of the ChEBI molecules do not have an assignment to a ChEBI role. There

is an important need not only to increase the size of these collections, towards

the identification of more unknowns, but also of a denser population of these

annotations of roles and functions.

There are still many closed source technologies that need to be opened or

emulated in the open source software world in cheminformatics. Different from

bioinformatics, cheminformatics has been dominated by commercial interests –

especially due to its high impact in pharmacological development – leading to

many key developments happening within companies. This has led to important

algorithms (like SMILES) having various competing closed implementations that

do not nurture each other. It also makes relevant proprietary cheminformat-

ics algorithms unavailable to academia. Luckily I was able to obtain a license

for the calculations of protonation micro-species and pKa. This work, as many

others, would be benefited if more of these technologies – which are mostly pre-

competitive – would have been open and accessible. This is specially true for

the classification step of text mining results and for the reaction enumeration

part, where technologies that are currently unavailable could have been used to

characterize better the generated molecules.

This lack of openness also reaches databases. The recent closure of KEGG

ftp access was a major loss for the world of metabolism research. On top of that,

most metabolomics databases only allow searches of spectra or mass ranges, but

do not grant easy access to their structures in bulk format. Only during the

last period of this work, it was revealed that there was a way of obtaining the

structures from KnApSacK, after accepting a license in Japanese. METLIN, a

major metabolomics resource, does not provide its mapped structural data (even

upon request). This is not exclusive to metabolomics databases: BRENDA does

not provide access to small molecule’s structures, and the main data download

presents many technical obstacles for bulk usage and parsing. The key players in
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the field should realise that not only html web access to their resources is impor-

tant, but that also bulk access is, through adequate downloads and programmatic

access (web services). Most of these resources are publicly funded, and as such,

their data should be truly public as well.

There are important lessons learnt regarding databases integration, where mi-

nor structural details can mean a number of molecules deemed as different when

they are not. These minor differences make InChI based comparisons fail in

many cases. Different protonation states and different stereo-chemical represen-

tations are among the most common structural problems. It is also important to

avoid hydrogen balance within biochemical reactions in metabolism databases,

as biochemical reactions do not balance protons, and this makes reaction inte-

gration more complicated. There is a need for better cross talk between the

main metabolism databases, to reduce these differences, which otherwise require

elaborated solutions to be circumvented.

Another important point is to really understand the resources used, specially

larger databases like ChEBI and PubChem Compounds, where the diversity of

compounds leads to the use of primary and secondary (or parent and children)

identifiers, which researchers normally will compare as different identifiers.

There is a need for chemical databases to provide equivalency tables within

their own identifiers, both through web services and as downloadable data for local

use. This equivalence classes could be generated under different assumptions, such

as equivalent connectivity or micro-species with different protonation states. This

will help researchers who compare small molecules only by cross references, which

is fairly common.

Metabolism databases abuse of the generic molecule concept for some com-

pound classes, leading sometimes to totally different uses for the same generic

structure. Many times the same generic structure, specially very vague ones, are

used for more than one different metabolite class, making the definition of these

metabolite classes something very diffuse. BioCyc defines the generic molecule

“a phenol” as an R group with an hydroxyl group bound, while also using the

same structural definition for “an alcohol”. In KEGG the supposedly equivalent

class “a phenol” has the same structure as “phenol”, a non-generic molecule.

There is a lack of semantic annotation for proteins participating in reactions,
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which are normally encoded as generic molecules, and are left to the final user to

classify them as proteins, based only on the name. These should be at least linked

to a proper ontology term (Gene Ontology) or database identifier (UniProt). The

same holds true for RNAs participating in biochemical reactions.

There is a need for further specification of generic reactions in metabolism

databases, as this hampers their enumeration in a useful way. Reactions could

be accompanied by a SMARTS string that encodes restrictions for the generic

substrates that participate. This could largely limit the promiscuous enumeration

of highly unspecified generic reactions such as EC numbers 1.1.1.1 and 1.1.1.2.

Towards the use in text mining efforts, there is a need to semantically annotate

or distinguish small molecule names, synonyms, and abbreviations, and to get rid

of those that are unspecific. This is particularly important for abbreviations that

have meanings both in small molecule and in protein vocabularies, as they create

many false positives. Also, it is important to choose carefully which synonyms for

a particular molecule should be included in dictionaries. Another source of error

is the incorrect enzyme name tagging as a small molecule, when the complete

enzyme is not recognized by a protein dictionary.

5.3 Future work

Important improvements can be obtained from enhancing the dictionaries used

for text mining, and generating an engine that allows to decide to which organism

a particular abstract or sentence refers to. These improvements in the text mining

part would readily reduce the number of false positives and reduce the need for

stringent filtering.

The text mining part relied on article’s titles and abstracts; it would be in-

teresting to use full text articles instead. This will certainly generate technical

challenges in the data handling part, as it was already demanding with abstracts

and titles only.

Future work could include the addition of the structures associated to organ-

isms available in many metabolomics databases. While many of these associations

are drawn from the same metabolism databases that I use, there could be as well
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unique associations from experimental data that would very valuable. Cross ref-

erencing these associations with molecules discovered through enumeration could

as well serve to support the existence of these hypothetical molecules.

Future work in the reaction enumeration part should be the application of the

same framework but with generalized reactions (up to the third level of the EC

numbers organization) belonging to an organism. These will probably capture

a wider mechanism diversity than the initial pick of generic reactions. Another

important improvement should be to add an additional layer of rules for reactions

that require minimal substructure in their markush structures. This will limit

the enumeration of those reactions to more realistic scenarios, narrowing down

the paths taken.

The Gibbs Energy calculator introduced can have an important impact in

the future integration of metabolomics with systems biology modeling. Once

metabolomics has gone past the difficulty of generating absolute concentrations,

it would be natural to integrate this data in whole-genome metabolic models (flux

balance analysis type). These models conserve fluxes, but do not incorporate

small molecule concentrations. Through the use of Gibbs energies that account

for reaction direction, these concentrations could be integrated into these models,

as restrictions for the reaction directions.

Recurrently I mention the important portion of lipids present in the HMDB.

While not included on this thesis, I am currently working on a lipid enumerator

which sees its output through the LipidHome1 initiative at the EBI. Given a head

group and size ranges for fatty acid chains, my software efficiently generates all

possible lipids according to rules given by a group of lipidomics experts. These

rules constraint the possible fatty acids that can be attached to the head group.

The main difference with LIPID MAPS is that they constraint lipids to those

with experimentally detected fatty acids, our database generates all theoretically

possible fatty acids given rules for the saturation patterns. Together with my

collaborators, we hope to represent as many known lipids within our theoretical

lipid framework as possible.

1http://www.ebi.ac.uk/apweiler-srv/lipidhome/
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5. CONCLUSIONS

5.4 Concluding remarks

Small molecule data are complex to integrate, and hence a large amount of effort

was necessary to produce an adequate integration of the data sets. The com-

plexity of this kind of data comes from the fact that it has various layers, being

the structural one particularly amenable for interpretation by the different data

producers.

The thesis work has reached the objective of generating small molecule cata-

logues that lie in size between metabolism databases and the HMDB for H. sapi-

ens . This organism-specific catalogue is integrated by ∼3,000 small molecules be-

longing to metabolism databases, an additional ∼3,000 small molecules retrieved

through text mining, and more than ∼4,000 additional small molecules generated

through reaction enumeration with some degree of evidence to be considered as

real molecules. While the size of the collection seems comparable to the HMDB,

it only covers approximately ∼21% of it. While many molecules could be poten-

tially ruled out by manual curation, there is still a chance that many of them

belong to the H. sapiens metabolome.

Finding so many small molecules through the database integration and the

text mining effort that do not map to the HMDB is also an indication that even

this metabolome is far from complete. The integration method was validated

manually in two different ways, so this cannot be directly blamed on the integra-

tion. This implies that more work is required to have a H. sapiens metabolome,

as many of these missing molecules are part of existing resources, not just com-

pletely unknown molecules.

Technical lessons learnt will be an input to initiatives like the MetaboLights

database, particularly for the creation of its reference biology data set. This

resource will require the integration of data from metabolism databases, text

mining, and other sources for its reference biology layer.
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Appendix A

Chemical name normalization

Chemical names use a number of lexicographical resources, such as punctuation,

hyphenatation and parenthisation among other, that can make comparison of

names a complicated problem. Some databases, like BioCyc often include HTML

tags in the chemical names to produce subscripts or greek letters. There are as

wells other issues of nomenclature, but those probably escape the scope of this

humble solution.

Google Refine is a tool designed for aiding in manual data merges, where the

source data sets can be noisy and requires manual intervention to be merged.

