spacer
spacer

PDBsum entry 5vsr

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase PDB id
5vsr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
175 a.a.
306 a.a.
Ligands
AF0
Metals
_MG ×3
Waters ×18
PDB id:
5vsr
Name: Transferase
Title: Aba-mimicking ligand amf4 in complex with aba receptor pyl2 and pp2c hab1
Structure: Abscisic acid receptor pyl2. Chain: a. Synonym: pyr1-like protein 2,regulatory components of aba receptor 14. Engineered: yes. Protein phosphatase 2c 16. Chain: b. Synonym: atpp2c16,atp2c-ha,protein hypersensitive to aba 1,protein phosphatase 2c hab1,pp2c hab1.
Source: Arabidopsis thaliana. Mouse-ear cress. Organism_taxid: 3702. Gene: pyl2, rcar14, at2g26040, t19l18.15. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: hab1, p2c-ha, at1g72770, f28p22.4. Expression_system_taxid: 562
Resolution:
2.62Å     R-factor:   0.242     R-free:   0.275
Authors: M.-J.Cao,Y.-L.Zhang,X.Liu,H.Huang,X.E.Zhou,W.-L.Wang,A.Zeng,C.- Z.Zhao,T.Si,J.-M.Du,W.-W.Wu,F.-X.Wang,H.X.Xu,J.-K.Zhu
Key ref: M.J.Cao et al. (2017). Combining chemical and genetic approaches to increase drought resistance in plants. Nat Commun, 8, 1183. PubMed id: 29084945
Date:
12-May-17     Release date:   15-Nov-17    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O80992  (PYL2_ARATH) -  Abscisic acid receptor PYL2 from Arabidopsis thaliana
Seq:
Struc:
190 a.a.
175 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9CAJ0  (P2C16_ARATH) -  Protein phosphatase 2C 16 from Arabidopsis thaliana
Seq:
Struc:
511 a.a.
306 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 1: Chain A: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chain B: E.C.3.1.3.16  - protein-serine/threonine phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. O-phospho-L-seryl-[protein] + H2O = L-seryl-[protein] + phosphate
2. O-phospho-L-threonyl-[protein] + H2O = L-threonyl-[protein] + phosphate
O-phospho-L-seryl-[protein]
+ H2O
= L-seryl-[protein]
+ phosphate
O-phospho-L-threonyl-[protein]
+ H2O
= L-threonyl-[protein]
+ phosphate
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
Nat Commun 8:1183 (2017)
PubMed id: 29084945  
 
 
Combining chemical and genetic approaches to increase drought resistance in plants.
M.J.Cao, Y.L.Zhang, X.Liu, H.Huang, X.E.Zhou, W.L.Wang, A.Zeng, C.Z.Zhao, T.Si, J.Du, W.W.Wu, F.X.Wang, H.E.Xu, J.K.Zhu.
 
  ABSTRACT  
 
Drought stress is a major threat to crop production, but effective methods to mitigate the adverse effects of drought are not available. Here, we report that adding fluorine atoms in the benzyl ring of the abscisic acid (ABA) receptor agonist AM1 optimizes its binding to ABA receptors by increasing the number of hydrogen bonds between the compound and the surrounding amino acid residues in the receptor ligand-binding pocket. The new chemicals, known as AMFs, have long-lasting effects in promoting stomatal closure and inducing the expression of stress-responsive genes. Application of AMFs or transgenic overexpression of the receptor PYL2 in Arabidopsis and soybean plants confers increased drought resistance. The greatest increase in drought resistance is achieved when AMFs are applied to the PYL2-overexpression transgenic plants. Our results demonstrate that the combining of potent chemicals with transgenic overexpression of an ABA receptor is very effective in helping plants combat drought stress.
 

 

spacer

spacer