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Aims of normalisation

Normalisation aims to ensure our expression estimates are:

• comparable across features (genes, isoforms, etc)

• comparable across libraries (different samples)

• on a human-friendly scale (interpretable magnitude)

Necessary for valid inference about DE

• between transcripts within samples

• between samples belonging to different biological conditions
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Basic Poisson model

Number of reads from gene g in library i can be captured by a
Poisson model (Marioni et al. 2008):

rig ∼ Poisson(kigµig ),

=⇒ E(rig ) = kigµig

where µig is the concentration of RNA in the library and kig is a
normalisation constant.

µ̂ig =
rig
kig



RPKM normalisation

Normalisation is all about deciding how to set kig such that the
estimates of µig are comparable between genes and across libraries.

µ̂ig =
rig
kig

The number of reads rig is roughly proportional to

• the length of the gene, lg

• the total number of reads in the library, Ni

Thus it is natural to include them in the normalisation constant.

If kig = 10−9Ni lg , the units of µ̂ig are Reads Per Kilobase per
Million mapped reads (RPKM) (Mortazavi et al. 2008).

This is the most elementary form of normalisation.
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RPKM normalisation

• RPKM works well for technical and some biological replicates

• µig ' µjg for all libraries i and j

• RPKM units obtained by scaling of counts by N−1i
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Sample to sample normalisation
• Between different biological samples, homogeneity assumption

does not hold
• Why is this a problem?

Number of reads is limited
E.g. counts from very highly expressed genes leave less real estate
available for counts from lowly expressed genes

A B

• Suppose you have two RNA
populations A and B sequenced at
same depth

• A and B are identical except half of
genes in B are unexpressed in A

• Only ∼ half of reads from B come
from shared gene set

• Estimates for shared genes differ by
factor of ∼ 2!

Robinson and Oslack 2010
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Trimmed Mean of Ms (TMM) normalisation

• RPKM normalisation implicitly assumes total RNA output∑
g µig lg (unknown) is the same for all libraries

• Poisson model is an approximation of Binomial model:

rig ∼ Binomial
(
Ni ,

µig lg∑
j µij lj

)
, E(rig ) = Ni

µig lg∑
j µij lj

• Better assumption: the output between samples for a core set
only of genes G is similar:

∑
g∈G

µig lg =
∑
g∈G

µjg lg
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TMM normalisation

The naive MLE is proportional to the normalised counts:

µ̂jg =
rjg
kjg

=
1

10−9lg

rjg
Nj

If
∑
g∈G

µ̂ig lg 6=
∑
g∈G

µ̂jg lg , the MLEs need to be adjusted.

Calculate scaling factor for sample j relative to reference sample i :∑
g∈G

rig
Ni
' S (i ,j)

∑
g∈G

rjg
Nj
.

Adjust the MLEs for sample j for all genes:

µ̂jg =
rjg
kjg

=
rjg

10−9Nj lg
· S (i ,j).

Robinson and Oslack 2010
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TMM normalisation

How to choose the subset G used to calculate S (i ,j)?

• For pair of libraries (i , j) determine log fold change of
normalised counts

M
(i ,j)
g = log

rig
Ni
− log

rjg
Nj
.

• and the mean of the log normalised counts

A
(i ,j)
g =

1

2

[
log

rig
Ni

+ log
rjg
Nj

]
.

• Set G to genes remaining after trimming upper and lower x%
of the {Ag} and {Mg}. I.e. genes in G have unexceptional

values of A
(i ,j)
g and M

(i ,j)
g

Robinson and Oslack 2010
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TMM normalisation (with edgeR)

• Compute summary of {M(i ,j)
g } for genes in G (weighted mean)

• Let S (i ,j) be the exponential of this summary

• Adjust µ̂jg by a factor of S (i ,j) for all genes g

Other datasets
The global shift in log-fold-change caused by RNA com-
position differences occurs at varying degrees in other
RNA-seq datasets. For example, an M versus A plot for
the Cloonan et al. [12] dataset (Figure S3 in Additional
file 1) gives an estimated TMM scaling factor of 1.04
between the two samples (embryoid bodies versus
embryonic stem cells), sequenced on the SOLiD™ sys-
tem. The M versus A plot for this dataset also highlights
an interesting set of genes that have lower overall

expression, but higher in embryoid bodies. This explains
the positive shift in log-fold-changes for the remaining
genes. The TMM scale factor appears close to the med-
ian log-fold-changes amongst a set of approximately 500
mouse housekeeping genes (from [17]). As another
example, the Li et al. [18] dataset, using the llumina 1G
Genome Analyzer, exhibits a shift in the overall distri-
bution of log-fold-changes and gives a TMM scaling fac-
tor of 0.904 (Figure S4 in Additional file 1). However,
there are sequencing-based datasets that have quite
similar RNA outputs and may not need a significant
adjustment. For example, the small-RNA-seq data from
Kuchenbauer et al. [19] exhibits only a modest bias in
the log-fold-changes (Figure S5 in Additional file 1).
Spike-in controls have the potential to be used for

normalization. In this scenario, small but known
amounts of RNA from a foreign organism are added to
each sample at a specified concentration. In order to
use spike-in controls for normalization, the ratio of the
concentration of the spike to the sample must be kept
constant throughout the experiment. In practice, this is
difficult to achieve and small variations will lead to
biased estimation of the normalization factor. For exam-
ple, using the spiked-in DNA from the Mortazavi et al.
data set [11] would lead to unrealistic normalization fac-
tor estimates (Figure S6 in Additional file 1). As with

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of (a) technical replicates and (b) liver versus
kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-
fold-changes of the housekeeping genes. (c) An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points
indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the
estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney
tissues. The black arrow highlights the set of prominent genes that are largely attributable for the overall bias in log-fold-changes.