Imagine for instance the task of unifying two directories of people, where some

of them might be in both directories, and where the main index is something like

the surname and name. Done for a multinational city like Cambridge, one would

find many diverse names, some with unusual characters and even ocassionally

mispelled. Google Refine implements a number of algorithms to aid in these type

of merges.

One of the algorithms implemented in Google Refine is a word fingerprinter,

which essentially takes a word, applies a number of substitutions and transfor-

mations, and produces out of it a key which is much more robust for string

comparison. Transformations classically applied by the fingerprinter method of

Google Refine are (please note that this list is taken from the Google Refine doc-

umentation):
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A. CHEMICAL NAME NORMALIZATION

• Remove leading and trailing whitespace

• Change all characters to their lowercase representation

• Remove all punctuation and control characters

• Split the string into whitespace-separated tokens

• Sort the tokens and remove duplicates

• Join the tokens back together

• Normalize extended western characters to their ASCII representation (for

example “gödel” to “godel”)

Considering the nature of chemical names, we made a few changes to the

source code that implements those steps, to generate a chemical name finger-

printer. The steps our fingerprinter takes are:

• Remove leading and trailing whitespace.

• Change all characters to their lowercase representation.

• Remove generic chemical name beginning, changing “a lipid” to “lipid” or

“an alcohol” to “alcohol”.

• Remove plural endings.

• Remove HTML tags.

• Remove all punctuation and control characters, including dashes “-” and

internal spaces.

• Split the string into individual characters, producing two groups of tokens,

one for letters and one for numbers. Do not remove duplicates.

• Sort the group of letters, but not the numbers.

• Join the tokens back together

• Normalize extended western characters to their ASCII representation (for

example “gödel” to “godel”).
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Appendix B

Fingerprint and Isomorphism

comparison of different regions of

the chemical unification

This appendix consists of all the comparisons between the groups in the different

regions of the Venn diagram in Figure 2.20, for H. sapiens . For each pair of

groups the best fingerprint and isomorphism comparison is shown.

For reasons of formatting, number of pages, and printing quality, this appendix

had to be included electronically. It is as well better viewed as a PDF than as a

printed page. It is available at:

http://www.ebi.ac.uk/steinbeck-srv/suppmat/metabolome-inference/AppB.pdf

B. 1 Captions explained

Similarity equals to 1 means perfect Fingerprint similarity. Isomorphism sim.,

as it is abbreviated in the captions of the appendix, equals to 1 means complete
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B. FINGERPRINT AND ISOMORPHISM COMPARISON OF
DIFFERENT REGIONS OF THE CHEMICAL UNIFICATION

isomorphism similarity. SBS in the caption stands for the Stereo chemistry Basic

Similarity, where “Yes” means that the the program finds them to be equivalent,

and “No” means that the program finds evidence that the stereo chemistry is

different. “Yes” in this case is not sufficient to say that the actual stereo chemistry

of the show components is the same, but that needs to be checked. “No” on the

other hand should be sufficient to say that the two molecules have different stereo

chemistry.
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Appendix C

Enrichment analyses results

C. 1 Statistical basis

The enrichment analyses presented on this thesis rely on the hypergeometric

distribution for the null model. The hypergeometric probability is calculated

as equation C.1 shows, for obtaining k successes in n trials, where there is a

maximum of m possible successes in a population of size N .

P (X = k) =

(
m
k

)(
N−m
n−k

)
(
N
n

) (C.1)

Considering the enrichment of small molecules in classes of an ontology, this

would be translated in the following way: given a sample of n molecules, N the

total number of molecules in the ontology andm the total elements in the ontology

in the class examined, then P (X = k) represents the probability – according to

the hypergeometric distribution – of obtaining k molecules from the sample size

n that belong to the ontology class examined (size m). A very high P (X = k)
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C. ENRICHMENT ANALYSES RESULTS

means that there is probably no enrichment as this scenario could be given just by

chance (the null hypothesis model, in this case the hypergeometric distribution).

A very low P (X = k) means that there must be a meaningful enrichment, as this

is unlikely happening by chance.

The p-value reported in the tables is derived from this P (X = k), but after

a false discovery rate correction, to deal with the multiple hypothesis testing

problem (derived from testing many ontology/hierarchy classes within the same

set of small molecules).

As each of the hypothesis tested has a 5% chance of false positives (for α =

0.05), that means that each time that we asses whether a group of small molecule

is enriched in ONE of the classes in the ontology, there is a 5% chance that our

group is deemed as significantly enriched in that class when in fact is not. While

this might be fine for one single class, after assessing for 100 ontology classes

or roles, we get an accumulated of 5 false (positive) significant enrichments only

by chance. A false positive is still a significant result (it has a p-value below

the decided α), but known to be incorrect. Benjamini-Hochberg false discovery

rate allows to shift the attention from the probability of false positives among

all the results (significant and non significant, the 100 classes in the example),

emphasis put by the common p-value, to a probability of false positives restricted

only within significant results (for the chosen α, that is, a subset of those 100

experiments). This limits with more stringency the number of false positives

obtained, which is translated in a corrected p-value, which is what it is shown in

all the enrichment analyses.

A common way of calculating the Benjamini-Hochberg FDR is by using the

following procedure:
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1. Sort all the original N p-values from low to high.

2. Starting from the highest p-value (index i = N) and going to the lowest

one (index i = 1), check whether

pi-value <
i

N
α (C.2)

is true, where i is the index of the current p-value. Stop when the inequality

is true, denoting this i as istop.

3. From i = istop to i = 1, all the p-values are accepted.

The Benjamini-Hochberg FDR method only gives a threshold after which all

p-values are accepted so that the probability of false positive within significant

results is below the set α. One might want as well to calculate, for each p-value,

at what α it would still be rejected under the Benjamini-Hochberg FDR. The

FDR-adjusted p-value gives this probability, which for each pi-value is calculated

as equation C.3 shows.

pi,corr-value = min
h>i

{
N

h
ph-value

}
(C.3)

The minimum is taken to keep the new corrected p-values monotonous in the

same order as the original p-values. Equation C.3 is nothing but to solve α for

each i in equation C.2. This corrected p-value is the one shown in tables and

figures on the thesis.

245



C. ENRICHMENT ANALYSES RESULTS

ChEBI class % Enrichment

p-value Fold

Anion 24.9 2.7E-28 2.6
Organic anion 23.2 2.7E-28 2.7
Organic ion 23.5 2.2E-26 2.6
Ion 27.8 3.8E-26 2.3
Organophosphate oxoanion 8.6 4.0E-19 4.5
Oxide 17.0 3.4E-15 2.3
Heteroatomic molecular entity 67.2 7.6E-15 1.3
Phosphorus oxoacids and derivatives 23.3 2.1E-14 1.9
Carboxylic acid anion 14.6 2.3E-14 2.4
Oxoanion 15.8 3.0E-14 2.3
Polyatomic anion 16.1 4.2E-14 2.3
Molecular entity 99.6 1.1E-13 1.1
Phosphorus molecular entity 23.3 1.3E-13 1.9
Phosphoric acid derivative 22.3 1.9E-13 1.9
Phosphorus oxoacid derivative 22.3 4.5E-13 1.9

Table C.1: Top 15 ChEBI classes enriched in the set of unique E. coli molecules.
Most of the categories are high level ChEBI classes, which are very broad and do
not give much information on the biological relevance of the set of molecules.

C. 2 Enrichment analysis for unique E. coli mole-

cules

Table C.1 shows the Top 15 ChEBI categories in terms of enrichment for the

unique molecules of E. coli , as the Venn diagram of Figure 2.29 shows in Chapter

2. I performed this analysis with a modified version of BiNGO, a Cytoscape plugin

originally deviced for Gene Ontology enrichment analysis.

The Top 15 ChEBI classes enriched in this case tell little about the biological

implication of the set of small molecules, and even as chemical information are

too general to be of much use. Table 2.9 shows some selected categories, that even
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though are not among the most enriched classes, are still enriched to a reasonable

degree and give more usable information.

Figure C.1 shows details of the enrichment for the carbohydrate derivatives

ChEBI class (up to a two level depth from this ChEBI class). Figure C.2 shows

details of the enrichment for the carbohydrate ChEBI class.

Figure C.1: ChEBI carbohydrate derivative class enrichment shown with two
layers of depth (that is, descending up to two levels in the hierarchy). Big-
ger circles mean more molecules of this class present. Colours towards orange
mean more significant enrichments, as the Key shows. Main enriched subclasses
are nucleotide-carbohydrate, monosacharide derivative, carbohydrate phosphate,
amino sugar, and carbohydrate acid derivatives.
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C. ENRICHMENT ANALYSES RESULTS

Figure C.2: ChEBI carbohydrate class enrichment shown with three layers of
depth (that is, descending up to three levels in the hierarchy). Bigger circles
mean more molecules of this class present. Colours towards orange mean more
significant enrichments.

