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Chapter 1

Introduction

The first part of today’s activities provide an introduction to high-throughput sequence analysis, including key ‘infrastruc-
ture’ in R and Bioconductor. The main objectives are to arrive at a common language for discussing sequence analysis,
and to become familiar with concepts in R and Bioconductor that are necessary for effective analysis and comprehension
of high-throughput sequence data. An approximate schedule is in Table 1.1.

1.1 High-throughput workflows

Recent technological developments introduce high-throughput sequencing approaches. A variety of experimental protocols
and analysis work flows address gene expression, regulation, encoding of genetic variants, and microbial community
structure. Experimental protocols produce a large number (tens of millions per sample) of short (e.g., 35-150, single
or paired-end) nucleotide sequences. These are aligned to a reference or other genome. Analysis work flows use the
alignments to infer levels of gene expression (RNA-seq), binding of regulatory elements to genomic locations (ChIP-seq),
or prevalence of structural variants (e.g., SNPs, short indels, large-scale genomic rearrangements). Sample sizes range
from minimal replication (e.g,. 2 samples per treatment group) to thousands of individuals.

1.1.1 Technologies

The most common ‘second generation’ technologies readily available to labs are

� Illumina single- and paired-end reads. Short (100− 150 per end) and very numerous. Flow cell, lane, bar-code.
� Roche 454. 100’s of nucleotides, 100,000’s of reads.
� Life Technologies SOLiD. Unique ‘color space’ model.
� Complete Genomics. Whole genome sequence / variants / etc as a service; end user gets derived results.

Figure 1.1 illustrates Illumina and 454 sequencing. Bioconductor has good support for Illumina and derived data such as
aligned reads or called variants, and some support for Roche 454 sequencing; use of SOLiD color space reads typically
requires conversion to FASTQ files that undermine the benefit of the color space model.

Table 1.1: Partial agenda, Day 1.

Time Topic
8:30 . . .
09:15 Introduction to high-throughput workflows, with R examples
10:15 Tea / coffee break
10:30 Sequences Long and Short
11:30 Genomes and Genes
12:30 Lunch
13:30 Genomes and Genes (continued)
14:00 . . .
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4 Sequences, Genomes, and Genes in R / Bioconductor

Figure 1.1: High-throughput sequencing. Left: Illumina bridge PCR [2]; mis-call errors. Right: Roche 454 [15]; ho-
mopolymer errors.

All second-generation technologies rely on PCR and other techniques to generate reads from samples that represent
aggregations of many DNA molecules. ‘Third-generation’ technologies shift to single-molecule sequencing, with relevant
players including Pacific Biosciences and IonTorent. This very exciting data (e.g., [16]) will not be discussed further.

1.1.2 Research questions

Sequence data can be derived from a tremendous diversity of research questions. Some of the most common include:
Variation DNA-Seq. Sequencing of whole or targeted (e.g., exome) genomic DNA. Common goals include SNP detec-

tion, indel and other large-scale structural polymorphisms, and CNV (copy number variation). DNA-seq is also
used for de novo assembly, but de novo assembly is not an area where Bioconductor contributes. Key reference:
[7, 11].

Expression RNA-seq. Sequencing of reverse-complemented mRNA from the entire expressed transcriptome, typically.
Used for differential expression studies like micro-arrays, or for novel transcript discovery.

Regulation ChIP-seq. ChIP (chromatin immuno-precipitation) is used to enrich genomic DNA for regulatory elements,
followed by sequencing and mapping of the enriched DNA to a reference genome. The initial statistical challenge
is to identify regions where the mapped reads are enriched relative to a sample that did not undergo ChIP[12]; a
subsequent task is to identify differential binding across a designed experiment, e.g., [14]. Survey of diversity of
methods: [6].

Metagenomics Sequencing generates sequences from samples containing multiple species, typically microbial commu-
nities sampled from niches such as the human oral cavity. Goals include inference of species composition (when
sequencing typically targets phylogenetically informative genes such as 16S) or metabolic contribution. [10, 5]

Special challenges Non-model organisms. Small budgets.

1.1.3 Analysis

Work flows RNA-seq to measure gene expression through assessment of mRNA abundance represents major steps in
a typical high-throughput sequence work flow. Typical steps include;

1. Experimental design.
2. Wet-lab protocols for mRNA extraction and reverse transcription to cDNA.
3. Sequencing; QA.
4. Alignment of sequenced reads to a reference genome; QA.
5. Summarizing of the number of reads aligning to a region; QA.
6. Normalization of samples to accommodate purely technical differences in preparation.
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Table 1.2: Common file types and Bioconductor packages used for input.

File Description Package
FASTQ Unaligned sequences: identifier, sequence, and encoded quality score

tuples
ShortRead

BAM Aligned sequences: identifier, sequence, reference sequence name, strand
position, cigar and additional tags

Rsamtools

VCF Called single nucleotide, indel, copy number, and structural variants,
often compressed and indexed (with Rsamtools bgzip, indexTabix)

VariantAnnotation

GFF, GTF Gene annotations: reference sequence name, data source, feature type,
start and end positions, strand, etc.

rtracklayer

BED Range-based annotation: reference sequence name, start, end coordi-
nates.

rtracklayer

WIG, bigWig ‘Continuous’ single-nucleotide annotation. rtracklayer
2bit Compressed FASTA files with ‘masks’

7. Statistical assessment, including specification of an appropriate error model.
8. Interpretation of results in the context of original biological questions; QA.

The central inference is that higher levels of gene expression translate to more abundant cDNA, and greater numbers of
reads aligned to the reference genome.

Common file formats The ‘big data’ component of high-throughput sequence analyses seems to be a tangle of
transformations between file types; common files are summarized in Table 1.2. FASTQ and BAM (sometimes CRAM)
files are the primary formats for representing raw sequences and their alignments. VCF are used to summarize called
variants in DNA-seq; BED and sometimes WIG files are used to represent ChIP and other regulatory peaks and ‘coverage’.
GTF / GFF files are important for providing feature annotations, e.g., of exons organization into transcripts and genes.

Third-party (non-R) tools Common analyses often use well-established third-party tools for initial stages of the
analysis; some of these have Bioconductor counterparts that are particularly useful when the question under investigation
does not meet the assumptions of other facilities. Some common work flows (a more comprehensive list is available on
the SeqAnswers wiki1) include:
DNA-seq especially variant calling can be facilitated by software such as the GATK2 toolkit.
RNA-seq In addition to the aligners mentioned above, RNA-seq for differential expression might use the HTSeq3 python

tools for counting reads within regions of interest (e.g., known genes) or a pipeline such as the bowtie (basic
alignment) / tophat (splice junction mapper) / cufflinks (esimated isoform abundance) (e.g., 4) or RSEM5 suite
of tools for estimating transcript abundance.

ChIP-seq ChIP-seq experiments typically use DNA sequencing to identify regions of genomic DNA enriched in prepared
samples relative to controls. A central task is thus to identify peaks, with common tools including MACS and
PeakRanger.

Programs such as those outlined the previous paragraph often rely on information about gene or other structure as
input, or produce information about chromosomal locations of interesting features. The GTF and BED file formats are
common representations of this information. Representing these files as R data structures is often facilitated by the
rtracklayer package. We explore these files in Chapter 3.2.3. Variants are very commonly represented in VCF (Variant
Call Format) files; these are explored in Chapter 3.2.4.

Common statistical issues Important statistical issues are summarized in Table 1.3. These will be discussed further
in later parts of the course, but similar types of issues are relevant in all high-throughput sequence work flows. An
important general point is that wet-lab protocols, sequencing reactions, and alignment or other technological processing

1http://seqanswers.com/wiki/RNA-Seq
2http://www.broadinstitute.org/gatk/
3http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
4http://bowtie-bio.sourceforge.net/index.shtml
5http://deweylab.biostat.wisc.edu/rsem/

http://genome.ucsc.edu/FAQ/FAQformat.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://seqanswers.com/wiki/RNA-Seq
http://www.broadinstitute.org/gatk/
http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html
http://bowtie-bio.sourceforge.net/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
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Table 1.3: Common statistical issues in RNA-seq differential expression and other high-throughput experiments.

Analysis stage Issues
Experimental design Technical versus biological replication, sample size, complexity of design, feasibility

of intended analysis
Batch effects Known and unknown factors; technical artifacts.
Summary Data reduction without loss of information, e.g., counts versus RPKM.
Normalization Robust estimates of library size.
Differential expression Appropriate error model (Negative Binomial, Poisson, . . . ); ‘shrinkage’ to balance

accuracy of per-gene estimates with precision of experiment-wide estimates.
Testing Filtering to reduce multiple comparisons & false discovery rate.

steps introduce artifacts that need to be acknowledged and, if possible, accommodated in down-stream analysis, e.g.,
through modeling or remediation of batch effects.

1.2 R and Bioconductor

R is an open-source statistical programming language. It is used to manipulate data, to perform statistical analysis,
and to present graphical and other results. R consists of a core language, additional ‘packages’ distributed with the R
language, and a very large number of packages contributed by the broader community. Packages add specific functionality
to an R installation. R has become the primary language of academic statistical analysis, and is widely used in diverse
areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface: users type commands into a console; scripts
in plain text represent work flows; tools other than R are used for editing and other tasks. R is a flexible programming
language, so while one person might use functions provided by R to accomplish advanced analytic tasks, another might
implement their own functions for novel data types. As a programming language, R adopts syntax and grammar that
differ from many other languages: objects in R are ‘vectors’, and functions are ‘vectorized’ to operate on all elements of
the object; R objects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected consequences for users at
the expense of less efficient memory use; common paradigms in other languages, such as the ‘for’ loop, are encountered
much less commonly in R. Many authors contribute to R, so there can be a frustrating inconsistency of documentation
and interface. R grew up in the academic community, so authors have not shied away from trying new approaches.
Common statistical analysis functions are very well-developed.

A first session Opening an R session results in a prompt. The user types instructions at the prompt. Here is an
example:

## assign values 5, 4, 3, 2, 1 to variable 'x'

x <- c(5, 4, 3, 2, 1)

x

## [1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored by R. The next line creates a variable x. The
variable is assigned (using <-, we could have used = almost interchangeably) a value. The value assigned is the result of
a call to the c function. That it is a function call is indicated by the symbol named followed by parentheses, c(). The c

function takes zero or more arguments, and returns a vector. The vector is the value assigned to x. R responds to this
line with a new prompt, ready for the next input. The next line asks R to display the value of the variable x. R responds
by printing [1] to indicate that the subsequent number is the first element of the vector. It then prints the value of x.

