spacer
spacer

PDBsum entry 6p5t

Go to PDB code: 
protein metals Protein-protein interface(s) links
Membrane protein PDB id
6p5t

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 0 more) 782 a.a.
Metals
_SR ×124
IOD ×150
Waters ×4837
PDB id:
6p5t
Name: Membrane protein
Title: Surface-layer (s-layer) rsaa protein from caulobacter crescentus bound to strontium and iodide
Structure: S-layer protein. Chain: a, b, c, d, e, f. Synonym: paracrystalline surface layer protein. Engineered: yes
Source: Caulobacter vibrioides. Organism_taxid: 155892. Gene: rsaa, cc_1007. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.10Å     R-factor:   0.207     R-free:   0.243
Authors: A.C.Chan,J.Herrmann,J.Smit,S.Wakatsuki,M.E.Murphy
Key ref: J.Herrmann et al. (2020). A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly. Proc Natl Acad Sci U S A, 117, 388-394. PubMed id: 31848245 DOI: 10.1073/pnas.1909798116
Date:
30-May-19     Release date:   15-Jan-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P35828  (SLAP_CAUVC) -  S-layer protein from Caulobacter vibrioides (strain ATCC 19089 / CIP 103742 / CB 15)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1026 a.a.
782 a.a.
Key:    PfamA domain  Secondary structure

 

 
DOI no: 10.1073/pnas.1909798116 Proc Natl Acad Sci U S A 117:388-394 (2020)
PubMed id: 31848245  
 
 
A bacterial surface layer protein exploits multistep crystallization for rapid self-assembly.
J.Herrmann, P.N.Li, F.Jabbarpour, A.C.K.Chan, I.Rajkovic, T.Matsui, L.Shapiro, J.Smit, T.M.Weiss, M.E.P.Murphy, S.Wakatsuki.
 
  ABSTRACT  
 
Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular self-assembly by crystallizing when exposed to an environmental trigger. However, molecular mechanisms governing rapid protein crystallization in vivo or in vitro are largely unknown. Here, we demonstrate that the Caulobacter crescentus SLP readily crystallizes into sheets in vitro via a calcium-triggered multistep assembly pathway. This pathway involves 2 domains serving distinct functions in assembly. The C-terminal crystallization domain forms the physiological 2-dimensional (2D) crystal lattice, but full-length protein crystallizes multiple orders of magnitude faster due to the N-terminal nucleation domain. Observing crystallization using a time course of electron cryo-microscopy (Cryo-EM) imaging reveals a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Dynamic flexibility between the 2 domains rationalizes efficient S-layer crystal nucleation on the curved cellular surface. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials.
 

 

spacer

spacer