Table 1 Number of genes called differentially expressed
between liver and kidney at a false discovery rate <0.001
using different normalization methods

Library size
normalization

TMM
normalization

Overlap

Higher in liver 2,355 4,293 2,355

Higher in
kidney

8,332 4,935 4,935

Total 10,867 9,228 7,290

House keeping
genes (545)

Higher in liver 45 137 45

Higher in
kidney

376 220 220

Total 421 357 265

TMM, trimmed mean of M values.

Robinson and Oshlack Genome Biology 2010, 11:R25
http://genomebiology.com/2010/11/3/R25
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Median log deviation normalisation (with DESeq)

An alternative normalisation provided in DESeq package

• For each gene g in sample i , calculate deviation of log rig from
the mean log rig over all libraries: dig = log rig − 1

I

∑
i log rig .

• Calculate median over all genes: log S (i) = mediani (dig )

• Adjust µ̂ig by a factor of S (i) for all genes g

edgeR and DESeq are both robust across genes (weighted mean of
core set vs. median of all genes)

Anders and Huber 2010
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Normalisation between genes

• So far we have looked at library-level scaling to make the
expression of a given gene comparable across libraries

• In other words, we have been seeking to account for factors
affecting all genes in a library similarly

• Are there factors affecting different genes differently?

• Recall normalisation equation:

µ̂ig =
rig
kig

Consider the decomposition of kig = kkikg

• k: global scaling to get more convenient units. E.g. 10−9.

• ki : library-specific normalisation factors. E.g. Ñi = Ni/S
(i)

• kg : gene-specific normalisation factors. E.g. lg
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Normalisation between genes
Where does the lg factor come from anyway?

Underlying assumption: constant Poisson rate across bases.

μg μg μg μg μg μg μg μg μg μg 00 0 0

lg

rigp ∼ Pois(kkiµg )

rig =

lg∑
p=1

rigp

rig ∼ Pois(kki
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p=1

µg )

∼ Pois(kki lgµg )

∼ Pois(10−9Ñi lgµig )
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Normalisation between genes

−20 −10 0 10 20

−
0.

2
0.

0
0.

2
0.

4
0.

6

position

co
ef

fic
ie

nt
s

3125_2 coefficients, red−T, green−A, blue−C, black−G

● ●

●

● ●

●

● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
● ●

● ● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

−20 −10 0 10 20

−
0.

2
0.

0
0.

2
0.

4

position

co
ef

fic
ie

nt
s

3125_7 coefficients, red−T, green−A, blue−C, black−G

● ●
●

●

●

●

●
●

●

● ● ●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●
●

● ● ●
●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ●

−20 −10 0 10 20

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

position

co
ef

fic
ie

nt
s

3122_7 coefficients, red−T, green−A, blue−C, black−G

●

●

●

●

●

●

● ●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

●
●

● ●

● ●
●

● ●

●

●

● ●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

● ●

●
●

● ●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

There are in fact local sequence-specific
biases (Li et al. 2010, Hansen et al.
2010) (non-random amplification?).

This suggests a variable-rate model with
weights αgp:

αg1μg

lg

0 0αg2μgαg3μgαg4μgαg5μgαg6μgαg7μgαg8μg

rig ∼ Pois(kki

lg∑
p=1

αgpµig )

∼ Pois(kki l̃gµig )

∼ Pois(10−9Ñi l̃gµig )



Accounting for sequencing biases with mseq
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Normalisation between genes (adjust for insert size distro)

lt = 6

lf = 3: 4 positions

lf = 4: 3 positions

lf = 5: 2 positions

lf = 6: 1 position

lr = 2

l̃t =
lt∑

lf =lr+1

p(lf |lt)(lt − lf + 1)

(assuming each position equally likely)

l̃t =
lt∑

lf =lr+1

p(lf |lt)
lt−lf +1∑
p=1

α(p, t, lf )

(weight α(p, t, lf ) to fragments of
length lf at position p of transcript t)

If pre-selection fragments roughly
uniform up to lt within main support of
insert size distribution, then
p(lf |lt) ' p(lf )

Glaus et al 2012, to appear
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Differential expression

We have obtained library and gene specific normalisation factors to
make counts/concentration estimates as comparable as possible.

This allows us to:

• obtain reasonably unbiased log fold changes between two
groups of samples

• obtain p-values under the null hypothesis of no differential
expression

Recall hypothesis testing (e.g. limma for microarrays):

• define a function of the data, T (the test statistic)

• derive distribution of T under the null (e.g. no DE)

• define critical regions of T

• compute observed value t from actual data

• reject null if t is in a critical region
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Concluding remarks

• Variation in total RNA output per sample leads to biases in
expression estimates (limited real estate)

• Variation in sequence composition of genes leads to biases
(non-random hexamer priming)

• Fragment size selection leads to positional biases

• Normalisation seeks to correct for these biases

• Only then can we reliably begin to draw inferences about
differential expression
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