R has many features to aid common operations. Entering sequences is a very common operation, and expressions of
the form 2:4 create a sequence from 2 to 4. Sub-setting one vector by another is enabled with [. Here we create an
integer sequence from 2 to 4, and use the sequence as an index to select the second, third, and fourth elements of x



Sequences, Genomes, and Genes in R / Bioconductor 7

Table 1.4: Essential aspects of the R language.

Category Function Description
Vectors integer, numeric Vectors of length >= 0 holding a single data type

complex, character
raw, factor

Statistical NA, factor Essential statistical concepts, integral to the language.
List-like list Arbitrary collections of elements

data.frame List of equal-length vectors
environment Pass-by-reference data storage; hash

Array-like data.frame Homogeneous columns; row- and column indexing
array 0 or more dimensions
matrix Two-dimensional, homogeneous types

Classes ‘S3’ List-like structured data; simple inheritance & dispatch
‘S4’ Formal classes, multiple inheritance & dispatch

Functions ‘function’ A simple function with arguments, body, and return value
‘generic’ A (S3 or S4) function with associated methods
‘method’ A function implementing a generic for an S3 or S4 class

x[2:4]

## [1] 4 3 2

Index values can be repeated, and if outside the domain of x return the special value NA. Negative index values remove
elements from the vector. Logical and character vectors (described below) can also be used for sub-setting.

R functions operate on variables. Functions are usually vectorized, acting on all elements of their argument and
obviating the need for explicit iteration. Functions can generate warnings when performing suspect operations, or errors
if evaluation cannot proceed; try log(-1).

log(x)

## [1] 1.6094 1.3863 1.0986 0.6931 0.0000

1.2.1 Essential R

Built-in (atomic) data types R has a number of built-in data types, summarized in Table 1.4. These represent
integer, numeric (floating point), complex, character, logical (Boolean), and raw (byte) data. It is possible to
convert between data types, and to discover the type or mode of a variable.

c(1.1, 1.2, 1.3) # numeric

## [1] 1.1 1.2 1.3

c(FALSE, TRUE, FALSE) # logical

## [1] FALSE TRUE FALSE

c("foo", "bar", "baz") # character, single or double quote ok

## [1] "foo" "bar" "baz"

as.character(x) # convert 'x' to character

## [1] "5" "4" "3" "2" "1"

class(x) # the number 5 is numeric

## [1] "numeric"
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R includes data types particularly useful for statistical analysis, including factor to represent categories and NA (used
in any vector) to represent missing values.

sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

sex

## [1] Male Female <NA>

## Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are homogeneous, consisting of a single type
of element. A list can contain a collection of different types of elements and, like all vectors, these elements can be
named to create a key-value association.

lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

lst

## $a

## [1] 1 2 3

##

## $b

## [1] "foo" "bar"

##

## $c

## [1] Male Female <NA>

## Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to retrieve the actual list element; as with
other vectors, sub-setting can use names

lst[c(3, 1)] # another list -- class isomorphism

## $c

## [1] Male Female <NA>

## Levels: Female Male

##

## $a

## [1] 1 2 3

lst[["a"]] # the element itself, selected by name

## [1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular data structure not unlike a spread sheet.
Each column of the data frame is a vector, so data types must be homogeneous within a column. A data.frame can be
subset by row or column, and columns can be accessed with $ or [[.

df <- data.frame(age=c(27L, 32L, 19L),

sex=factor(c("Male", "Female", "Male")))

df

## age sex

## 1 27 Male

## 2 32 Female

## 3 19 Male
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df[c(1, 3),]

## age sex

## 1 27 Male

## 3 19 Male

df[df$age > 20,]

## age sex

## 1 27 Male

## 2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint that all elements are the same type. A
matrix is created by taking a vector, and specifying the number of rows or columns the vector is to represent.

m <- matrix(1:12, nrow=3)

m

## [,1] [,2] [,3] [,4]

## [1,] 1 4 7 10

## [2,] 2 5 8 11

## [3,] 3 6 9 12

m[c(1, 3), c(2, 4)]

## [,1] [,2]

## [1,] 4 10

## [2,] 6 12

On sub-setting, R coerces a single column data.frame or single row or column matrix to a vector if possible; use
drop=FALSE to stop this behavior.

m[, 3]

## [1] 7 8 9

m[, 3, drop=FALSE]

## [,1]

## [1,] 7

## [2,] 8

## [3,] 9

An array is a data structure for representing homogeneous, rectangular data in higher dimensions.

S3 (and S4) classes More complicated data structures are represented using the ‘S3’ or ‘S4’ object system. Objects
are often created by functions (for example, lm, below), with parts of the object extracted or assigned using accessor
functions. The following generates 1000 random normal deviates as x, and uses these to create another 1000 deviates y
that are linearly related to x but with some error. We fit a linear regression using a ‘formula’ to describe the relationship
between variables, summarize the results in a familiar ANOVA table, and access fit (an S3 object) for the residuals of
the regression, using these as input first to the var (variance) and then sqrt (square-root) functions. Objects can be
interrogated for their class.

x <- rnorm(1000, sd=1)

y <- x + rnorm(1000, sd=.5)
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fit <- lm(y ~ x) # formula describes linear regression

fit # an 'S3' object

##

## Call:

## lm(formula = y ~ x)

##

## Coefficients:

## (Intercept) x

## 0.0104 0.9847

anova(fit)

## Analysis of Variance Table

##

## Response: y

## Df Sum Sq Mean Sq F value Pr(>F)

## x 1 1023 1023 4141 <2e-16 ***

## Residuals 998 247 0

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

## [1] 0.4969

class(fit)

## [1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3 and S4 systems are quite different from
a programmer’s perspective, but conceptually similar from a user’s perspective: both systems encapsulate complicated
data structures, and allow for methods specialized to different data types; accessors are used to extract information from
the objects. A quick guide to using S4 methods is in Table 1.5.

Functions R has a very large number of functions; Table 1.6 provides a brief list of those that might be commonly
used and particularly useful. See the help pages (e.g., ?lm) and examples (example(match)) for more details on each
of these functions.

R functions accept arguments, and return values. Arguments can be required or optional. Some functions may take
variable numbers of arguments, e.g., the columns in a data.frame

y <- 5:1

log(y)

## [1] 1.6094 1.3863 1.0986 0.6931 0.0000

args(log) # arguments 'x' and 'base'; see ?log

## function (x, base = exp(1))

## NULL

log(y, base=2) # 'base' is optional, with default value

## [1] 2.322 2.000 1.585 1.000 0.000

try(log()) # 'x' required; 'try' continues even on error

args(data.frame) # ... represents variable number of arguments
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Table 1.5: Using S4 classes and methods.

Best practices
gr <- GRanges() ‘Constructor’; create an instance of the GRanges class
seqnames(gr) ‘Accessor’, extract information from an instance
countOverlaps(gr1, gr2) A method implementing a generic with useful functionality

Older packages
s <- new("MutliSet) A constructor
s@annotation A ‘slot’ accessor

Help
class(gr) Discover class of instance
getClass(gr) Display class structure, e.g., inheritance
showMethods(findOverlaps) Classes for which methods of findOverlaps are implemented
showMethods(class="GRanges", where=search())

Generics with methods implemented for the GRanges class, limited to
currently loaded packages.

class?GRanges Documentation for the GRanges class.
method?"findOverlaps,GRanges,GRanges"

Documentation for the findOverlaps method when the two arguments
are both GRanges instances.

selectMethod(findOverlaps, c("GRanges", "GRanges"))

View source code for the method, including method ‘dispatch’

Table 1.6: A selection of R function.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-like data into
R, efficiently read homogeneous data (e.g., a file of numeric values) to be represented as a
matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.
summary, table, xtabs Summarize, create a table of the number of times elements occur in a

vector, cross-tabulate two or more variables.
t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several

groups via analysis of variance / linear models (aov output is probably more familiar to
biologists), or compare simpler with more complicated models (anova); χ2 tests.

dist, hclust Cluster data.
plot Plot data.
ls, str, library, search List objects in the current (or specified) workspace, or peak at the

structure of an object; add a library to or describe the search path of attached packages.
lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply,

sapply), to elements of several lists (mapply), or to elements of a list partitioned by
one or more factors (aggregate).

with Conveniently access columns of a data frame or other element without having to repeat
the name of the data frame.

match, %in% Report the index or existence of elements from one vector that match another.
split, cut, unlist Split one vector by an equal length factor, cut a single vector into intervals

encoded as levels of a factor, unlist (concatenate) list elements.
strsplit, grep, sub Operate on character vectors, splitting it into distinct fields, searching for

the occurrence of a patterns using regular expressions (see ?regex, or substituting a string
for a regular expression.

biocLite, install.packages Install a package from an on-line repository into your R.
traceback, debug, browser Report the sequence of functions under evaluation at the time of

the error; enter a debugger when a particular function or statement is invoked.
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Table 1.7: Selected base and contributed packages.

Package Description
base Data input and manipulation; scripting and programming.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.
Matrix Diverse matrix representations
data.table Efficient management of large data tables

## function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

## stringsAsFactors = default.stringsAsFactors())

## NULL

Arguments can be matched by name or position. If an argument appears after ..., it must be named.

log(base=2, y) # match argument 'base' by name, 'x' by position

## [1] 2.322 2.000 1.585 1.000 0.000

A function such as anova is a generic that provides an overall signature but dispatches the actual work to the method
corresponding to the class(es) of the arguments used to invoke the generic. A generic may have fewer arguments than a
method, as with the S3 function anova and its method anova.glm.

args(anova)

## function (object, ...)

## NULL

args(anova.glm)

## function (object, ..., dispersion = NULL, test = NULL)

## NULL

The ... argument in the anova generic means that additional arguments are possible; the anova generic passes these
arguments to the method it dispatches to.

Packages Packages provide functionality beyond that available in base R. There are over 4000 packages in CRAN
(Comprehensive R Archive Network) and 749 Bioconductor packages. Packages are contributed by diverse members of the
community; they vary in quality (many are excellent) and sometimes contain idiosyncratic aspects to their implementation.
Table 1.7 outlines key base packages and selected contributed packages; see a local CRAN mirror (including the task
views summarizing packages in different domains) and Bioconductor for additional contributed packages. New packages
(from Bioconductor or CRAN) can be added to an R installation using biocLite():

source("http://bioconductor.org/biocLite.R")

biocLite(c("GenomicRanges", "ShortRead"))

A package is installed only once per R installation, but needs to be loaded (with library) in each session in which it is
used. Loading a package also loads any package that it depends on. Packages loaded in the current session are displayed
with search. The ordering of packages returned by search represents the order in which the global environment (where
commands entered at the prompt are evaluated) and attached packages are searched for symbols.