C. 3 Enrichment analysis for S. cerevisiae

Table C.2 shows the top 15 most enriched ChEBI classes in the set of unique

molecules from S. cerevisiae. No particular area of metabolism has an important

enrichement in this case.

C. 4 Enrichment analysis for M. musculus

Considering that M. musculus is being compared to H. sapiens , there should be

very small fraction of unique small molecules belonging to M. musculus . Most

what could appear as unique to M. musculus is probably either errors of unifica-

tion or strange artifacts introduced by the base databases, or areas of study that
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Figure C.3: ChEBI lipid class enrichment shown with maximum depth (that is,
descending to each leave of the hierarchy). Bigger circles mean more molecules
of this class present. Colours towards orange mean more significant enrichments.
In this case, enrichment p-values are in a range of 1.4E-2 to 1, being most classes
at p-value = 0.1, so the enrichment level is rarely significant. Sizes of nodes,
which mean number of molecules in each ChEBI class, range from 1, in most of
the cases, to 32 for the lipid class. This shows that there is seldom enrichment of
lipid in the unique set of E. coli , or at least that it can be represented with the
ChEBI ontology.
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C. ENRICHMENT ANALYSES RESULTS

ChEBI class % Enrichment

p-value Fold

pyrimidines 10.9 1.2E-03 6.1
diazines 10.9 1.2E-03 5.6
thiamine 3.0 1.2E-03 83.3
fatty acid ester 4.0 4.2E-03 21.0
tricarboxylic acid trianion 4.0 4.2E-03 21.0
carboxylic acid trianion 4.0 4.2E-03 20.3
2’-deoxycytidine phosphate 3.0 4.2E-03 41.7
homoisocitrate(3-) 2.0 4.2E-03 157.4
deoxycytidine phosphate 3.0 4.2E-03 38.3
p-block molecular entity 99.0 4.2E-03 1.1
tricarboxylic acid anion 4.0 7.6E-03 15.2
ethyl 3-hydroxyhexanoate 2.0 7.6E-03 104.9
3beta-sterol 4.0 7.6E-03 14.6
main group molecular entity 99.0 7.6E-03 1.1
sterol 4.0 1.1E-02 12.8

Table C.2: Top 15 most enriched ChEBI classes in the set of unique molecules
from S. cerevisiae that had ChEBI mappings.
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ChEBI class % Enrichment

p-value Fold

Cytokinin 6.3 6.92E-06 64.8
Aminopurine 6.3 9.64E-04 21.1
Phytohormone 6.3 1.64E-03 17.4
Hormone 7.5 5.15E-03 9.3
6-isopentenylaminopurine 3.8 5.15E-03 39.7
Zeatin 2.5 5.15E-03 149.0
N-oxide 3.8 5.15E-03 36.5
UDP-sugar 5.0 7.60E-03 15.4
Phenylpyridine 2.5 7.60E-03 108.4
Agonist 7.5 7.60E-03 7.3
Organic molecular entity 96.3 7.60E-03 1.2
Carbon group molecular entity 96.3 8.43E-03 1.2
Molecular messenger 7.5 8.43E-03 6.9
Quinoline N-oxide 2.5 1.21E-02 70.1
Phorbol ester 2.5 1.47E-02 51.8

Table C.3: Top 15 most enriched ChEBI classes in the set of unique molecules
from M. musculus that had ChEBI mappings. Phytohormones (like cytokinin
and zeatin) appear as they are included in BioCyc for M. musculus .

have been focused in M. musculus and less studies in H. sapiens , but I am not

aware of any such a case. Enrichment analysis through BiNGO, for the 80 unique

ChEBI entries that the unique molecules to M. musculus map, does not produce

any relevant results. Even emblematic categories as lipids or carbohydrates show

less than 10 small molecules. Table C.3 shows the Top 15 most enriched ChEBI

classes.
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C. ENRICHMENT ANALYSES RESULTS

ChEBI class % Enrichment

p-value Fold

Terpenoid fundamental parent 2.2 8.7E-15 20.2
Natural product fundamental parent 4.1 3.0E-14 6.8
Molecular entity 99.0 1.1E-10 1.1
Main group molecular entity 96.2 2.4E-09 1.1
Metabolite 11.3 1.5E-08 2.1
s-block molecular entity 37.5 1.9E-08 1.4
Secondary metabolite 10.6 2.2E-08 2.2
Terpene 3.6 1.0E-07 4.2
Hydrogen molecular entity 35.0 1.5E-06 1.4
Ketone 8.3 2.2E-06 2.1
Biochemical role 14.0 9.9E-06 1.7
Alkaloid 4.6 9.9E-06 2.8
3-oxo steroid 2.5 1.6E-05 4.2
Chromenone 2.8 2.6E-05 3.8
Organic fundamental parent 6.6 3.5E-05 2.2
Organic hydride 6.6 3.5E-05 2.2
p-block molecular entity 93.9 4.6E-05 1.1
Hormone antagonist 1.1 6.0E-05 9.4
Benzopyran 4.1 6.6E-05 2.7
Hydrides 7.4 7.7E-05 2.0

Table C.4: Top 20 most enriched ChEBI categories from the unique section of
small molecules of the text mining metabolome. The enrichment uses 785 unique
ChEBI entries, which are all the ChEBI identifiers that the database provides for
the unique set of small molecules from the text mining H. sapiens metabolome.

C. 5 Enrichment analysis for Text mining

C. 5. 5 Unique Text mining small molecules

Table C.4 shows the top 20 most enriched ChEBI categories, after enrichment

analysis of 785 ChEBI entries retrieved from the region of unique elements pro-

vided by the text mining approach, which Figure 3.17 depicts.
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NCBI MeSH Topic % Enrichment

p-value Fold

Organic Chemicals 17.4 1.2E-31 0.6
Nucleic Acids, Nucleotides, and Nucleosides 7.7 1.6E-24 2.7
Heterocyclic Compounds 14.3 1.3E-17 0.6
Biological Factors 5.2 6.0E-17 2.7
Lipids 6.6 3.7E-12 2.0
Hormones, Horm. Substitutes, and Horm. Antagonists 4.5 3.6E-08 2.0
Enzymes and Coenzymes 1.5 2.3E-04 2.4
Pharmaceutical Preparations 0.4 3.0E-03 4.9
Chemical Actions and Uses 12.4 3.7E-02 0.9
Inorganic Chemicals 1.5 3.7E-02 0.7
Amino Acids, Peptides, and Proteins 7.0 3.7E-02 1.1
Polycyclic Compounds 10.8 5.3E-02 1.1
Complex Mixtures 0.3 5.3E-02 2.6
Carbohydrates 4.2 6.8E-02 0.9
Macromolecular Substances 0.5 1.4E-01 1.3
Biomedical and Dental Materials 0.3 2.0E-01 0.9

Table C.5: Enrichment of NCBI MeSH topics that are direct children of Chemicals
and Drugs Category (the source NCBI MeSH topic for small molecules). The
enrichment uses 1973 unique PubChem Compounds entries, which are all the
PubChem Compounds identifiers that the database provides for the unique set of
small molecules from the text mining H. sapiens metabolome. This complements
mostly the ChEBI portion of Table C.4.
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C. ENRICHMENT ANALYSES RESULTS

Table C.4 presents the top 20 most enriched NCBI MeSH topics, after enrich-

ment analysis of 1973 PubChem Compounds entries retrieved from the region of

unique elements provided by the text mining approach, which Figure 3.17 depicts.

This tends to be complementary to the previous ChEBI analysis.

254



NCBI MeSH Topic % Enrichment

p-value Fold

Nucleosides 5.1 3.6E-23 3.4
Heterocyclic Compounds, 1-Ring 4.9 2.9E-21 0.4
Ribonucleosides 2.8 3.3E-15 4.0
Steroids 7.8 3.8E-15 2.1
Purine Nucleosides 2.5 6.3E-14 4.0
Inflammation Mediators 2.5 2.8E-12 3.7
Azoles 0.9 8.1E-12 0.3
Hydrocarbons, Cyclic 2.8 4.4E-11 0.4
Purines 4.6 1.2E-10 2.3
Hydrocarbons 6.2 1.8E-10 0.6
Eicosanoids 2.1 2.6E-10 3.6
Autacoids 2.1 3.9E-10 3.5
Hydrocarbons, Aromatic 2.1 1.2E-09 0.4
Androstanes 1.9 2.5E-09 3.6
Amines 1.3 6.7E-09 0.4
Noxae 2.3 1.6E-08 3.0
Amides 0.5 2.4E-08 0.2
Fatty Acids 4.0 3.0E-08 2.1
Adrenal Cortex Hormones 1.8 7.7E-08 3.3
Prostaglandins 1.4 1.8E-07 3.9
Pregnanes 2.4 1.9E-07 2.6

Table C.6: Top 20 most enriched NCBI MeSH topics from the unique section
of small molecules of the text mining metabolome. The table skips the direct
children of Chemicals and Drugs Category (the source NCBI MeSH topic for small
molecules). The enrichment uses 1973 unique PubChem Compounds entries,
which are all the PubChem Compounds identifiers that the database provides for
the unique set of small molecules from the text mining H. sapiens metabolome.
This complements mostly the ChEBI portion of Table C.4.
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Appendix D

Gibbs Energy calculator

supplementary material

This appendix contains the supplementary material for the Gibbs Energy calcu-

lator built.

