spacer
spacer

PDBsum entry 6tk2

Go to PDB code: 
protein ligands metals links
Membrane protein PDB id
6tk2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
265 a.a.
Ligands
RET
LFA ×26
Metals
_NA
Waters ×49
PDB id:
6tk2
Name: Membrane protein
Title: Femtosecond to millisecond structural changes in a light-driven sodium pump: 1ms structure of kr2 with extrapolated, light and dark datasets
Structure: Sodium pumping rhodopsin. Chain: a. Engineered: yes
Source: Dokdonia eikasta. Organism_taxid: 308116. Gene: nar. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.50Å     R-factor:   0.263     R-free:   0.324
Authors: P.Skopintsev,D.Ehrenberg,T.Weinert,D.James,R.Kar,P.Johnson,D.Ozerov, A.Furrer,I.Martiel,F.Dworkowski,K.Nass,G.Knopp,C.Cirelli,D.Gashi, S.Mous,M.Wranik,T.Gruhl,D.Kekilli,S.Bruenle,X.Deupi,G.F.X.Schertler, R.Benoit,V.Panneels,P.Nogly,I.Schapiro,C.Milne,J.Heberle,J.Standfuss
Key ref: P.Skopintsev et al. (2020). Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature, 583, 314-318. PubMed id: 32499654 DOI: 10.1038/s41586-020-2307-8
Date:
28-Nov-19     Release date:   27-May-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
N0DKS8  (N0DKS8_9FLAO) -  Sodium pumping rhodopsin from Dokdonia eikasta
Seq:
Struc:
280 a.a.
265 a.a.
Key:    PfamA domain  Secondary structure

 

 
DOI no: 10.1038/s41586-020-2307-8 Nature 583:314-318 (2020)
PubMed id: 32499654  
 
 
Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
P.Skopintsev, D.Ehrenberg, T.Weinert, D.James, R.K.Kar, P.J.M.Johnson, D.Ozerov, A.Furrer, I.Martiel, F.Dworkowski, K.Nass, G.Knopp, C.Cirelli, C.Arrell, D.Gashi, S.Mous, M.Wranik, T.Gruhl, D.Kekilli, S.Brünle, X.Deupi, G.F.X.Schertler, R.M.Benoit, V.Panneels, P.Nogly, I.Schapiro, C.Milne, J.Heberle, J.Standfuss.
 
  ABSTRACT  
 
Light-driven sodium pumps actively transport small cations across cellular membranes1. These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved2,3, it is unclear how structural alterations over time allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser4, we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion binds transiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.
 

 

spacer

spacer