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://cran.fhcrc.org/web/views/
http://bioconductor.org
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length(search())

## [1] 37

head(search(), 3)

## [1] ".GlobalEnv" "package:EMBO2013" "package:rtracklayer"

It is possible for a package earlier in the search path to mask symbols later in the search path; these can be
disambiguated using ::.

pi <- 3.2 ## http://en.wikipedia.org/wiki/Indiana_Pi_Bill

base::pi

## [1] 3.142

rm(pi) ## remove from the .GlobalEnv

Help! Find help using the R help system. Start a web browser with help.start(). The ‘Search Engine and Keywords’
link is helpful in day-to-day use.

Manual pages provided detailed descriptions of the arguments and return values of functions, and the structure and
methods of classes. Find help within an R session as

?data.frame

?lm

?anova

?anova.lm

S3 and S4 methods can be queried interactively. For S3,

methods(anova)

## [1] anova.glm anova.glmlist anova.lm anova.loess* anova.mlm anova.nls*

##

## Non-visible functions are asterisked

methods(class="glm")

## [1] add1.glm* anova.glm confint.glm* cooks.distance.glm*

## [5] deviance.glm* drop1.glm* effects.glm* extractAIC.glm*

## [9] family.glm* formula.glm* influence.glm* logLik.glm*

## [13] model.frame.glm nobs.glm* predict.glm print.glm

## [17] residuals.glm rstandard.glm rstudent.glm summary.glm

## [21] vcov.glm* weights.glm*

##

## Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name at the command line or, for ‘non-visible’
methods, using getAnywhere:

anova.lm

getAnywhere("anova.loess")

For instance, the source code of a function is printed if the function is invoked without parentheses. Here we discover
that the function head (which returns the first 6 elements of anything) defined in the utils package, is an S3 generic
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(indicated by UseMethod) and has several methods. We use head to look at the first six lines of the head method
specialized for matrix objects.

utils::head

## function (x, ...)

## UseMethod("head")

## <environment: namespace:utils>

methods(head)

## [1] head.data.frame* head.default* head.ftable* head.function* head.matrix

## [6] head.table* head.Vector

##

## Non-visible functions are asterisked

head(head.matrix)

##

## 1 function (x, n = 6L, ...)

## 2 {

## 3 stopifnot(length(n) == 1L)

## 4 n <- if (n < 0L)

## 5 max(nrow(x) + n, 0L)

## 6 else min(n, nrow(x))

Vignettes, especially in Bioconductor packages, provide an extensive narrative describing overall package functionality.
Use

vignette(package="GenomicRanges")

to see a list of vignettes available in the GenomicRanges package; add the short name of the vignette to view in your
web browser. Vignettes usually consist of text with embedded R code, a form of literate programming. The vignette can
be read as a PDF document, while the R source code is present as a script file ending with extension .R. The script file
can be sourced or copied into an R session to evaluate exactly the commands used in the vignette. For Bioconductor
packages, vignettes are available on the package ‘landing page’, e.g., for GenomicRanges.

Scripts Many users implement analyses as scripts that load packages and input data (including massaging raw data
into formats that are conducive to down-stream analysis), and then perform one or several statistical analyses to generate
output in the form of summary tables or figures. R scripts are plain text files, so easily shared.

Experienced users rapidly migrate to several ‘best practices’ for managing their scripts. (1) R has the notion of a
vignette that integrates a textual description with the actual analysis code, a form of literate programming. Simple and
elegant vignettes can be constructed using markdown and the knitr package (RStudio has great integration of these
technologies); more elaborate vignettes are based on LATEX Sweave documents. (2) Version control, including git running
on your own computer or in github is really amazing, with a relatively moderate speed-bump to get going. Version
control allows one to ‘check in’ a current working version of a script and data, and proceeed with modifications without
worrying about arbitrary file naming conventions or corrupting a previously working version. (3) It is surprisingly easy to
create an R package that coordinates scripts, specialized and potentially re-usable functions, data, and vignettes into an
easy-to-share (with lab mates or more broadly) package.

1.2.2 Bioconductor for high-throughput analysis

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic data. Biocon-
ductor started more than 10 years ago, and is widely used (Figure 1.2). It gained credibility for its statistically rigorous
approach to microarray pre-processing and analysis of designed experiments, and integrative and reproducible approaches

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://daringfireball.net/projects/markdown/
http://cran.fhcrc.org/web/packages/knitr/index.html
http://www.rstudio.com/
https://github.com
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Figure 1.2: Bioconductor use, September-October 2012 (orange) and 2013 (blue).

to bioinformatic tasks. There are now 749 Bioconductor packages for expression and other microarrays, sequence analysis,
flow cytometry, imaging, and other domains. The Bioconductor web site provides installation, package repository, help,
and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:
� Introductory work flows.
� A manifest of Bioconductor packages arranged in BiocViews.
� Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms, KEGG pathways)

and experiment data (containing relatively comprehensive data sets and their analysis) packages.
� Mailing lists, including searchable archives, as the primary source of help.
� Course and conference information, including extensive reference material.
� General information about the project.
� Package developer resources, including guidelines for creating and submitting new packages.
Table 1.8 enumerates some of the packages available for sequence analysis. The table includes packages for repre-

senting sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific analysis such as RNA-seq
(e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), variants (e.g., VariantAnnotation, VariantTools),
and SNPs and copy number variation (e.g., genoset, ggtools). [1] illustrate integration of Bioconductor packages into a
typical high-throughput work flow, in this case for RNA-seq analysis.

1.2.3 Strategies for working with large data

Bioinformatics data is now very large; it is not reasonable to expect all of a FASTQ or BAM file, for instance, to fit into
memory. How is this data to be processed? This challenge confronts us in whatever language or tool we are using. In
R and Bioconductor , the main approaches are to: (1) write efficient R code; (2) restrict data input to an interesting
subset of the larger data set; (3) sample from the large data, knowing that an appropriately sized sample will accurately
estimate statistics we are interested in; (4) iterate through large data in chunks; and (5) use parallel evaluation on one
or several computers.

There are often many ways to accomplish a result in R, but these different ways often have very different speed
or memory requirements. For small data sets these performance differences are not that important, but for large data
sets (e.g., high-throughput sequencing; genome-wide association studies, GWAS) or complicated calculations (e.g., boot-
strapping) performance can be important. Several approaches to achieving efficient R programming are summarized in
Table 1.9; common tools used to help with assessing performance (including comparison of results from different imple-
mentations!) are in Table 1.10. Several common performance bottlenecks often have easy or moderate solutions; the
most common of these are highlighted here.

R is vectorized, so traditional programming for loops are often not necessary. Rather than calculating 100000 random
numbers one at a time, or squaring each element of a vector, or iterating over rows and columns in a matrix to calculate
row sums, invoke the single function that performs each of these operations.

x <- runif(100000); x2 <- x^2

m <- matrix(x2, nrow=1000); y <- rowSums(m)

http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/
http://bioconductor.org/developers/
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantTools.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/ggtools.html
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Table 1.8: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, Biostrings, BSgenome, VariantAnnotation.
Input / output ShortRead (FASTQ), Rsamtools (BAM), rtracklayer (GFF, WIG, BED), Vari-

antAnnotation (VCF).
Annotation AnnotationHub, biomaRt, GenomicFeatures, TxDb.*, org.*, ChIPpeakAnno,

VariantAnnotation.
Alignment gmapR, Rsubread , Biostrings.
Visualization ggbio, Gviz .
Quality assessment qrqc, seqbias, ReQON, htSeqTools, TEQC , ShortRead .
RNA-seq BitSeq, cqn, cummeRbund , DESeq2 , DEXSeq, EDASeq, edgeR, gage, goseq,

iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim, CSAR,

DiffBind , MEDIPS , mosaics, NarrowPeaks, nucleR, PICS , PING , REDseq,
Repitools, TSSi .

Variants VariantAnnotation, VariantTools, gmapR
SNPs snpStats, GWASTools, SeqVarTools, hapFabia, GGtools
Copy number cn.mops, genoset, fastseq, CNAnorm, exomeCopy , seqmentSeq.
Motifs MotifDb, BCRANK , cosmo, MotIV , seqLogo, rGADEM.
3C, etc. HiTC , r3Cseq.
Microbiome phyloseq, DirichletMultinomial , clstutils, manta, mcaGUI .
Work flows QuasR, ReportingTools, easyRNASeq, ArrayExpressHTS , oneChannelGUI .
Database SRAdb, GEOquery .

Table 1.9: Common ways to improve efficiency of R code.

Easy
1. Selective input
2. Vectorize
3. Pre-allocate and fill
4. Avoid expensive conveniences

Moderate
1. Know relevant packages
2. Understand algorithm complexity
3. Use parallel evaluation
4. Exploit libraries and C++ code

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance, calculate the log
of the square of each element of a vector by calculating the square of all elements, followed by the log of all elements x2
<- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the formulation of the problem may require
that a for loop be used. In these circumstances the appropriate strategy is to pre-allocate the result object, and to fill
the result during loop iteration.

result <- numeric(nrow(df)) ## pre-allocate

for (i in seq_len(nrow(df)))

result[[i]] <- some_calc(df[i,]) ## fill

Table 1.10: Tools for measuring performance.

Function Description
identical, all.equal Compare content of objects.
system.time Time required to evaluate an expression
Rprof Time spent in each function; also summaryRprof.
tracemem Indicate when memory copies occur (R must be configured to support this).
microbenchmark Packages for standardizing speed measurment

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantTools.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/snpStats.html
http://bioconductor.org/packages/release/bioc/html/GWASTools.html
http://bioconductor.org/packages/release/bioc/html/SeqVarTools.html
http://bioconductor.org/packages/release/bioc/html/hapFabia.html
http://bioconductor.org/packages/release/bioc/html/GGtools.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/fastseq.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/release/bioc/html/MotifDb.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/QuasR.html
http://bioconductor.org/packages/release/bioc/html/ReportingTools.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
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Failure to pre-allocate and fill is the second cirle of R hell [4].
Using appropriate functions can greatly influence performance; it takes experience to know when an appropriate

function exists. For instance, the lm function could be used to assess differential expression of each gene on a microarray,
but the limma package implements this operation in a way that takes advantage of the experimental design that is
common to each probe on the microarray, and does so in a very efficient manner.