For reasons of formatting, this appendix had to be included as a document

itself, and hence all its Figures and pages are not indexed as part of the main

thesis. It also contains its own sections and references.
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D. 1 Derivation of equation to obtain non-apparent standard
energy of least protonated isomer

From [1] we obtain equation D.1 (4.5-6 in [1]) and the partition function D.2 (4.5-7 in [1]), which
explains how to obtain the isomer’s Gibbs energy of formation1, ∆fG

′0
i (the apparent value,

measured experimentally, which is used in the regression) from the least protonated specie’s
Gibbs energy of formation2, ∆fG

′0
j=1.

∆fG
′0
i = ∆fG

′0
j=1 −RTlnP (D.1)

P = 1 +
[H+]

K1
+

[H+]2

K1K2
+ · · ·+ [H+]n

K1K2 · · ·Kn
(D.2)

Besides, we know that a specie j (part of an isomer group) can be specified at a desired pH
and ionic strength I using equation D.3

∆fG
′0
j = ∆fG

0
j (I = 0) +NH,jRTln(10)pH −

αRT (z2j −NH,j)
√
I

1 + 1.6
√
I

(D.3)

Using D.3 in D.1 we get

∆fG
′0
i = ∆fG

0
j=1(I = 0) +NH,j=1RTln(10)pH − αRT (z21 −NH,j=1)

√
I

1 + 1.6
√
I

−RTlnP

∆fG
0
1(I = 0) = ∆fG

′0
i −NH,1RTln(10)pH +

αRT (z21 −NH,1)
√
I

1 + 1.6
√
I

+RTlnP

∆fG
0
1(I = 0) = ∆fG

′0
i +RTln([H+]NH,1P ) +

αRT (z21 −NH,1)
√
I

1 + 1.6
√
I

∆fG
0
1(I = 0) = ∆fG

′0
i +RTln([H+]NH,1 +
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(D.4)

If we are considering that the experimental values were measured probably at zero ionic
strength, then I associated to ∆fG

′0
i is I = 0, which simplifies the equation to

∆fG
0
1(I = 0) = ∆fG

′0
i (I = 0) +RTln([H+]NH,1 +

k=Ns−1∑

k=1

[H+]NH,1+k

∏k
j=1Kj

) (D.5)

Hence, using equation D.5 we can obtain the standard (non-apparent) Gibbs energy of
formation, ∆fG

0
1(I = 0) at zero ionic strength for the least protonated specie of the isomer

group for which we had an apparent energy of formation, ∆fG
′0
i (I = 0) (derived from the

regression). From here, one can obtain the energies for the rest of the species in the isomer
group as described in [1] and then obtain finally the standard transformed Gibbs energy for
the chemical entity in question, all starting from the values obtained from the regression and
without needing experimental values.

1Please note that in ∆fG
′0
i the i stands for isomer.

2Please note that in ∆fG
′0
j the j index stands for the specie number within the isomer group, in ascending

order of protonation, so j = 1 is the least protonated specie of the isomer group.
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D. 2 Improvement of the regression for apparent standard Gibbs
energies

D. 2. 2 The need for a new regression

The work by [5] provided most of the data directly used (much of it is derived by them from
[4, 2, 3]). However, in the implementation of recognition of Chemical groups, some errors were
noted when validating our group recognition implementation against their results. This resulted
of course in the correction of many errors in our implementation, yet the discovery of certain
mistakes in the recognition of certain groups in [5] required to make a new regression that would
include this fixes. The main errors found and fixed were:

Chloride groups Cls are said to be attached to tertiary carbons (no other Cls attached) when
they are actually attached to secondary carbons. The same happens with secondary and
primary carbons. This can be seen in molecules 624, 659, 660 and 661, according to their
supplementary material. This incorrect detection produces an error of 2.82 kcal/mol and
1.5 kcal/mol per group misdetected, respectively.

=C< in ring The regression from [5] makes a difference between two types of =C< (carbon
with a double bond and two single bonds) participating in a ring: in the first case the
two single bonds participate in the ring, in the second one single and one double bond
participate in the ring. According to our group identification, in many cases one of this
groups was identified by [5] when the other was the one actually present. This derives in
a systematic error of 20.4 kcal/mol every time that one of this mistakes is made. This can
be seen in mol 108, 403 from their supplementary material.

-SO3 group value Molecules 678, 540, 679, 696 and 272 show that there is an inconsistency
with the -SO3 group value. According to the manuscript, it is -156 kcal/mol, however the
actual calculated energies for the molecules implies that should be -123.75 kcal/mol.

N+ badly typed A number of molecules were found in the data set of the supplementary
material in which N had four bonds but wasn’t charged positively, this cases were corrected
looking at the correct configurations in the ChEBI database. This impacted on certain
groups being recognized.

Approximately 50 molecules from the data set of [5] were modified to correct some minor
chemical issue.

D. 2. 2 Work towards a new regression

Using the data provided by [5], our group identification implementation based on the CDK [6]
and the corrections mentioned, a new multiple linear regression was derived using the lm (linear
model) package from R. The best regression achieved, after fixing errors of implementation that
introduced biases in different regions, was used in the end for our group contribution method.
We see a slight improvement in the residuals compared to the regression from [5], but most
importantly, groups are correctly recognized for the mentioned cases. The values for each of
the groups resulting from the regression can be seen in the following R summary:
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Residuals:

Min 1Q Median 3Q Max

-14.3411 -0.6351 0.0019 0.9525 10.1824

Coefficients:

Estimate Std. Error t value Pr(>|t|)

CCCCconjugation -5.72340 0.40474 -14.141 < 2e-16 ***

CCCNconjugation -4.11169 0.83237 -4.940 8.28e-07 ***

=CH2 6.74411 0.30363 22.211 < 2e-16 ***

=CH- 13.41627 0.24577 54.588 < 2e-16 ***

=C< 16.62884 0.39344 42.265 < 2e-16 ***

=NH -19.09548 1.45281 -13.144 < 2e-16 ***

=NH2 -17.59795 1.29785 -13.559 < 2e-16 ***

=N- 13.61456 3.11327 4.373 1.27e-05 ***

OCCCconjugation -1.79649 0.22200 -8.092 8.63e-16 ***

OCCNconjugation -3.11462 0.53873 -5.781 8.22e-09 ***

OCCOconjugation 2.06671 0.17822 11.597 < 2e-16 ***

SG_ClO2 4.10000 1.82062 2.252 0.024401 *

SG_ClO3 -0.80000 1.82062 -0.439 0.660398

SG_H -7.24227 0.16303 -44.424 < 2e-16 ***

SG_H2 3.12466 0.18519 16.872 < 2e-16 ***

SG_H2O2 -32.16839 0.95126 -33.817 < 2e-16 ***

SG_acetaldehyde -32.14846 0.38380 -83.763 < 2e-16 ***

SG_acetate -88.78636 0.20863 -425.578 < 2e-16 ***

SG_acetone -38.29296 0.40499 -94.553 < 2e-16 ***

SG_ammonia -18.03161 0.37048 -48.670 < 2e-16 ***

SG_ammonium_car=amate -91.28624 0.82866 -110.161 < 2e-16 ***

SG_ch4 -10.18738 0.45051 -22.613 < 2e-16 ***

SG_chloromethane -12.60000 1.82062 -6.921 5.55e-12 ***

SG_co2 -90.22668 0.39895 -226.159 < 2e-16 ***

SG_dichloromethane -15.80000 1.82062 -8.678 < 2e-16 ***

SG_diphosphate -483.10282 0.68600 -704.234 < 2e-16 ***

SG_ethane -5.04792 1.06058 -4.760 2.04e-06 ***

SG_ethanol -41.77921 0.39733 -105.150 < 2e-16 ***

SG_fe2 -20.20078 1.32787 -15.213 < 2e-16 ***

SG_fe3 0.25078 1.32787 0.189 0.850219

SG_formaldehyde -31.46352 0.58372 -53.902 < 2e-16 ***

SG_formate -85.13234 0.33747 -252.269 < 2e-16 ***

SG_formyl_phosphate -297.58271 1.87495 -158.715 < 2e-16 ***

SG_h2o -57.10078 0.23898 -238.935 < 2e-16 ***

SG_h2s -6.66000 1.82062 -3.658 0.000259 ***

SG_hco3 -140.93192 0.30347 -464.408 < 2e-16 ***

SG_hydroxylamine -40.29593 0.81131 -49.668 < 2e-16 ***

SG_methanol -43.33079 0.44060 -98.346 < 2e-16 ***

SG_methylamine -10.21721 0.79476 -12.856 < 2e-16 ***

SG_n2 1.70001 0.99822 1.703 0.088672 .

