International Molecular Exchange Consortium - IMEx

Sandra Orchard
EMBL-EBI

EBI is an Outstation of the European Molecular Biology Laboratory.
Why do we need interaction databases

• Issues with all interaction data – true picture can only be built up by combining data derived using multiple techniques, multiple laboratories

• Problematic for any bench researcher to do – issues with data formats, molecular identifiers, sheer volume of data

• Molecular interaction databases publicly funded to collect this data and annotate in a format most useful to researchers
Interaction Databases

Deep Curation
IntAct – active curation, broad species coverage, all molecule types
MINT – active curation, broad species coverage, PPIs
DIP – active curation, broad species coverage, PPIs
MatrixDB – active curation, extracellular matrix molecules only
MPACT - no curation, limited species coverage, PPIs
BIND – ceased curating 2006/7, broad species coverage, all molecule types
– information becoming dated

Shallow curation
BioGRID – active curation, limited number of model organisms
HPRD – no curation, human-centric, modelled interactions
* MPIDB – active curation, microbial interactions
*InnateDB - active curation – interactions involved in innate immunity
*I2D – active curation – PPIs involved in cancer
• Community standard for Molecular Interactions

• XML schema and detailed controlled vocabularies

• Jointly developed by major data providers:

• Version 1.0 published in February 2004

• Version 2.5 published in October 2007 – tab-delimited format (MITAB) also released
 Broadening the Horizon – Level 2.5 of the HUPO-PSI Format for Molecular Interactions;
PSI-MI XML/MITAB benefits

- Collecting and combining data from different sources has become easier
- Standardized annotation through PSI-MI ontologies
- Tools from different organizations can be chained, e.g. analysis of IntAct data in Cytoscape.

Home page
http://www.psidev.info/MI
Controlled vocabularies

www.ebi.ac.uk/ols
How can I access PSICQUIC?

As PSICQUIC is a Web Service, you can access the data:

• Via SOAP
 o A WSDL file exists, and it is the same for all the data resources.
 o IntAct has developed a Java client, but any other languages can be used.
 o You can use it to get interactions in two standard formats: PSI-MI XML and PSI-MI TAB.

• Via REST
 o Retrieving data directly by using a URL
 o Easy to access and data can be obtained just using an internet browser.
 o Effective for scripting.
The PSICQUIC Registry

• It contains a **list of the PSICQUIC services** from different providers.

• It is a **web service** itself, and it can be accessed remotely using REST.

• Information can be found about the services, such as the URLs to use, number of interactions provided, versioning, tags, etc.

• The Registry can be found at:

 http://www.ebi.ac.uk/Tools/webservices/psicquic/registry/registry?action=STATUS

PSICQUIC Services Tagging

Content
- protein-protein
- small molecule-protein
- nucleic acid-protein

Interaction representation
- evidence
- clustered

Curation standards
- mimix curation
- imex curation
- rapid curation

Source
- internally curated
- text mining
- predicted
- imported

Complex expansion
- spoke
- matrix
- bipartite
<table>
<thead>
<tr>
<th>Name</th>
<th>Active</th>
<th>Interactions</th>
<th>Version</th>
<th>SOAP URL</th>
<th>REST URL</th>
<th>REST Example</th>
<th>Restricted</th>
<th>Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>APID</td>
<td>YES</td>
<td>416,124</td>
<td>1.1.5</td>
<td>http://cicblade.dep.us</td>
<td>http://cicblade.dep.us</td>
<td>Example</td>
<td>NO</td>
<td>protein-protein imported spoke clustered</td>
</tr>
<tr>
<td>CHEMBL</td>
<td>YES</td>
<td>606,404</td>
<td>1.1.6</td>
<td>http://www.ebi.ac.uk/</td>
<td>http://www.ebi.ac.uk/</td>
<td>Example</td>
<td>NO</td>
<td>smallmolecule-protein internally curated mimix curation spoke evidence</td>
</tr>
<tr>
<td>IntAct</td>
<td>YES</td>
<td>232,793</td>
<td>1.1.6-SNAPSHOT</td>
<td>http://www.ebi.ac.uk/</td>
<td>http://www.ebi.ac.uk/</td>
<td>Example</td>
<td>NO</td>
<td>protein-protein smallmolecule-protein nucleicacid-protein internally curated imported mimix curation spoke evidence</td>
</tr>
</tbody>
</table>
PSICQUIC Services
PSICQUIC