## not evaluated

library(limma) # microarray linear models

fit <- lmFit(eSet, design)

Using appropriate algorithms can have significant performance benefits, especially as data becomes larger. This
solution requires moderate skills, because one has to be able to think about the complexity (e.g., expected number of
operations) of an algorithm, and to identify algorithms that accomplish the same goal in fewer steps. For example, a
naive way of identifying which of 100 numbers are in a set of size 10 might look at all 100× 10 combinations of numbers
(i.e., polynomial time), but a faster way is to create a ‘hash’ table of one of the set of elements and probe that for each
of the other elements (i.e., linear time). The latter strategy is illustrated with

x <- 1:100; s <- sample(x, 10)

inS <- x %in% s

Restriction Just because a data file contains a lot of data does not mean that we are interested in all of it. In base
R, one might use the colClasses argument to read.delim or similar function (e.g., setting some elements to NULL) to
read only some columns of a large comma-separated value file.

## not evaluated

colClasses <-

c("NULL", "integer", "numeric", "NULL")

df <- read.table("myfile", colClasses=colClasses)

In addition to the obvious benefit of using less memory than if all of the file had been read in, input will be substan-
tially faster because less computation needs to be done to coerce values from their representation in the file to their
representation in R’s memory.

A variation on the idea of restricting data input is to organize the data on disk into a representation that facilitates
restriction. In R, large data might be stored in a relational data base like the sqlite data bases made available by the
RSQLite package and used in the AnnotationDbi Bioconductor packages. In addition to facilitating restriction, these
approaches are typically faster than parsing a plain text file, because the data base software has stored data in a way that
efficiently transforms from on-disk to in-memory representation.

Restriction is such a useful concept that many Bioconductor high throughput sequence analysis functions enable
doing the right thing. Functions such as coverage,BamFile-method or readGAlignments use restrictions to read
in the specific data required for them to compute the statistic of interest. Most “higher level” functions have a
param=ScanBamParam() argument to allow the user to specify additional fields if desired.

Sampling R is after all a statistical language, and it sometimes makes sense to draw inferences from a sample of large
data. For instance, many quality assessment statistics summarize overall properties (e.g., GC content or per-nucleotide
base quality of FASTQ reads) that don’t require processing of the entire data. For these statistics to be valid, the sample
from the file needs to be a random sample, rather than a sample of convenience.

There are two advantages to sampling from a FASTQ (or BAM) file. The sample uses less memory than the full data.
And, because less data needs to be parsed from the on-disk to in-memory representation, the input is faster.

Iteration Restriction may not be enough to wrestle large data down to size, and sampling may be inappropriate for the
task at hand. A solution is then to iterate through the file. An example in base R is to open a file connection, and then
read and process successive chunks of the file, e.g., reading chunks of 10000 lines

http://cran.fhcrc.org/web/packages/RSQLite/index.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
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## NOT RUN

con <- file("<hypothetical-file>.txt")

open(f)

repeat {

x <- readLines(f, n=10000) # or other input function

if (length(x) == 0)

break

## work on character vector 'x'

}

close(f)

This paradigm extends to parsing FASTQ, BAM, VCF, and other files.

Parallel evaluation The preceding paragraphs emphasize that the starting point for analysis of large data is efficient,
vectorized code. Performance differences between poorly written versus well written R code can easily span two orders of
magnitude, whereas parallel processing can only increase throughput by an amount inversely proportional to the number
of processing units (e.g., CPUs) available. The memory management techniques outlined earlier in this chapter are
important in a parallel evaluation context. This is because we will typically be trying to exploit multiple processing cores
on a single computer, and the cores will be competing for the same pool of shared memory. We thus want to arrange for
the collection of processors to cooperate in dividing available memory between them, i.e., each processor needs to use
only a fraction of total memory.

There are a number of ways in which R code can be made to run in parallel. The least painful and most effective
will use ‘multicore’ functionality provided by the parallel package; the parallel package is installed by default with base
R, and has a useful vignette [13].

Parallel evaluation on several cores of a single Linux or MacOS computer is particularly easy to achieve when the
code is already vectorized. The solution on these operating systems is to use the functions mclapply or pvec. These
functions allow the ‘master’ process to ‘fork’ processes for parallel evaluation on each of the cores of a single machine.
The forked processes initially share memory with the master process, and only make copies when the forked process
modifies a memory location (‘copy on change’ semantics). On Linux and MacOS, the mclapply function is meant to be
a ‘drop-in’ replacement for lapply, but with iterations being evaluated on different cores.

The parallel package does not support fork-like behavior on Windows, where users need to more explicitly create a
cluster of R workers and arrange for each to have the same data loaded into memory; similarly, parallel evaluation across
computers (e.g., in a cluster) require more elaborate efforts to coordinate workers; this is typically done using lapply-like
functions provided by the parallel package but specialized for simple (‘snow’) or more robust (‘MPI’) communication
protocols between workers.

Data movement and random numbers are two important additional considerations in parallel evaluation. Moving
data to and from cores to the manager can be expensive, so strategies that minimize explicit movement (e.g., passing file
names data base queries rather than R objects read from files; reducing data on the worker before transmitting results to
the manager) can be important. Random numbers need to be synchronized across cores to avoid generating the same
sequences on each ‘independent’ computation.



Chapter 2

Sequences

2.1 Biostrings and GenomicRanges

Biostrings The Biostrings package provides tools for working with sequences. The essential data structures are DNAS-
tring and DNAStringSet, for working with one or multiple DNA sequences. The Biostrings package contains addi-
tional classes for representing amino acid and general biological strings. The BSgenome and related packages (e.g.,
BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-genome sequences. Table 2.2 summarizes common
operations.

library(Biostrings)

DNAString(c("ACACTTG"))

## 7-letter "DNAString" instance

## seq: ACACTTG

dna <- DNAStringSet(c("AACCAA", "GCCGTCGNM"))

dna

## A DNAStringSet instance of length 2

## width seq

## [1] 6 AACCAA

## [2] 9 GCCGTCGNM

alphabetFrequency(dna, baseOnly=TRUE)

## A C G T other

## [1,] 4 2 0 0 0

## [2,] 0 3 3 1 2

Table 2.1: Selected Bioconductor packages for representing strings and reads.

Package Description
Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency,

pairwiseAlignment) for representing and manipulating DNA and other bio-
logical sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.
ShortRead I/O and manipulation of FASTQ files.

19

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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Table 2.2: Operations on strings in the Biostrings package.

Function Description
Access length, names Number and names of sequences

[, head, tail, rev Subset, first, last, or reverse sequences
c Concatenate two or more objects
width, nchar Number of letters of each sequence
Views Light-weight sub-sequences of a sequence

Compare ==, !=, match, %in% Element-wise comparison
duplicated, unique Analog to duplicated and unique on character vectors
sort, order Locale-independent sort, order
split, relist Split or relist objects to, e.g., DNAStringSetList

Edit subseq, subseq<- Extract or replace sub-sequences in a set of sequences
reverse, complement Reverse, complement, or reverse-complement DNA
reverseComplement

translate Translate DNA to Amino Acid sequences
chartr Translate between letters
replaceLetterAt Replace letters at a set of positions by new letters
trimLRPatterns Trim or find flanking patterns

Count alphabetFrequency Tabulate letter occurrence
letterFrequency

letterFrequencyInSlidingView

consensusMatrix Nucleotide × position summary of letter counts
dinucleotideFrequency 2-mer, 3-mer, and k-mer counting
trinucleotideFrequency

oligonucleotideFrequency

nucleotideFrequencyAt Nucleotide counts at fixed sequence positions
Match matchPattern, countPattern Short patterns in one or many (v*) sequences

vmatchPattern, vcountPattern
matchPDict, countPDict Short patterns in one or many (v*) sequences (mismatch only)
whichPDict, vcountPDict
vwhichPDict

pairwiseAlignment Needleman-Wunsch, Smith-Waterman, etc. pairwise alignment
matchPWM, countPWM Occurrences of a position weight matrix
matchProbePair Find left or right flanking patterns
findPalindromes Palindromic regions in a sequence. Also

findComplementedPalindromes

stringDist Levenshtein, Hamming, or pairwise alignment scores
I/0 readDNAStringSet FASTA (or sequence only from FASTQ). Also

readBStringSet, readRNAStringSet, readAAStringSet
writeXStringSet

writePairwiseAlignments Write pairwiseAlignment as “pair” format
readDNAMultipleAlignment Multiple alignments (FASTA, “stockholm”, or “clustal”). Also

readRNAMultipleAlignment, readAAMultipleAlignment
write.phylip

GenomicRanges Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the
genome. Bioconductor has very powerful facilities for working with ranges, some of which are summarized in Table 2.3.
These are implemented in the GenomicRanges package; see [9] for a more comprehensive conceptual orientation.

The GRanges class Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent
two D. melanogaster genes. The first is located on the positive strand of chromosome 3R, from position 19967117 to
19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at 18962306, and right-most

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
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Table 2.3: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data structures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., findOverlaps,

countOverlaps) for representing and manipulating ranges of consecutive values.
Also introduces DataFrame, SimpleList and other classes tailored to representing
very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges, GRanges-
List), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing coor-
dinates and organization of exons and transcripts of known genes.

base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromosome is numbered 1, rather than 0),
left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most coordinate, rather than the 5’ coordinate),
and closed (the start and end coordinates are included in the range; a range with identical start and end coordinates
has width 1, a 0-width range is represented by the special construct where the end coordinate is one less than the start
coordinate). A complete definition of these genes as GRanges is:

genes <- GRanges(seqnames=c("chr3R", "chrX"),

ranges=IRanges(

start=c(19967117, 18962306),

end=c(19973212, 18962925)),

strand=c("+", "-"),

seqlengths=c(chr3R=27905053L, chrX=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a data.frame.
The start and end coordinates are grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R and X in the ‘dm2’ build of the D.
melanogaster genome. This data is displayed as

genes

## GRanges with 2 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chr3R [19967117, 19973212] +

## [2] chrX [18962306, 18962925] -

## ---

## seqlengths:

## chr3R chrX

## 27905053 22422827

The GRanges class has many useful methods defined on it. Consult the help page

?GRanges

and package vignettes

vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating information.