SG_n2h4 30.60000 1.82062 16.807 < 2e-16 ***

SG_n2o 20.08229 2.09299 9.595 < 2e-16 ***

SG_no 14.95428 1.14133 13.103 < 2e-16 ***

SG_no2 -9.54929 0.70621 -13.522 < 2e-16 ***

SG_no3 -26.63806 0.81956 -32.503 < 2e-16 ***

SG_o2 4.34799 0.97617 4.454 8.75e-06 ***

SG_o2Minus 8.12208 1.12869 7.196 7.92e-13 ***

SG_oxalate -161.08500 1.28737 -125.127 < 2e-16 ***

SG_pi -267.96003 0.37897 -707.072 < 2e-16 ***
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SG_s 5.65561 0.68123 8.302 < 2e-16 ***

SG_s2o3 -131.25738 0.82113 -159.849 < 2e-16 ***

SG_s2o4 -143.50000 1.82062 -78.819 < 2e-16 ***

SG_s3o6 -226.74576 1.30737 -173.436 < 2e-16 ***

SG_so2 -71.87100 1.82062 -39.476 < 2e-16 ***

SG_so3 -118.47451 0.54884 -215.863 < 2e-16 ***

SG_sulfate -178.23359 0.71093 -250.705 < 2e-16 ***

SG_tetrachloromethane -10.80000 1.82062 -5.932 3.36e-09 ***

SG_trichloromethane -15.90000 1.82062 -8.733 < 2e-16 ***

SG_urea -52.20692 0.95344 -54.756 < 2e-16 ***

-CH2- 1.73001 0.09239 18.725 < 2e-16 ***

-CH3 -3.79204 0.14562 -26.040 < 2e-16 ***

-CH=O -29.93351 0.17332 -172.709 < 2e-16 ***

-COO -83.80153 0.15674 -534.667 < 2e-16 ***

-CO-OPO3- -293.33745 0.38851 -755.041 < 2e-16 ***

-NH2 -1.58569 0.44034 -3.601 0.000322 ***

-NH2- 4.28922 0.82403 5.205 2.08e-07 ***

-NH3 -5.29332 0.30603 -17.297 < 2e-16 ***

-NH< 15.47413 1.13077 13.685 < 2e-16 ***

-NH- 8.51985 0.50985 16.710 < 2e-16 ***

-N< 21.16259 1.10382 19.172 < 2e-16 ***

-OH -41.79636 0.15882 -263.166 < 2e-16 ***

-OPO2 -213.50172 0.56356 -378.846 < 2e-16 ***

-OPO2- -212.68954 0.35651 -596.584 < 2e-16 ***

-OPO3 -250.53039 0.34551 -725.111 < 2e-16 ***

-OPO3- -237.83039 0.50690 -469.186 < 2e-16 ***

-OSO3minus1 -154.46849 0.92317 -167.325 < 2e-16 ***

-O- -23.84818 0.39506 -60.366 < 2e-16 ***

-O-CO- -73.31272 0.44087 -166.292 < 2e-16 ***

-Oneg -37.15324 0.77463 -47.963 < 2e-16 ***

-SH -1.36061 0.63466 -2.144 0.032132 *

-SO3 -123.23769 0.86285 -142.826 < 2e-16 ***

-S< 24.16641 1.98341 12.184 < 2e-16 ***

-S- 7.90539 0.73740 10.721 < 2e-16 ***

-S-OH 21.08688 3.38117 6.237 5.15e-10 ***

-S-S- 4.55842 1.19203 3.824 0.000134 ***

-Sneg 8.28676 2.68875 3.082 0.002076 **

=CH 51.96352 4.44996 11.677 < 2e-16 ***

=C- 37.22676 2.17793 17.093 < 2e-16 ***

=N -23.35352 4.06048 -5.751 9.81e-09 ***

=CH- 5.52149 0.16915 32.643 < 2e-16 ***

=C< 7.82110 0.32783 23.857 < 2e-16 ***

=C=O -27.67383 0.21852 -126.644 < 2e-16 ***

=N< 62.11248 1.88270 32.991 < 2e-16 ***

amide -12.14147 0.36021 -33.707 < 2e-16 ***

aromatic_ring =CH- 4.69418 0.13942 33.670 < 2e-16 ***

aromatic_ring =C< 8.11175 0.31993 25.354 < 2e-16 ***

aromatic_ring fused_to_nonaromatic_ring >C= 8.43421 0.59123 14.266 < 2e-16 ***

aromatic-Br 2.09777 1.21489 1.727 0.084328 .

aromatic-F -43.43556 1.21489 -35.753 < 2e-16 ***

aromatic-I 16.19777 1.21489 13.333 < 2e-16 ***

dbl_sgl_ring =N< 14.74436 0.81136 18.172 < 2e-16 ***

heteroaromaticring -3.55028 0.52938 -6.706 2.40e-11 ***

hydrocarbon 4.15856 0.84849 4.901 1.01e-06 ***

primary Cl2 -8.05969 0.30808 -26.161 < 2e-16 ***
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primary Cl3 -5.69035 0.28457 -19.996 < 2e-16 ***

primary Cl -11.34913 0.38795 -29.254 < 2e-16 ***

ring >C< 8.18267 0.39495 20.718 < 2e-16 ***

ring >C= 31.51928 2.07075 15.221 < 2e-16 ***

ring >C=O -29.75670 0.30554 -97.390 < 2e-16 ***

ring =N- 6.10061 0.58077 10.504 < 2e-16 ***

ring =CH- 8.78084 0.28398 30.921 < 2e-16 ***

ring =C< 12.05322 0.37387 32.239 < 2e-16 ***

ring =NH- 7.11203 0.87432 8.134 6.15e-16 ***

ring -CH2- 2.77125 0.24392 11.362 < 2e-16 ***

ring -CH< 5.44459 0.20895 26.057 < 2e-16 ***

ring -NH- 4.43847 0.51844 8.561 < 2e-16 ***

ring -N< 19.83668 0.60056 33.031 < 2e-16 ***

ring -OPO2- -194.18371 0.96634 -200.947 < 2e-16 ***

ring -O- -37.32142 0.85990 -43.402 < 2e-16 ***

ring -O-CO- -70.67898 0.79034 -89.429 < 2e-16 ***

ring -S- 0.65833 0.70165 0.938 0.348192

secondary-Cl -8.24988 0.41186 -20.031 < 2e-16 ***

thioesterFactor -10.12517 0.45413 -22.296 < 2e-16 ***

threering 14.61372 1.49429 9.780 < 2e-16 ***

two_fused_aromatic_rings >C= -0.02287 0.88666 -0.026 0.979427

two_fused_rings >C= 16.78700 0.87552 19.174 < 2e-16 ***

two_fused_rings >CH- 3.58945 0.73718 4.869 1.18e-06 ***

two_fused_rings >C< -1.92597 2.94102 -0.655 0.512608

two_fused_rings =N< 6.00654 1.25923 4.770 1.94e-06 ***

two_fused_rings -N< 12.53668 1.06413 11.781 < 2e-16 ***

vicinalCl 1.50652 0.34212 4.403 1.11e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.821 on 2804 degrees of freedom

Multiple R-squared: 0.9988,Adjusted R-squared: 0.9987

F-statistic: 1.789e+04 on 131 and 2804 =F, p-value: < 2.2e-16

As it can be seen in the regression summary, only three coefficients had low significance, but
they are nevertheless left in the model as it allows a higher coverage of molecules. The regression
can be further evaluated through diagnostic graphs shown in Fig. D.1. As it can be seen in
the Residuals vs Fitted graph, most of the residuals (difference between fitted value and data
value) lie within [−5, 5] kcal/mol. The scale location graph reveals certain tendency to higher
errors for molecules and reactions with higher fitted energy values. This is to be expected in an
additive method, as the bigger the mass of a molecule (or the side of a reaction), more groups
will be found, accumulating error additively. The Residuals vs. Leverage graph shows that there
are no points (either reactions or small molecules) with cook’s distance > 0.5 (and there are
none actually with cook’s distance > 0.2). High cook’s distances are associated to points that
have a very high influence in the regression and at the same time have high residuals, meaning
that they affect the model more than other points and are not fitting correctly, “deforming” the
model normally. Most of the points with leverage > 0.4 have very low residuals. Overall, these
graphs and the multiple R-squared of 0.9988 indicate a very good fit to the data. This further
validates the quality of the groups recognition implementation based on the CDK.

