spacer
spacer

PDBsum entry 7jgo

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
7jgo

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
173 a.a.
Ligands
V9Y
Metals
_NA
_NI ×3
Waters ×25
PDB id:
7jgo
Name: Oxidoreductase
Title: Crystal structure of the ni-bound human heavy-chain variant 122h-delta c-star with 2,5-furandihyrdoxamate collected at 278k
Structure: Ferritin heavy chain. Chain: a. Synonym: ferritin h subunit,cell proliferation-inducing gene 15 protein. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: fth1, fth, fthl6, ok/sw-cl.84, pig15. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
3.08Å     R-factor:   0.213     R-free:   0.248
Authors: J.B.Bailey,F.A.Tezcan
Key ref: J.B.Bailey and F.A.Tezcan (2020). Tunable and Cooperative Thermomechanical Properties of Protein-Metal-Organic Frameworks. J Am Chem Soc, 142, 17265-17270. PubMed id: 32972136 DOI: 10.1021/jacs.0c07835
Date:
19-Jul-20     Release date:   14-Oct-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P02794  (FRIH_HUMAN) -  Ferritin heavy chain from Homo sapiens
Seq:
Struc:
183 a.a.
173 a.a.*
Key:    Secondary structure
* PDB and UniProt seqs differ at 5 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.16.3.1  - ferroxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 4 Fe2+ + O2 + 4 H+ = 4 Fe3+ + 2 H2O
4 × Fe(2+)
+ O2
+ 4 × H(+)
= 4 × Fe(3+)
+ 2 × H2O
      Cofactor: Cu cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1021/jacs.0c07835 J Am Chem Soc 142:17265-17270 (2020)
PubMed id: 32972136  
 
 
Tunable and Cooperative Thermomechanical Properties of Protein-Metal-Organic Frameworks.
J.B.Bailey, F.A.Tezcan.
 
  ABSTRACT  
 
We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.
 

 

spacer

spacer