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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genes[2]

## GRanges with 1 range and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## [1] chrX [18962306, 18962925] -

## ---

## seqlengths:

## chr3R chrX

## 27905053 22422827

strand(genes)

## factor-Rle of length 2 with 2 runs

## Lengths: 1 1

## Values : + -

## Levels(3): + - *

width(genes)

## [1] 6096 620

length(genes)

## [1] 2

names(genes) <- c("FBgn0039155", "FBgn0085359")

genes # now with names

## GRanges with 2 ranges and 0 metadata columns:

## seqnames ranges strand

## <Rle> <IRanges> <Rle>

## FBgn0039155 chr3R [19967117, 19973212] +

## FBgn0085359 chrX [18962306, 18962925] -

## ---

## seqlengths:

## chr3R chrX

## 27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding. The ‘names’ could
have been specified when the instance was constructed; once named, the GRanges instance can be subset by name like
a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information about
seqnames, strand, and other information particularly relevant to representing ranges that are on genomes. The IRanges
class and related data structures (e.g., RangedData) are meant as a more general description of ranges defined in an
arbitrary space. Many methods implemented on the GRanges class are ‘aware’ of the consequences of genomic location,
for instance treating ranges on the minus strand differently (reflecting the 5’ orientation imposed by DNA) from ranges
on the plus strand.

Operations on ranges The GRanges class has many useful methods. We use IRanges to illustrate these operations to
avoid complexities associated with strand and seqnames, but the operations are comparable on GRanges. We begin with
a simple set of ranges:

ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

end=c(15, 11, 12, 18, 26, 27, 28))
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Figure 2.1: Ranges

These and some common operations are illustrated in the upper panel of Figure 2.1 and summarized in Table 2.4.
Common operations on ranges are summarized in Table 2.4. Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize, restrict,
and shift, among others. An illustration is shift, which translates each range by the amount specified by the
shift argument. Positive values shift to the right, negative to the left; shift can be a vector, with each element
of the vector shifting the corresponding element of the IRanges instance. Here we shift all ranges to the right by
5, with the result illustrated in the middle panel of Figure 2.1.

shift(ir, 5)

## IRanges of length 7

## start end width

## [1] 12 20 9

## [2] 14 16 3

## [3] 17 17 1

## [4] 19 23 5

## [5] 27 31 5

## [6] 28 32 5

## [7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and range.
An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in the lower panel of
Figure 2.1.

reduce(ir)

## IRanges of length 2

## start end width

## [1] 7 18 12

## [2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions. Rather than
returning ranges, coverage returns a compressed representation (run-length encoding)

coverage(ir)

## integer-Rle of length 28 with 12 runs

## Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

## Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges, followed by a
run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff, union,
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Table 2.4: Common operations on IRanges, GRanges and GRangesList.

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

pintersect, psetdiff, and punion.
The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its first
argument (the query) and determines how many of the ranges in the second argument (the subject) each overlaps.
The result is an integer vector with one element for each member of query. findOverlaps performs a similar
operation but returns a more general matrix-like structure that identifies each pair of query / subject overlaps.
Both arguments allow some flexibility in the definition of ‘overlap’.

mcols and metadata The GRanges class (actually, most of the data structures defined or extending those in the
IRanges package) has two additional very useful data components. The mcols function allows information on each range
to be stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata is represented as
a DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to hold more complicated
data structures as columns (and with element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

Symbol=c("kal-1", "CG34330"))

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html
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metadata allows addition of information to the entire object. The information is in the form of a list; any data can be
provided.

metadata(genes) <- list(CreatedBy="A. User", Date=date())

The GRangesList class The GRanges class is extremely useful for representing simple ranges. Some next-generation
sequence data and genomic features are more hierarchically structured. A gene may be represented by several exons
within it. An aligned read may be represented by discontinuous ranges of alignment to a reference. The GRangesList
class represents this type of information. It is a list-like data structure, which each element of the list itself a GRanges
instance. The gene FBgn0039155 contains several exons, and can be represented as a list of length 1, where the element
of the list contains a GRanges object with 7 elements:

## GRangesList of length 1:

## $FBgn0039155

## GRanges with 7 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] chr3R [19967117, 19967382] + | 50486 <NA>

## [2] chr3R [19970915, 19971592] + | 50487 <NA>

## [3] chr3R [19971652, 19971770] + | 50488 <NA>

## [4] chr3R [19971831, 19972024] + | 50489 <NA>

## [5] chr3R [19972088, 19972461] + | 50490 <NA>

## [6] chr3R [19972523, 19972589] + | 50491 <NA>

## [7] chr3R [19972918, 19973212] + | 50492 <NA>

##

## ---

## seqlengths:

## chr3R

## 27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the methods
introduced for working with IRanges are also available, with the method applied element-wise.

2.2 From whole genome to short read

2.2.1 Large and whole-genome sequences

There are three ways in which whole-genome sequences are represented in Bioconductor. For model organisms, the
BSgenome package and suite of annotations (e.g., BSgenome.Hsapiens.UCSC.hg19) can be used to query genome
coordinates and to load whole chromosomes into memory. The annotation packages contain optional ‘masks’, e.g., of
repeat regions, and are explored in an exercise at the end of this section.

The Rsamtools package provides an interface to indexed FASTA files via the FaFile function; this can be used to
input whole genomes or, more usefully, along with GRanges instances to input selected sequences. This is explored in an
exercise related to the AnnotationHub package later today.

Finally, the rtracklayer package enables import of ‘2bit’ FASTA format files.

2.2.2 Short reads

Short read formats The Illumina GAII and HiSeq technologies generate sequences by measuring incorporation of
florescent nucleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but FASTQ
is ubiquitous. Each read is represented by a record of four components:

http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
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## @SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

## GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

## +SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

## IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier produced by the
sequencer typically includes a machine id followed by colon-separated information on the lane, tile, x, and y coordinate
of the read. The example illustrated here also includes the SRA accession number, added when the data was submitted
to the archive. The machine identifier could potentially be used to extract information about batch effects. The spatial
coordinates (lane, tile, x, y) are often used to identify optical duplicates; spatial coordinates can also be used during
quality assessment to identify artifacts of sequencing, e.g., uneven amplification across the flow cell, though these spatial
effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the read. This
information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence is used to signify bases
that the sequencer was not able to call. The fourth line of the FASTQ record encodes the quality (confidence) of the
corresponding base call. The quality score is encoded following one of several conventions, with the general notion being
that letters later in the visible ASCII alphabet

## !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO

## PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of higher quality; this is developed further below. Both the sequence and quality scores may span multiple lines.
Technologies other than Illumina use different formats to represent sequences. Roche 454 sequence data is generated

by ‘flowing’ labeled nucleotides over samples, with greater intensity corresponding to longer runs of A, C, G, or T. This
data is represented as a series of ‘flow grams’ (a kind of run-length encoding of the read) in Standard Flowgram Format
(SFF). The Bioconductor package R453Plus1Toolbox has facilities for parsing SFF files, but after quality control steps
the data are frequently represented (with some loss of information) as FASTQ. SOLiD technologies produce sequence
data using a ‘color space’ model. This data is not easily read in to R, and much of the error-correcting benefit of the
color space model is lost when converted to FASTQ; SOLiD sequences are not well-handled by Bioconductor packages.

Short reads in R FASTQ files can be read in to R using the readFastq function from the ShortRead package. Use
this function by providing the path to a FASTQ file. There are sample data files available in the bigdata folder

bigdata <- file.choose()

Each file consists of 1 million reads from a lane of the Pasilla data set.

library(ShortRead)

fastqDir <- file.path(bigdata, "fastq")

fastqFiles <- dir(fastqDir, full=TRUE)

fq <- readFastq(fastqFiles[1])

fq

## class: ShortReadQ

## length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ.

head(sread(fq), 3)

## A DNAStringSet instance of length 3

## width seq

## [1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

## [2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

## [3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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head(quality(fq), 3)

## class: FastqQuality

## quality:

## A BStringSet instance of length 3

## width seq

## [1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

## [2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

## [3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

head(id(fq), 3)

## A BStringSet instance of length 3

## width seq

## [1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

## [2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

## [3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead class

getClass("ShortReadQ")

## Class "ShortReadQ" [package "ShortRead"]

##

## Slots:

##

## Name: quality sread id

## Class: QualityScore DNAStringSet BStringSet

##

## Extends:

## Class "ShortRead", directly

## Class ".ShortReadBase", by class "ShortRead", distance 2

##

## Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ.

showMethods(class="ShortRead", where="package:ShortRead")

For instance, the width can be used to demonstrate that all reads are of the same width:

table(width(fq))

##

## 37

## 1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortReadQ or DNAS-
tringSet instance.

abc <- alphabetByCycle(sread(fq))

abc[1:4, 1:8]

## cycle

## alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
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## A 78194 153156 200468 230120 283083 322913 162766 220205

## C 439302 265338 362839 251434 203787 220855 253245 287010

## G 397671 270342 258739 356003 301640 247090 227811 246684

## T 84833 311164 177954 162443 211490 209142 356178 246101

We mentioned sampling and iteration as strategies for dealing with large data. A very common reason for looking at
FASTQ data is to explore sequence quality. In these circumstances it is often not necessary to parse the entire FASTQ
file. Instead create a representative sample

sampler <- FastqSampler(fastqFiles[1], 1000000)

yield(sampler) # sample of 1000000 reads

## class: ShortReadQ

## length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences, or artifacts of
sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files in chunks, processing each
chunk independently.

Quality assessment ShortRead contains facilities for quality assessment of FASTQ files. Here we generate a report
from a sample of 1 million reads from each of our files and display it in a web browser

qa <- qa(dirname(fastqFiles), "*.fastq", type="fastq")

rpt <- report(qa, dest=tempfile())

browseURL(rpt)

A report from a larger subset of the experiment is available

rpt <- system.file("GSM461176_81_qa_report", "index.html",

package="EMBO2013")

browseURL(rpt)

2.3 Exercises

Exercise 1 Develop a function gcFunction to calculate GC content; likely your function will use alphabetFrequency.
Demonstrate its use on a DNAStringSet instance.

Solution: Here is the gcFunction helper function to calculate GC content:

gcFunction <-

function(x)

{

alf <- alphabetFrequency(x, as.prob=TRUE)

rowSums(alf[,c("G", "C")])

}

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings package.
This returns a simple matrix of exon × nucleotide probabilities. The row sums of the G and C columns of this matrix are
the GC contents of each exon. Here’s a simple illustration:

gcFunction(dna)

## [1] 0.3333 0.6667

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html


Sequences, Genomes, and Genes in R / Bioconductor 29

Exercise 2 This exercise calculates the GC content of two genes. We make use of a BSgenome package, and DNAString
and GRanges classes.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the UCSC representation of D. melanogaster
genome assembly dm3. Discover the content of the package by evaluating Dmelanogaster.