Compared to the regression made by [5], our regression seems to improve on the overall
residues obtained. This can be seen in Fig. D.2. Here it can be seen that the present regression
has a higher proportion of its residuals towards zero (black line), compared to the distribution
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Figure D.1: Standard multiple linear regression diagnostic graphs
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Figure D.2: Comparison of residuals distributions for the regression provided by [5] and the
new one provided in this work.

in [5]. As we don’t have the exact linear model used by these authors (it could be derived from
their data, but might well not be the exact same model), it is difficult to do a proper comparison
of the models.

D. 3 Validation of Standard Transformed Gibbs Energies

Calculated Standard Transformed Gibbs Energies obtained through the group contribution
method and the procedure described with equations 4 and 5 in the paper were compared against
the values provided by [1], derived from experimentally measured values. Although most of the
differences |∆fG

′
Alberty −∆fG

′
GroupContrib| were in the range of 0 to 10 kcal/mol, as shown in

Fig. D.3, there are a number of entities that show big differences between the transformed
energy derived from the regression and from experimental values as described by [1].

A closer look into the values with higher differences (above 100 kcal/mol), shows that most
of them, if not all, correspond to chemical entities for which conventions are defined for their
base transformed energies (or chemical entities closely related to them). This can be seen in
Fig. D.4, were it can be appreciated that related chemical entities have similar differences when
comparing the Alberty given Transformed Gibbs Energy value compared to the one obtained
from our regression (and posterior correction as explained using a method derived from the
equations presented by [1]), which means probably that most of the observed difference is due
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Figure D.4: Chemical entities with high differences in Standard Transformed Gibbs Energies:
All the entities that showed a high energy difference in Transformed energy between the group
contribution method and the Alberty catalogue have their base energies either defined by con-
vention in zero or depend directly on an entity with such a convention.

to the convention of value taken by Alberty in his tables. Table D.1 shows which of these species
form part of the convention or are directly connected by a reaction to one of these convention-set
energy values.

Although this is a note of alert to use Transformed Gibbs energy values with caution, revision
of the Transformed energies of reactions where these chemical entities3 participate shows that
the energy balance cancels out this error, as the effect of the conventions are cancelled out in
the subtraction of energies between products and reactants. Hence the differences seen for these
compounds, with energy values set by convention or closely related, doesn’t translate into errors
for the Transformed Gibbs Energies of reaction. This can be seen in Fig. D.5 , where it can
be seen that most of the differences between Transformed Gibbs Energies of reaction calculated
through the Alberty catalogue or through our regression lie within -5,5 kcal/mol, most of them
very close to zero. Furthermore, the two small peaks that can be seen below -5 kcal/mol and
above 5 kcal/mol correspond to variations introduced by phosphate groups, which deviate in
our regression by 5.9 kcal/mol of Standard Gibbs Energy from the value found experimentally.

D. 4 Reaction balancing

When balancing reactions, many times an acceptable result can be achieved from the perspec-
tive of the mass and charge balance by adding balancing species and changing stoichiometric
coefficients. However, if not done carefully, this can lead to problems in the calculation of any
property of the reaction that depends on this balance. The excesive augmentation of coefficient

3This included all the small molecules that could be found in the Alberty catalogue and all the 471 reactions
approximately were at least one of the participated.

266



Entity Std. GE. Conv. Distance
[kJ/mol]

Ubiquinone red. -89.92 No 1
Ubiquinone ox. 0.00 Yes 1
Nicotinamide ribonuc. 840.08 No 1
FAD ox. 0.00 Yes 0
FAD red. -38.88 No 1
NADP ox. 0.00 Yes 0
NAD ox. 0.00 Yes 0
NAD red. 22.65 No 1
NADP red -809.19 No 1
Glutathione ox. 0.00 Yes 1
Glutathione-coA -35.85 No 1
Glutathione Red. 34.17 No 1
Acetoacetyl CoA -285.32 No 1
Acetyl CoA -188.52 No 1
Propanoyl CoA -179.14 No 1
CoA 0.00 Yes 0
MethylmalonylCoA -502.48 No 1
MalylCoA -663.44 No 1
OxalylCoA -509.96 No 1
SuccinylCoA -509.59 No 1
FMN ox. 0.00 Yes 0
FMN red. -38.88 No 1
Retinal 0.00 Yes 0
Retinol -27.91 No 1

Table D.1: Chemical entities with high differences: most of the entities are either defined by
convention to zero or are directly related to them.

Std Tranformed Gibbs Energies of reaction
differences between Alberty and Group Contribution
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Figure D.5: Distribution of differences in Transformed energies between using the catalogue of
Alberty and our regression.
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or the addition of really unnecessary entities adds more groups than required in the calculation
of group contributions. Hence, balancing must be done step by step and always observing how
the overall coefficient sum changes, as big changes will produce big deviations from the real
∆rG. We suggest the following thumb rules:

Define the purpose It should be very clear for what is the balance required. In our case, it
depends on whether the Standard or Standard Transformed Gibbs energy (or even Further
Transformed) is going to be calculated. In the first case, Hydrogens need to be balanced,
in the second case, they are neglected. In general it is very easy to introduce errors in the
Standard Gibbs energy of reaction calculation because of the need of balancing protons,
which is something that biochemical reactions don’t really do.

Balancing additions Balancing molecules should be added one at a time, to avoid adding
more than strictly necessary. Adding H2O, O2 and H at the same time can lead to results
in which all of these are added without a real need.

Minimize change Always start by avoiding changes in the original reactant’s and product’s
coefficients, and only allowing changes on the balancing additions. Once this doesn’t work,
then try with bounded changes in the coefficients of reactants and products.

Nature’s preference In general, and observing databases of biochemical reactions, it can be
seen that biochemical reactions rarely tend to deviate from one-to-one reactant to product
ratios.
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Appendix E

Permissions of use

This appendix contains information regarding permissions obtained for the use

of Figures 1.3, 4.17, and 4.18, which are originals of other publications.

For the use of Figure 1.3, I obtained a license for electronic and paper dis-

tribution to be used solely within this thesis, through the Rightslink service.

License number 2961871209474, dated Aug 04, 2012. The license requires that
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fication, Pages No. 855-866, Copyright 2007, with permission from ELSEVIER”.

For the use of Figure 4.18, I obtained a license for electronic and paper dis-

tribution to be used solely within this thesis, through the Rightslink service.

License number 2942061417749, dated Jul 04, 2012. The license requires that the

following text is included in the thesis:

“Reprinted by permission from Macmillan Publisher Ltd: Nature Biotech-

nology, T. Nguyen, K. Ishida, H. Jenke-Kodama, E. Dittmann, C. Gurgui, T.
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Hochmuth, S. Taudien, M. Platzer, C. Hertweck, and J. Piel. Exploiting the mo-

saic structure of trans-acyltransferase polyketide synthases for natural product

discovery and pathway dissection. Nature Biotechnology, 26[2]:225233, February

2008, copyright 2008.”

Figure 4.17 is part of a [128], which is a paper published in Proceedings to the

National Academy of Sciences of the United States of America, which states in

its “Rights and Permissions”1 that:

“Anyone may, without requesting permission, use original figures or tables

published in PNAS for noncommercial and educational use (i.e., in a review

article, in a book that is not for sale) provided that the original source and the

applicable copyright notice are cited.”

It also states that:

“Authors whose work will be reused should be notified. PNAS cannot supply

original artwork. Use of PNAS material must not imply any endorsement by

PNAS or the National Academy of Sciences. The full journal reference must

be cited and, for articles published in Volumes 90105 (19932008), ”Copyright

(copyright year) National Academy of Sciences, USA.”“

I wrote to Prof. Chaita Khosla at Stanford University, asking for permission

to use the Figure, to which he agreed in an e-mail dated July 4, 2012 16:53:40

GMT+01:00, from his University email address khosla@stanford.edu. The text

requested by PNAS was included in the Figure and the paper is cited.

1http://www.pnas.org/site/misc/rightperm.shtml
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material

F. 1 Tissues related to some example metabo-

lites

This section includes additional examples as the one shown for Kynurenic acid in

Table 3.3, page 131. This part distinguishes two types of small molecules in terms

of their expected distribution across tissues: widespread molecules and specific

molecules.

In the case of widespread molecules, such Pyruvate (Table F.1), Taurine (Ta-

ble F.2), and Lactate (Table F.3), the respective tables show that they do not

have a strong bias to any particular major physiological system. On the con-

trary, specific molecules, such as GABA (Table F.6), Pregnenolone (Table F.5),

and Ursodeoxycholic acid (Table F.4), show through their tables well defined
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biases towards particular body systems.