• PSICQUIC gives access to multiple databases and large amounts of data but…

• PSICQUIC is redundant – the same data is ‘recycled’ many times

• PSICQUIC contains many different data types – experimental (physical/genetic), predicted, interlogs, gene associations, text-mining. Currently these can only be separated at the database level.
IMEx

- Curation databases formed a consortium to provide users with a single, non-redundant dataset - IMEx

- **Independent** molecular interaction resources all separately funded and with their own curation priorities

- Spent several years developing **Common curation standards** for detailed curation and a joint curation manual

- **Common data formats** – all data downloadable in PSI formats (PSI-MI MITAB/XML)

- IMEx is an instance of PSICQUIC, specific records are tagged as part of the IMEx set and only these records are searchable and downloadable on the website.
Coordinated & non-redundant curation – databases ensure that each paper is curated once, and once only by a single member database.

Each paper is registered with a central database, IMEx Central, which ensures curation is not repeated by a second database.
IMEx

- **Common accession number** space – all submitted data gets an IMEx ID and is searchable on the IMEx site, the site of submission and multiple member database sites.

> Interaction datasets are required to distinguish between conserved and non-conserved (but biologically relevant) interactions and separate them from false positives and false negatives. Such a classification will make it much easier to evaluate the biological significance of individual interactions, either by suggesting additional experiments or by facilitating computational analysis such as protein docking.

MATERIALS AND METHODS

Description of datasets and a more extensive description of the applied methods can be found as supporting information ([Discussion S1](#)). The interactions of this study have been submitted to the IntAct database (http://www.ebi.ac.uk/intact/, accession number EBI-1501350) and to the IMEx consortium (http://imex.sourceforge.net) through the MPIDB database (http://www.jcvi.org/mpidb, identifier IM-9152).

Cloning of baits and preys, Y2H screening

The ORF clones from McKevitt et al. ([37](#)) were transferred into compatible bait and prey vectors pAS1-loxP, pLP-G8KT7Amp, and pLP-GADT7 [Clontech], by Cre-mediated homologous recombination. After transformation into yeast, all preys were arrayed and screened as described in ([14](#)).
IMEx partners

IntAct – Active
DIP – Active
MINT – Active
MatrixDB – Active
MPIDB - Active
I2D - Active
Innate DB – Active
Molecular Connections – Active
UniProtKB - Active

BioGRID - Observer
www.imexconsortium.org
<table>
<thead>
<tr>
<th>Molecule A</th>
<th>Name A</th>
<th>Links molecule A</th>
<th>Molecule B</th>
<th>Links molecule B</th>
<th>Molecule A Identifier</th>
<th>Molecule B Identifier</th>
<th>Aliases molecule A</th>
<th>Molecule A Species</th>
<th>Molecule B Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>P04637</td>
<td></td>
<td></td>
<td>P04637</td>
<td></td>
<td>refindexyCFlunmihw3ujeB8kawoCWiwh0666</td>
<td>refindexyCFlunmihw3ujeB8kawoCWiwh0666</td>
<td>P53; Tumor suppressor p53; Phosphoprotein p53; Antigen NY-CC-13; p53_human; TF53; DIP:358N; EBI:366083</td>
<td>Homo sapiens</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>000987</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>refindexyCFlunmihw3ujeB8kawoCWiwh0666</td>
<td>refindexyCFlunmihw3ujeB8kawoCWiwh0666</td>
<td>P53; Tumor suppressor p53; Phosphoprotein p53; Antigen NY-CC-13; p53_human; TF53; DIP:358N; EBI:366083</td>
<td>Homo sapiens</td>
<td>Homo sapiens</td>
</tr>
</tbody>
</table>
IMEx statistics

Sept 2012 – 237,593 binary interactions from 5668 publications
IMEx

- In production mode since February 2010

- Since 3/2009 supported by the European Commission under PSIMEx, contract number FP7-HEALTH-2007-223411, with additional partners Vital-IT, Nature, Wiley, BiaCore (GE), U. Maryland, CSIC, TU Munich, MIPS, SCBIT (Shanghai)