Create the genes object (a GRanges instance), from a page or so ago.
Use getSeq to retrieve a DNAStringSet representing the sequence of each gene.
Use gcFunction to calculate the GC content of each gene.
Compare this to the density of short reads, calcuated later.

Solution: Here we load the D. melanogaster genome and some genome coordinates. We then select a single chromosome,
and create Views that reflect the ranges of the FBgn0002183.

library(BSgenome.Dmelanogaster.UCSC.dm3)

Dmelanogaster

## Fly genome

## |

## | organism: Drosophila melanogaster (Fly)

## | provider: UCSC

## | provider version: dm3

## | release date: Apr. 2006

## | release name: BDGP Release 5

## |

## | single sequences (see '?seqnames'):

## | chr2L chr2R chr3L chr3R chr4 chrX chrU chrM

## | chr2LHet chr2RHet chr3LHet chr3RHet chrXHet chrYHet chrUextra

## |

## | multiple sequences (see '?mseqnames'):

## | upstream1000 upstream2000 upstream5000

## |

## | (use the '$' or '[[' operator to access a given sequence)

data(genes)

genes

## GRanges with 15682 ranges and 1 metadata column:

## seqnames ranges strand | gene_id

## <Rle> <IRanges> <Rle> | <CharacterList>

## FBgn0000003 chr3R [ 2648220, 2648518] + | FBgn0000003

## FBgn0000008 chr2R [18024494, 18060346] + | FBgn0000008

## FBgn0000014 chr3R [12632936, 12655767] - | FBgn0000014

## FBgn0000015 chr3R [12752932, 12797958] - | FBgn0000015

## FBgn0000017 chr3L [16615470, 16640982] - | FBgn0000017

## ... ... ... ... ... ...

## FBgn0264723 chr3L [12238610, 12239148] - | FBgn0264723

## FBgn0264724 chr3L [15327882, 15329271] + | FBgn0264724

## FBgn0264725 chr3L [12025657, 12026099] + | FBgn0264725

## FBgn0264726 chr3L [12020901, 12021253] + | FBgn0264726

## FBgn0264727 chr3L [22065469, 22065720] + | FBgn0264727

## ---

## seqlengths:

## chr2L chr2R chr3L chr3R ... chr3RHet chrXHet chrYHet chrUextra

## 23011544 21146708 24543557 27905053 ... 2517507 204112 347038 29004656

seq <- getSeq(Dmelanogaster, genes)

http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
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The subject GC content is

gc <- gcFunction(seq)

Exercise 3 Use the file path bigdata and the file.path and dir functions to locate the fastq file from [3] (the file
was obtained as described in the pasilla experiment data package).

Input the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to extract the

reads, and the collapse=TRUE argument to the alphabetFrequency function). Using the helper function gcFunction

defined elsewhere in this document, draw a histogram of the distribution of GC frequencies across reads.
Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results using matplot,

from the graphics package.
As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and summarize the

GC content of reads in two files in parallel.
Use gcFunction to calculate the GC content in each gene.

Solution: Discovery:

dir(bigdata)

## [1] "bam" "fastq"

fls <- dir(file.path(bigdata, "fastq"), full=TRUE)

Input:

fq <- readFastq(fls[1])

A histogram of the GC content of individual reads is obtained with

gc <- gcFunction(sread(fq))

hist(gc)

Alphabet by cycle:

abc <- alphabetByCycle(sread(fq))

matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

(Mac, Linux only): processing on multiple cores.

library(parallel)

gc0 <- mclapply(fls, function(fl) {

fq <- readFastq(fl)

gc <- gcFunction(sread(fq))

table(cut(gc, seq(0, 1, .05)))

})

## simplify list of length 2 to 2-D array

gc <- simplify2array(gc0)

matplot(gc, type="s")

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
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Figure 2.2: Short read GC content (left), alphabet-by-cycle (middle), and quality scores (right)

Exercise 4 Use quality to extract the quality scores of the short reads. Interpret the encoding qualitatively.
Convert the quality scores to a numeric matrix, using as. Inspect the numeric matrix (e.g., using dim) and understand

what it represents.
Use colMeans to summarize the average quality score by cycle. Use plot to visualize this.

Solution:

head(quality(fq))

## class: FastqQuality

## quality:

## A BStringSet instance of length 6

## width seq

## [1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

## [2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

## [3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+

## [4] 37 IIIIIIIIIIIIIIIIIIIIIIII,II*E,&4HI++B

## [5] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII&.$

## [6] 37 III.IIIIIIIIIIIIIIIIIII%IIE(-EIH<IIII

qual <- as(quality(fq), "matrix")

dim(qual)

## [1] 1000000 37

plot(colMeans(qual), type="b")

Exercise 5 As an independent exercise, visit the qrqc landing page and explore the package vignette. Use the qrqc
package (you may need to install this) to generate base and average quality plots for the data, like those in the report
generated by ShortRead.

http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html


Chapter 3

Genes and Genomes

Bioconductor provides extensive annotation resources. These can be gene-, or genome-centric. Annotations can be
provided in packages curated by Bioconductor, or obtained from web-based resources. Gene-centric AnnotationDbi
packages include:

� Organism level: e.g. org.Mm.eg.db, Homo.sapiens.
� Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .
� Homology level: e.g. hom.Dm.inp.db.
� System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

� GenomicFeatures, to represent genomic features, including constructing reproducible feature or transcript data
bases from file or web resources.

� Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene based on the H. sapiens UCSC hg19
knownGenes track.

� BSgenome for whole genome sequence representation and manipulation.
� Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H. sapiens UCSC hg19 build.

Web-based resources include

� biomaRt to query biomart resource for genes, sequence, SNPs, and etc.
� rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

3.1 Gene annotation

3.1.1 Bioconductor data annotation packages

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids) and other identifiers
(e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org package is always of the form
org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbreviation of the organism (e.g. Sc for Saccha-
romyces cerevisiae) and <id> is an abbreviation (in lower-case) describing the type of central identifier (e.g. sgd for
gene identifiers assigned by the Saccharomyces Genome Database, or eg for Entrez gene ids). The “How to use the
‘.db’ annotation packages” vignette in the AnnotationDbi package (org packages are only one type of “.db” annotation
packages) is a key reference. The ‘.db’ and most other Bioconductor annotation packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These objects are collectively called An-
notationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects. Methods that can be
applied to these objects include cols, keys, keytypes and select. Common operations for retrieving annotations are
summarized in Table 3.1.

3.1.2 Internet resources

A short summary of select Bioconductor packages enabling web-based queries is in Table 3.2.
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http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/Reactome.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
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Table 3.1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover columns List the kinds of columns that can be returned

keytypes List columns that can be used as keys
keys List values that can be expected for a given keytype
select Retrieve annotations matching keys, keytype and columns

Manipulate setdiff, union, intersect Operations on sets
duplicated, unique Mark or remove duplicates
%in%, match Find matches
any, all Are any TRUE? Are all?
merge Combine two different data.frames based on shared keys

GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.
transcriptsBy , exonsBy Features group by gene, transcript, etc., as GRangesList.
cdsBy

Table 3.2: Selected packages querying web-based annotation services.

Package Description
AnnotationHub Ensembl, Encode, dbSNP, UCSC data objects
biomaRt http://biomart.org, Ensembl and other annotations
PSICQUIC https://code.google.com/p/psicquic.org, protein interactions
uniprot.ws http://uniprot.org, protein annotations
KEGGREST http://www.genome.jp/kegg, KEGG pathways
SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
rtracklayer http://genome.ucsc.edu, genome tracks.
GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

Using biomaRt The biomaRt package offers access to the online biomart resource. this consists of several data base
resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package provides methods
for mart and data set discovery, and a standard method getBM to retrieve data.

3.1.3 Exercises

Exercise 6 What is the name of the org package for Drosophila? Load it. Display the OrgDb object for the org.Dm.eg.db
package. Use the columns method to discover which sorts of annotations can be extracted from it.

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select method in such a
way that you extract the SYMBOL (gene symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

library(org.Dm.eg.db)

columns(org.Dm.eg.db)

## [1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

## [6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

## [11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

## [16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

## [21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

## [26] "FLYBASECG" "FLYBASEPROT"

keytypes(org.Dm.eg.db)

http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://biomart.org
http://bioconductor.org/packages/release/bioc/html/PSICQUIC.html
https://code.google.com/p/psicquic.org
http://bioconductor.org/packages/release/bioc/html/uniprot.ws.html
http://uniprot.org
http://bioconductor.org/packages/release/bioc/html/KEGGREST.html
http://www.genome.jp/kegg
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://www.ncbi.nlm.nih.gov/sra
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/GEOquery.html
http://www.ncbi.nlm.nih.gov/geo/
http://bioconductor.org/packages/release/bioc/html/ArrayExpress.html
http://www.ebi.ac.uk/arrayexpress/
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html
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## [1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

## [6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

## [11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

## [16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

## [21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

## [26] "FLYBASECG" "FLYBASEPROT"

uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

cols <- c("SYMBOL", "PATH")

select(org.Dm.eg.db, keys=uniprotKeys, columns=cols, keytype="UNIPROT")

## UNIPROT SYMBOL PATH

## 1 Q8IRZ0 CG3038 <NA>

## 2 Q95RP8 CG3038 <NA>

## 3 M9PGH7 G9a 00310

## 4 Q95RU8 G9a 00310

## 5 Q9W5H1 CG13377 <NA>

## 6 P39205 cin <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

## Warning: ’select’ resulted in 1:many mapping between keys and return rows

nrow(kegg)

## [1] 35

head(kegg, 3)

## PATH UNIPROT SYMBOL

## 1 00310 M9PGH7 G9a

## 2 00310 Q95RU8 G9a

## 3 00310 M9NE25 Hmt4-20

Exercise 7 Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets for
that mart. Set up a mart to use the ensembl mart and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function takes filters and
attributes as arguments. Use filterOptions and listAttributes to discover values for these arguments. Call getBM
using filters and attributes of your choosing.