Sample Obs. Exp. Total MiM LLH

Liver 1432 201.71 4.9E5 1.38 3230
Culture medium 1094 112.95 2.8E5 1.83 3056
Blood 1451 378.52 9.2E5 0.49 1812
Heart 870 198.63 4.9E5 0.67 1250
Hepatocyte 330 24.53 6.0E4 2.30 1111
Muscle 623 136.18 3.3E5 0.74 933
Cerebral ganglion 673 202.82 5.0E5 0.28 685
Skeletal muscle 249 30.15 7.4E4 1.60 617
Adipocyte 115 9.02 2.2E4 2.22 375
Adipose tissue 117 11.38 2.8E4 1.91 335
Blastocyst 83 4.79 1.2E4 2.67 318
Kidney 270 89.78 2.2E5 0.14 236
Skin fibroblast 54 3.51 8.6E3 2.50 195
Cardiac muscle 65 6.40 1.6E4 1.90 184
Mesophyll 34 0.92 2.3E3 3.76 180
Embryo 161 47.27 1.2E5 0.30 168
Erythrocyte 147 40.52 9.9E4 0.41 167
Astrocyte 74 10.77 2.6E4 1.33 159
Pectoral muscle 29 0.95 2.3E3 3.49 143

Table F.1: Table of the 20 Best ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with Pyruvate, a metabolite relevant for cen-
tral metabolism, particularly glycolysis and energy metabolism. In this case,
results are sorted by Log Likelihood and are asked to have mutual information
score MiM > 0, log likelihood score LLH > 10 and t− Score > 0. The column
Obs. stands for observed number of co-occurrences (between the sample and
Pyruvate), Exp. for expected number of co-occurrences and Total for the total
number of co-occurrences of that sample (Brenda Tissue Ontology entry) with
all other small molecules. In this case there is no strong bias towards a particular
major system of the mammalian body.
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Cerebral ganglion 644 82.92 5.0E5 1.51 1556
Excretion 289 17.79 1.1E5 2.58 1078
Retina 219 7.86 4.7E4 3.35 1041
Liver 467 82.47 4.9E5 1.05 868
Culture medium 346 46.18 2.8E5 1.45 805
Hippocampus 179 9.24 5.5E4 2.83 725
Astrocyte 124 4.40 2.6E4 3.37 591
Animal 411 105.75 6.3E5 0.51 517
Cerebellum 116 5.70 3.4E4 2.90 480
Neuron 226 38.84 2.3E5 1.09 426
Heart 322 81.21 4.9E5 0.53 413
Corpus striatum 95 5.13 3.1E4 2.77 376
Cerebral cortex 96 5.72 3.4E4 2.62 362
Glia 70 4.41 2.6E4 2.54 257
Photoreceptor 59 2.86 1.7E4 2.92 245
Central nervous system 127 22.85 1.4E5 1.02 229
Hepatocyte 78 10.03 6.0E4 1.51 185
Retinal pigment epithelium 38 1.32 7.9E3 3.41 183
Cardiac myocyte 50 3.49 2.1E4 2.39 173
Neutrophil 81 11.96 7.1E4 1.32 172

Table F.2: Table of the best ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with Taurine, an organic acid found across
many different animal tissues, and an important constituent of bile acid. It is im-
portant to notice that this results are not limited to a particular taxonomic range.
Results are sorted by Log Likelihood and are asked to have mutual information
score MiM > 0, log likelihood score LLH > 10 and t−Score > 0. These bound-
aries limit the results to only 15 samples. The column Obs. stands for observed
number of co-occurrences (between the sample and Taurine), Exp. for expected
number of co-occurrences and Total for the total number of co-occurrences of
that sample (Brenda Tissue Ontology entry) with all other small molecules. In
this case there is no strong bias for a particular major animal/plant body system,
although nearly half of the entries are related to the nervous system.
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Sample Obs. Exp. Total MiM LLH

Blood 10393 1075.66 9.2E5 1.82 30162
Heart 3420 564.47 4.9E5 1.15 6767
Muscle 2868 387.00 3.3E5 1.44 6650
Culture medium 2017 320.99 2.8E5 1.20 4081
Liver 2579 573.22 4.9E5 0.73 3822
Hepatocyte 768 69.70 6.0E4 2.02 2306
Cerebral ganglion 1913 576.37 5.0E5 0.28 1951
Skeletal muscle 735 85.67 7.4E4 1.65 1874
Erythrocyte 558 115.14 9.9E4 0.82 881
Astrocyte 272 30.61 2.6E4 1.70 709
Stolon 144 5.80 5.0E3 3.19 653
Leukocyte 455 112.77 9.7E4 0.57 588
Pleural fluid 94 4.39 3.8E3 2.98 399
Fast muscle 78 2.39 2.1E3 3.59 396
Vein 416 136.12 1.2E5 0.16 372
Sertoli cell 105 9.08 7.8E3 2.08 323
Excretion 371 123.69 1.1E5 0.14 322
Neutrophil 284 83.13 7.1E4 0.33 297
Semen 235 65.41 5.6E4 0.39 263
Cardiac myocyte 138 24.29 2.1E4 1.05 253

Table F.3: Table of the highest 20 ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with Lactate, a widespread metabolite, closely
linked metabolically to Pyruvate. Results are sorted by Log Likelihood and are
asked to have mutual information score MiM > 0, log likelihood score LLH > 10
and t−Score > 0. The column Obs. stands for observed number of co-occurrences
(between the sample and Lactate), Exp. for expected number of co-occurrences
and Total for the total number of co-occurrences of that sample (Brenda Tissue
Ontology entry) with all other small molecules. In this case there is no clear bias
for a particular major animal/plant body system.
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Liver 566 25.81 4.9E5 3.01 2533
Gall bladder 122 1.36 2.6E4 5.04 862
Hepatocyte 56 3.14 6.0E4 2.71 218
Bile duct 44 1.67 3.2E4 3.27 204
Colon 43 4.58 8.7E4 1.78 116
Secretion 65 11.92 2.3E5 1.00 115
Excretion 28 5.57 1.1E5 0.88 46
Intestine 28 5.89 1.1E5 0.79 43
Biliary epithelial cell 4 0.04 6.7E2 5.38 30
Hep-G2 cell 5 0.34 6.6E3 2.41 17
Peripheral blood cell 4 0.22 4.1E3 2.76 16
Ileum 7 1.21 2.3E4 1.08 13
Duodenum 7 1.22 2.3E4 1.08 13
Small intestine 9 2.11 4.0E4 0.64 12
Jejunum 5 0.76 1.5E4 1.26 10

Table F.4: Table of the best ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with Ursodeoxycholic acid, a bile acid found
in the bile of bears as conjugate with Taurine, which is used therapeutically. Re-
sults are sorted by Log Likelihood and are asked to have mutual information score
MiM > 0, log likelihood score LLH > 10 and t− Score > 0. These boundaries
limit the results to only 15 samples. The column Obs. stands for observed number
of co-occurrences (between the sample and Ursodeoxycholic acid), Exp. for ex-
pected number of co-occurrences and Total for the total number of co-occurrences
of that sample (Brenda Tissue Ontology entry) with all other small molecules.
In this case there is a bias towards components of the digestive system.
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Sample Obs. Exp. Total MiM LLH

Adrenal gland 306 4.84 7.5E4 4.54 1965
Leydig cell 86 0.77 1.2E4 5.37 644
Testis 77 2.63 4.1E4 3.42 373
Adrenal cortex 54 0.71 1.1E4 4.80 362
Placenta 72 2.33 3.6E4 3.50 356
Granulosa cell 51 0.59 9.1E3 5.00 356
Ovary 69 4.15 6.5E4 2.61 260
Secretion 110 14.62 2.3E5 1.46 256
Lutein cell 28 0.17 2.6E3 5.96 232
Culture medium 109 17.71 2.8E5 1.18 216
Cerebral ganglion 131 31.81 5.0E5 0.59 176
Zona glomerulosa 19 0.15 2.4E3 5.50 145
COS-1 cell 17 0.15 2.4E3 5.34 126
Corpus luteum 21 0.42 6.5E3 4.21 124
Zona fasciculata 11 0.08 1.2E3 5.74 88
Y-1 cell 9 0.03 4.8E2 6.76 85
MA-10 cell 8 0.02 2.4E2 7.57 84
Chorion 11 0.16 2.5E3 4.63 71
Theca cell 8 0.07 1.2E3 5.31 59
Hippocampus 24 3.55 5.5E4 1.30 51