Solution:

library(biomaRt)

head(listMarts(), 3) ## list the marts

head(listDatasets(useMart("ensembl")), 3) ## mart datasets

ensembl <- ## fully specified mart

useMart("ensembl", dataset = "hsapiens_gene_ensembl")

head(listFilters(ensembl), 3) ## filters

myFilter <- "chromosome_name"

head(filterOptions(myFilter, ensembl), 3) ## return values

myValues <- c("21", "22")

head(listAttributes(ensembl), 3) ## attributes

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
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myAttributes <- c("ensembl_gene_id","chromosome_name")

## assemble and query the mart

res <- getBM(attributes = myAttributes, filters = myFilter,

values = myValues, mart = ensembl)

Use head(res) to see the results.

Exercise 8 As an exercise for later in this course, annotate the genes that are differentially expressed in Dr. Huber’s lab,
e.g., find the GENENAME associated with the five most differentially expressed genes. Do these make biological sense?
Can you merge the annotation results with the ‘top table’ results to provide a statistically and biologically informative
summary?

3.2 Genome annotation

There are a diversity of packages and classes available for representing large genomes. Several include:
TxDb.* For transcript and other genome / coordinate annotation.
BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and the vignette

‘How to forge a BSgenome data package’ in the
Homo.sapiens For integrating TxDb* and org.* packages.
SNPlocs.* For model organism SNP locations derived from dbSNP.
FaFile (Rsamtools) for accessing indexed FASTA files.
SIFT.*, PolyPhen, ensemblVEP Variant effect scores.

3.2.1 Bioconductor transcript annotation packages

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-forward, for instance,
to discover the coordinates of coding sequences in regions of interest, and from these retrieve corresponding DNA or
protein coding sequences. Other examples of the types of operations that are easy to perform with genome-centric
annotations include defining regions of interest for counting aligned reads in RNA-seq experiments and retrieving DNA
sequences underlying regions of interest in ChIP-seq analysis, e.g., for motif characterization.

3.2.2 AnnotationHub

The AnnotationHub package makes it easier to access genome-scale resources. It consists of an R ‘client’ that queries
an AnnotationHub server. There server contains lightly-curated versions of large genome resources such as UCSC or
ENCODE tracks and Ensembl gtf or fasta files. There are a large number of resources available.

library(AnnotationHub)

hub <- AnnotationHub()

hub

## class: AnnotationHub

## length: 8674

## filters: none

## hubUrl: http://annotationhub.bioconductor.org/ah

## snapshotVersion: 2.13; snapshotDate: 2013-06-29

## hubCache: /home/mtmorgan/.AnnotationHub

The hub can be queried for metadata metadata(hub) or explored using tab completion hub$ensembl<tab>.
‘Light curation’ means that they have been transformed to data structures that are particularly easy to use from

Bioconductor. Here we retrieve the complete sequence of Pan troglodytes (this is about 865M of data to download).

http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
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pan <-

hub$ensembl.release.72.fasta.pan_troglodytes.dna.Pan_troglodytes.CHIMP2.1..4.72.dna.toplevel.fa.rz

pan is a razip-compressed file FaFile from the Rsamtools package. We can discover sequences the file contains

seqinfo(pan)

and retrieve arbitrary regions

roi <- GRanges("22", IRanges(c(30000000, 40000000), width=100000))

getSeq(pan, roi)

Retrievals from the AnnotationHub server are cached, so the next time access is fast It’s cached, so the next time it’s
fast

system.time(

hub$ensembl.release.72.fasta.pan_troglodytes.dna.Pan_troglodytes.CHIMP2.1.4.72.dna.toplevel.fa.rz

)

## user system elapsed

## 0.024 0.000 0.421

3.2.3 rtracklayer

rtracklayer

library(rtracklayer)

3.2.4 VariantAnnotation

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels); recent scenarios use public
consortium called variants to develop novel predictive filters of regulatory function [8]. We will use the VariantAnnotation
package to explore this type of data. Sample data included in the package are a subset of chromosome 22 from the
1000 Genomes project. Variant Call Format (VCF; full description) text files contain meta-information lines, a header
line with column names, data lines with information about a position in the genome, and optional genotype information
on samples for each position.

Important operations on VCF files available with the VariantAnnotation package are summarized in Table 3.3.

Data input VariantAnnotation input of whole VCF files (readVcf), or more conveniently restriction to specific fields
(e.g., readGeno, readInfo), samples or ranges (using ScanVcfParam). It is also straight-forward to iterate through
large VCF files by using a TabixFile with a yieldSize specification, or to use filterVcf to transform a large VCF to
a subset of variants relevant in a particular study.

SNP Annotation Variants can be easily identified according to region such as coding, intron, intergenic, spliceSite
etc. Amino acid coding changes are computed for the non-synonymous variants. SIFT and PolyPhen databases provide
predictions of how severely the coding changes affect protein function. Additional annotations are easily crafted using the
GenomicRanges and GenomicFeatures software in conjunction with Bioconductor and broader community annotation
resources.

Locating variants in and around genes Variant location with respect to genes can be identified with the locateVariants
function. Regions are specified in the region argument and can be one of the following constructors: CodingVariants(),
IntronVariants(), FiveUTRVariants(), ThreeUTRVariants(), IntergenicVariants(), SpliceSiteVariants(),
or AllVariants(). Location definitions are shown in Table 3.4.

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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Table 3.3: Working with VCF files and data.

Category Function Description
Read scanVcfHeader Retrieve file header information

scanVcfParam Select fields to read in
readVcf Read VCF file into a VCF class
scanVcf Read VCF file into a list

Filter filterVcf Filter a VCF from one file to another
Write writeVcf Write a VCF file to disk
Annotate locateVariants Identify where variant overlaps a gene annotation

predictCoding Amino acid changes for variants in coding regions
summarizeVariants Summarize variant counts by sample

SNPs genotypeToSnpMatrix Convert genotypes to a SnpMatrix
GLtoGP Convert genotype likelihoods to genotypes
snpSummary Counts and distribution statistics for SNPs

Manipulate expand Convert CompressedVCF to ExpandedVCF
cbind, rbind Combine by column or row

Table 3.4: Variant locations

Location Details
coding Within a coding region
fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region
intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

Amino acid coding changes predictCoding computes amino acid coding changes for non-synonymous variants.
Only ranges in query that overlap with a coding region in subject are considered. Reference sequences are retrieved
from either a BSgenome or fasta file specified in seqSource. Variant sequences are constructed by substituting, inserting
or deleting values in the varAllele column into the reference sequence. Amino acid codes are computed for the variant
codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the varAllele

argument must be specified. In the case of a VCF object, the alternate alleles are taken from alt(<VCF>) and the
varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row represents a
variant-transcript match so more than one row per original variant is possible.

library(VariantAnnotation)

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

library(BSgenome.Hsapiens.UCSC.hg19)

fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

vcf <- readVcf(fl, "hg19")

seqlevels(vcf, force=TRUE) <- c("22"="chr22")

coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)

coding[5:9]

## GRanges with 5 ranges and 17 metadata columns:

## seqnames ranges strand | paramRangeID REF

## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

## 22:50301584_C/T chr22 [50301584, 50301584] - | <NA> C

## rs114264124 chr22 [50302962, 50302962] - | <NA> C



38 Sequences, Genomes, and Genes in R / Bioconductor

## rs149209714 chr22 [50302995, 50302995] - | <NA> C

## 22:50303554_T/C chr22 [50303554, 50303554] - | <NA> T

## rs12167668 chr22 [50303561, 50303561] - | <NA> C

## ALT QUAL FILTER varAllele CDSLOC

## <DNAStringSetList> <numeric> <character> <DNAStringSet> <IRanges>

## 22:50301584_C/T T 100 PASS A [777, 777]

## rs114264124 T 100 PASS A [698, 698]

## rs149209714 G 100 PASS C [665, 665]

## 22:50303554_T/C C 100 PASS G [652, 652]

## rs12167668 T 100 PASS A [645, 645]

## PROTEINLOC QUERYID TXID CDSID GENEID CONSEQUENCE

## <IntegerList> <integer> <character> <integer> <character> <factor>

## 22:50301584_C/T 259 28 75253 218562 79087 synonymous

## rs114264124 233 57 75253 218563 79087 nonsynonymous

## rs149209714 222 58 75253 218563 79087 nonsynonymous

## 22:50303554_T/C 218 73 75253 218564 79087 nonsynonymous

## rs12167668 215 74 75253 218564 79087 synonymous

## REFCODON VARCODON REFAA VARAA

## <DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>

## 22:50301584_C/T CCG CCA P P

## rs114264124 CGG CAG R Q

## rs149209714 GGA GCA G A

## 22:50303554_T/C ATC GTC I V

## rs12167668 CCG CCA P P

## ---

## seqlengths:

## chr22

## NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon CGG to
produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant allele substitution and
therefore often includes more nucleotides than indicated in the range (i.e. the range is 50302962, 50302962, width of 1).
Notice it is the second position in the refCodon that has been substituted. This position in the codon, the position of
substitution, corresponds to genomic position 50302962. This genomic position maps to position 698 in coding region-
based coordinates and to triplet 233 in the protein. This is a non-synonymous coding variant where the amino acid has
changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is considered a
frameshift and varAA will be missing.

coding[coding$CONSEQUENCE == "frameshift"]

## GRanges with 2 ranges and 17 metadata columns:

## seqnames ranges strand | paramRangeID REF

## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

## 22:50317001_G/GCACT chr22 [50317001, 50317001] + | <NA> G

## 22:50317001_G/GCACT chr22 [50317001, 50317001] + | <NA> G

## ALT QUAL FILTER varAllele CDSLOC

## <DNAStringSetList> <numeric> <character> <DNAStringSet> <IRanges>

## 22:50317001_G/GCACT GCACT 233 PASS GCACT [808, 808]

## 22:50317001_G/GCACT GCACT 233 PASS GCACT [628, 628]

## PROTEINLOC QUERYID TXID CDSID GENEID

## <IntegerList> <integer> <character> <integer> <character>

## 22:50317001_G/GCACT 270 359 74357 216303 79174

## 22:50317001_G/GCACT 210 359 74358 216303 79174
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## CONSEQUENCE REFCODON VARCODON REFAA

## <factor> <DNAStringSet> <DNAStringSet> <AAStringSet>

## 22:50317001_G/GCACT frameshift GCC GCC A

## 22:50317001_G/GCACT frameshift GCC GCC A

## VARAA

## <AAStringSet>

## 22:50317001_G/GCACT

## 22:50317001_G/GCACT

## ---

## seqlengths:

## chr22

## NA

Annotation with ensemblVEP fixme: Material for ensemblVEP

3.2.5 Exercises

Exercise 9 Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster. Use select and friends to
select the Flybase gene ids of the top table tt and the Flybase transcript names (TXNAME) and Entrez gene identifiers
(GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset the coding sequences to contain just the
transcripts relevant to the top table. How many transcripts are there? What is the structure of the first transcript’s
coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use the coding sequences ranges of the previous
part of this exercise to extract the underlying DNA sequence, using the extractTranscriptsFromGenome function. Use
Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates a more convenient alias to the TranscriptDb
instance defined in the package.

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We also need the data – flybase IDs from our differential expression analysis.

library(EMBO2013)

data(topTable)

fbids <- rownames(topTable)

We can discover available keys (using keys) and columns (columns) in txdb, and then use select to retrieve the
transcripts associated with each differentially expressed gene. The mapping between gene and transcript is not one-to-one
– some genes have more than one transcript.

txnm <- select(txdb, fbids, "TXNAME", "GENEID")

## Warning: ’select’ resulted in 1:many mapping between keys and return rows

nrow(txnm)

## [1] 207

head(txnm, 3)

## GENEID TXNAME

## 1 FBgn0039155 FBtr0084549

## 2 FBgn0039827 FBtr0085755

## 3 FBgn0039827 FBtr0085756

http://bioconductor.org/packages/release/bioc/html/ensemblVEP.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
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The TranscriptDb instances can be queried for data that is more structured than simple data frames, and in particular
return GRanges or GRangesList instances to represent genomic coordinates. These queries are performed using cdsBy

(coding sequence), transcriptsBy (transcripts), etc., where a function argument by specifies how coding sequences or
transcripts are grouped. Here we extract the coding sequences grouped by transcript, returning the transcript names,
and subset the resulting GRangesList to contain just the transcripts of interest to us. The first transcript is composed of
6 distinct coding sequence regions.

cds <- cdsBy(txdb, "tx", use.names=TRUE)

txnm <- txnm[txnm$TXNAME %in% names(cds),]

cds <- cds[txnm$TXNAME]

length(cds)

## [1] 202

cds[1]

## GRangesList of length 1:

## $FBtr0084549

## GRanges with 6 ranges and 3 metadata columns:

## seqnames ranges strand | cds_id cds_name exon_rank

## <Rle> <IRanges> <Rle> | <integer> <character> <integer>

## [1] chr3R [19970946, 19971592] + | 41058 <NA> 2

## [2] chr3R [19971652, 19971770] + | 41059 <NA> 3

## [3] chr3R [19971831, 19972024] + | 41060 <NA> 4

## [4] chr3R [19972088, 19972461] + | 41061 <NA> 5

## [5] chr3R [19972523, 19972589] + | 41062 <NA> 6

## [6] chr3R [19972918, 19973094] + | 41063 <NA> 7

##

## ---

## seqlengths:

## chr2L chr2R chr3L chr3R ... chr3RHet chrXHet chrYHet chrUextra

## 23011544 21146708 24543557 27905053 ... 2517507 204112 347038 29004656

The following code loads the appropriate BSgenome package; the Dmelanogaster object refers to the whole genome
sequence represented in this package. The remaining steps extract the DNA sequence of each transcript, and translates
these to amino acid sequences. Issues of strand are handled correctly.

library(BSgenome.Dmelanogaster.UCSC.dm3)

txx <- extractTranscriptsFromGenome(Dmelanogaster, cds)

length(txx)

## [1] 202

head(txx, 3)

## A DNAStringSet instance of length 3

## width seq names

## [1] 1578 ATGGGCAGCATGCAAGTGGCGCTGCTGG...CAAGCTGCAGATCAAGTGCAGCGACTAG FBtr0084549

## [2] 2760 ATGCTGCGTTATCTGGCGCTTTCGGAGG...GATTGTTGCTGCCCCATTCGAACTTTAG FBtr0085755

## [3] 2217 ATGGCACTCAAGTTTCCCACAGTCAAGC...GATTGTTGCTGCCCCATTCGAACTTTAG FBtr0085756

head(translate(txx), 3)

## A AAStringSet instance of length 3

## width seq

## [1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTSTSASNQ...SSPNSVLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*

## [2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKPIAQRE...GQQLHYCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

## [3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQANIEHVV...GQQLHYCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*
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Exercise 10 The objective of this exercise is to compare the quality of called SNPs that are located in dbSNP, versus
those that are novel.

Locate the sample data in the file system. Explore the metadata (information about the content of the file) using
scanVcfHeader. Discover the ‘info’ fields VT (variant type), and RSQ (genotype imputation quality).

Input the sample data using readVcf. You’ll need to specify the genome build (genome="hg19") on which the
variants are annotated. Take a peak at the rowData to see the genomic locations of each variant.

Data resource often adopt different naming conventions for sequences. For instance, dbSNP uses abbreviations such
as ch22 to represent chromosome 22, whereas our VCF file uses 22. Use rowData and seqlevels<- to extract the row
data of the variants, and rename the chromosomes.

Solution: Explore the header:

library(VariantAnnotation)

fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

(hdr <- scanVcfHeader(fl))

## class: VCFHeader

## samples(5): HG00096 HG00097 HG00099 HG00100 HG00101

## meta(1): fileformat

## fixed(1): ALT

## info(22): LDAF AVGPOST ... VT SNPSOURCE

## geno(3): GT DS GL

info(hdr)[c("VT", "RSQ"),]

## DataFrame with 2 rows and 3 columns

## Number Type Description

## <character> <character> <character>

## VT 1 String indicates what type of variant the line represents

## RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:

vcf <- readVcf(fl, "hg19")

head(rowData(vcf), 3)

## GRanges with 3 ranges and 5 metadata columns:

## seqnames ranges strand | paramRangeID REF

## <Rle> <IRanges> <Rle> | <factor> <DNAStringSet>

## rs7410291 22 [50300078, 50300078] * | <NA> A

## rs147922003 22 [50300086, 50300086] * | <NA> C

## rs114143073 22 [50300101, 50300101] * | <NA> G

## ALT QUAL FILTER

## <DNAStringSetList> <numeric> <character>

## rs7410291 G 100 PASS

## rs147922003 T 100 PASS

## rs114143073 A 100 PASS

## ---

## seqlengths:

## 22

## NA

Rename chromosome levels:



42 Sequences, Genomes, and Genes in R / Bioconductor

seqlevels(vcf, force=TRUE) <- c("22"="ch22")

Exercise 11 Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read in the chr22.vcf.gz ex-
ample file from the VariantAnnotation package.

Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.
Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many coding variants

are there per gene ID?

Solution: Here we open the known genes data base, and read in the VCF file.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

vcf <- readVcf(fl, "hg19")

seqlevels(vcf, force=TRUE) <- c("22"="chr22")

The next lines locate coding variants.

rd <- rowData(vcf)

loc <- locateVariants(rd, txdb, CodingVariants())

head(loc, 3)

## GRanges with 3 ranges and 7 metadata columns:

## seqnames ranges strand | LOCATION QUERYID TXID CDSID

## <Rle> <IRanges> <Rle> | <factor> <integer> <integer> <integer>

## [1] chr22 [50301422, 50301422] * | coding 24 75253 218562

## [2] chr22 [50301476, 50301476] * | coding 25 75253 218562

## [3] chr22 [50301488, 50301488] * | coding 26 75253 218562

## GENEID PRECEDEID FOLLOWID

## <character> <CharacterList> <CharacterList>

## [1] 79087

## [2] 79087

## [3] 79087

## ---

## seqlengths:

## chr22

## NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.

## Did any coding variants match more than one gene?

splt <- split(loc$GENEID, loc$QUERYID)

table(sapply(splt, function(x) length(unique(x)) > 1))

##

## FALSE TRUE

## 965 15

## Summarize the number of coding variants by gene ID

splt <- split(loc$QUERYID, loc$GENEID)

head(sapply(splt, function(x) length(unique(x))), 3)

## 113730 1890 23209

## 22 15 30

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
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3.3 Visualization

The Gviz package produces very elegant data organized in a more-or-less familiar ‘track’ format. The following exercises
walk through the Gviz User guide Section 2.

Load the Gviz package and sample GRanges containing genomic coordinates of CpG islands. Create a couple of
variables with information on the chromosome and genome of the data.

library(Gviz)

data(cpgIslands)

chr <- "chr7"

genome <- "hg19"

The basic idea is to create a track, perhaps with additional attributes, and to plot it. There are different types of track,
and we create these one at a time. We start with a simple annotation track

atrack <- AnnotationTrack(cpgIslands, name="CpG")

(This track could be plotted with plotTrack(atrack)). Then add a track that represents genomic coordinates. Tracks
are combined when plotted, as a simple list. The vertical ordering of tracks is determined by their position in the list.

gtrack <- GenomeAxisTrack()

(Plot this with plotTracks(list(gtrack, atrack))). We can add an ideogram to provide overall orientation. . .

itrack <- IdeogramTrack(genome=genome, chromosome=chr)

and a more elaborate gene model, as an data.frame or GRanges object with specific columns of metadata.

data(geneModels)

grtrack <-

GeneRegionTrack(geneModels, genome=genome,

chromosome=chr, name="Gene Model")

tracks <- list(itrack, gtrack, atrack, grtrack)

Plot this as

plotTracks(tracks)

Zoom out to change the location box on the ideogram

plotTracks(tracks, from=2.5e7, to=2.8e7)

When zoomed in we can add sequence data

library(BSgenome.Hsapiens.UCSC.hg19)

strack <- SequenceTrack(Hsapiens, chromosome=chr)

plotTracks(c(tracks, strack), from=26450430, to=26450490, cex=.8)

As the Gviz vignette humbly says, ‘so far we have replicated the features of a whole bunch of other genome browser
tools out there‘. We’d like to be able integrate our data into these plots, with a rich range of plotting options. The key
is the DataTrack function, which we demonstrate with some simulated data; this final result is shown in Figure 3.1.

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/2.12/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
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Figure 3.1: Gviz ideogram, genome coordinate, annotation, and data tracks.

## some data

lim <- c(26700000, 26900000)

coords <- seq(lim[1], lim[2], 101)

dat <- runif(length(coords) - 1, min=-10, max=10)

## DataTrack

dtrack <-

DataTrack(data=dat, start=coords[-length(coords)],

end= coords[-1], chromosome=chr, genome=genome,

name="Uniform Random")

plotTracks(c(tracks, dtrack))

Section 4.3 of the Gviz vignette illustrates flexibility of the data track.

http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
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