Table F.5: Table of the highest 20 ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with Pregnenolone, a human endogenous
steroid hormone. It is the initial precursor to different prostagens, androgens,
mineralocorticoids, glucocorticoids, and estrogens. Results are sorted by Log
Likelihood and are asked to have mutual information score MiM > 0, log likeli-
hood score LLH > 10 and t− Score > 0. The column Obs. stands for observed
number of co-occurrences (between the sample and Pregnenolone), Exp. for ex-
pected number of co-occurrences and Total for the total number of co-occurrences
of that sample (Brenda Tissue Ontology entry) with all other small molecules. In
this case there is are biases towards components of the reproductive system and
nervous system components.
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Neuron 6777 174.46 2.3E5 3.83 37785
Cerebral ganglion 5373 372.41 5.0E5 2.41 19413
Hippocampus 1219 41.51 5.5E4 3.43 5947
Pyramidal neuron 812 12.48 1.7E4 4.58 5237
Central nervous system 1372 102.63 1.4E5 2.29 4630
Cerebral cortex 872 25.70 3.4E4 3.64 4493
Substantia nigra 650 10.60 1.4E4 4.49 4112
Corpus striatum 774 23.03 3.1E4 3.63 3972
Retina 861 35.31 4.7E4 3.16 3881
Spinal cord 845 62.03 8.3E4 2.32 2871
Cerebellum 623 25.60 3.4E4 3.16 2802
Granule cell 393 6.70 8.9E3 4.43 2449
Globus pallidus 308 7.06 9.4E3 4.00 1736
Cerebellar Purkinje cell 304 6.98 9.3E3 4.00 1713
Nerve 940 169.46 2.3E5 1.02 1698
Amygdala 343 14.01 1.9E4 3.17 1544
Thalamus 315 15.50 2.1E4 2.90 1305
Glia 330 19.80 2.6E4 2.61 1242
Neocortex 224 7.36 9.8E3 3.48 1103
Ganglion 279 15.76 2.1E4 2.70 1082

Table F.6: Table of the highest 20 ranked biological samples (Brenda Tissue
Ontology[49] entries) co-occurring with GABA, a neurotransmitter. Results
are sorted by Log Likelihood and are asked to have mutual information score
MiM > 0, log likelihood score LLH > 10 and t− Score > 0. The column Obs.
stands for observed number of co-occurrences (between the sample and GABA),
Exp. for expected number of co-occurrences and Total for the total number of co-
occurrences of that sample (Brenda Tissue Ontology entry) with all other small
molecules. In this case there is a strong bias towards components of the nervous
system.
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By InChI By InChI with evidence

Figure G.1: Venn diagrams of small molecules produced by the database unifica-
tion, text mining, HMDB and the reaction enumeration scheme, using Standard
InChI. Left: Diagram built using the complete enumeration result. Right: Di-
agram built using the enumeration result limited to small molecules that show
either similar connectivity to known molecules or predicted downstream reactions
– which are labeled as “with evidence”. Limiting results to these small molecules
“with evidence”, reduces the set of unique molecules generated by the enumera-
tion to 8.1% of its original size, presumably to molecules with higher chances of
being real.
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A Joint DB unification-Text mining set, HMDB and molecules resulting from enumeration, separated by iteration.

B Joint DB unification-Text mining set, HMDB and molecules resulting from enumeration that show evidence, 
separated by iteration.

Figure G.2: A: Decomposition of the left Venn diagram in Figure G.1 by itera-
tions of the enumeration. B: Decomposition of the right Venn diagram in Figure
G.1 by iterations of the enumeration. This shows that Iterations 1 and 2 generate
most of the intersections with the joint database unification and text mining set,
and with the HMDB set, while Iteration 3 produces the higher ratio of unique to
intersected molecules.
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Table G.1: Number of occurrences (#) of EC numbers

in the reactions of each of the 3 iterations, including the

percentage (%) that each EC number covers – in terms

of reactions – for each iteration. Few EC classified reac-

tions – most of them oxidoreductases that generate more

that ∼70% of the enumerated reactions – dominate the

enumeration. The whole process is represented by 57

EC numbers. EC numbers are sorted by the number of

occurrences (#) in the third iteration.

Iteration 1 Iteration 2 Iteration 3

EC # % # % # %

1.1.1.1 5819 49.2 21618 45.9 108623 52.8

1.1.1.2 3040 25.7 8967 19.1 37256 18.1

1.2.1.3 227 1.9 6498 13.8 27047 13.1

2.4.1.1 89 0.8 1243 2.6 7049 3.4

3.2.1.2 87 0.7 1048 2.2 6617 3.2

2.1.1.49 907 7.7 2464 5.2 5619 2.7

3.2.1.20 74 0.6 848 1.8 4940 2.4

1.1.1.21 229 1.9 666 1.4 2802 1.4

2.4.1.144 75 0.6 314 0.7 1378 0.7

6.2.1.3 389 3.3 457 1.0 761 0.4

3.5.1.4 54 0.5 156 0.3 537 0.3

Continued. . .
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Iteration 1 Iteration 2 Iteration 3

EC # % # % # %

2.8.2.– 0 0.0 205 0.4 506 0.2

2.1.1.9 86 0.7 165 0.4 301 0.1

2.3.1.87 209 1.8 247 0.5 285 0.1

3.1.1.– 0 0.0 35 0.1 224 0.1

2.4.1.212 0 0.0 27 0.1 145 0.1

5.1.3.17 0 0.0 44 0.1 140 0.1

5.1.3.19 0 0.0 44 0.1 140 0.1

1.3.1.74 67 0.6 196 0.4 126 0.1

2.8.2.17 0 0.0 43 0.1 121 0.1

2.8.2.35 0 0.0 44 0.1 109 0.1

2.8.2.5 0 0.0 42 0.1 108 0.1

2.4.1.69 70 0.6 161 0.3 99 0.0

No EC 136 1.2 179 0.4 97 0.0

2.4.1.38 0 0.0 34 0.1 69 0.0

2.8.2.33 0 0.0 0 0.0 67 0.0

3.2.1.21 75 0.6 125 0.3 65 0.0

2.3.1.81 3 0.0 21 0.0 56 0.0

2.8.2.8 1 0.0 5 0.0 55 0.0

5.2.1.8 15 0.1 58 0.1 51 0.0

2.4.1.37 0 0.0 78 0.2 48 0.0

2.4.1.40 0 0.0 66 0.1 40 0.0

Continued. . .
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Iteration 1 Iteration 2 Iteration 3

EC # % # % # %

3.1.6.4 0 0.0 0 0.0 35 0.0

3.1.6.12 0 0.0 0 0.0 34 0.0

2.4.1.143 0 0.0 7 0.0 27 0.0

2.4.1.179 0 0.0 16 0.0 16 0.0

2.4.1.152 0 0.0 0 0.0 16 0.0

1.11.1.12 11 0.1 7 0.0 15 0.0

1.11.1.15 9 0.1 7 0.0 15 0.0

2.8.2.30 1 0.0 2 0.0 11 0.0

2.4.1.101 0 0.0 4 0.0 8 0.0

3.5.1.23 0 0.0 0 0.0 8 0.0

3.1.6.14 0 0.0 0 0.0 7 0.0

3.6.3.47 27 0.2 5 0.0 4 0.0

2.3.2.1 0 0.0 5 0.0 4 0.0

1.17.4.2 4 0.0 0 0.0 4 0.0

3.1.2.2 1 0.0 14 0.0 2 0.0

2.3.1.5 18 0.2 5 0.0 2 0.0

2.4.2.30 3 0.0 4 0.0 2 0.0

1.1.1.145 2 0.0 1 0.0 2 0.0

2.4.1.145 0 0.0 0 0.0 2 0.0

2.7.1.60 0 0.0 1 0.0 1 0.0

5.1.3.8 0 0.0 1 0.0 1 0.0

Continued. . .
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Iteration 1 Iteration 2 Iteration 3

EC # % # % # %

2.7.8.27 70 0.6 882 1.9 0 0.0

2.7.8.2 14 0.1 2 0.0 0 0.0

2.7.8.1 11 0.1 2 0.0 0 0.0

2.7.1.94 1 0.0 1 0.0 0 0.0

3.1.3.4 1 0.0 0 0.0 0 0.0
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Á. Dobolyi, G. Juhász, and M. Palkovits. Concentration of Nucle-

osides and Related Compounds in Cerebral and Cerebellar Cortical Areas

and White Matter of the Human Brain. Cellular and Molecular Neurobiol-

ogy, 26[4-6]:831–842, August 2006. 157

[77] D. B. Kell, M. Brown, H. M. Davey, W. B. Dunn, I. Spasic, and

S. G. Oliver. Metabolic footprinting and systems biology: the medium

is the message. Nature Reviews Microbiology, 3[7]:557–565, June 2005. 8

[78] I. M. Keseler, J. Collado-Vides, A. Santos-Zavaleta,

M. Peralta-Gil, S. Gama-Castro, L. Muñiz-Rascado,
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