spacer
spacer

PDBsum entry 5eiy

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Membrane protein PDB id
5eiy

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
728 a.a.
658 a.a.
Ligands
UNK-UNK-UNK-UNK-
UNK-UNK-UNK-UNK-
UNK
BGC-BGC-BGC-BGC-
BGC-BGC-BGC-BGC-
BGC-BGC-BGC-BGC-
BGC-BGC-BGC-BGC-
GAL
PLC
43Y
C2E ×2
LDA ×2
660
Metals
_MG ×2
Waters ×11
PDB id:
5eiy
Name: Membrane protein
Title: Bacterial cellulose synthase bound to a substrate analogue
Structure: Putative cellulose synthase. Chain: a. Engineered: yes. Putative cellulose synthase. Chain: b. Engineered: yes. Poly(unk). Chain: d. Engineered: yes
Source: Rhodobacter sphaeroides (strain atcc 17023 / 2.4.1 / ncib 8253 / dsm 158). Organism_taxid: 272943. Strain: atcc 17023 / 2.4.1 / ncib 8253 / dsm 158. Gene: rsp_0333. Expressed in: escherichia coli. Expression_system_taxid: 562. Rhodobacter sphaeroides. Gene: rsp_0332.
Resolution:
2.95Å     R-factor:   0.223     R-free:   0.248
Authors: J.T.Mcnamara,J.Zimmer
Key ref: J.L.Morgan et al. (2016). Observing cellulose biosynthesis and membrane translocation in crystallo. Nature, 531, 329-334. PubMed id: 26958837 DOI: 10.1038/nature16966
Date:
30-Oct-15     Release date:   09-Mar-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q3J125  (Q3J125_RHOS4) -  Cellulose synthase catalytic subunit [UDP-forming] from Cereibacter sphaeroides (strain ATCC 17023 / DSM 158 / JCM 6121 / CCUG 31486 / LMG 2827 / NBRC 12203 / NCIMB 8253 / ATH 2.4.1.)
Seq:
Struc:
 
Seq:
Struc:
788 a.a.
728 a.a.
Protein chain
Pfam   ArchSchema ?
Q3J126  (Q3J126_RHOS4) -  Cyclic di-GMP-binding protein from Cereibacter sphaeroides (strain ATCC 17023 / DSM 158 / JCM 6121 / CCUG 31486 / LMG 2827 / NBRC 12203 / NCIMB 8253 / ATH 2.4.1.)
Seq:
Struc:
 
Seq:
Struc:
725 a.a.
658 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chain A: E.C.2.4.1.12  - cellulose synthase (UDP-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: [(1->4)-beta-D-glucosyl](n) + UDP-alpha-D-glucose = [(1->4)-beta-D- glucosyl](n+1) + UDP + H+
[(1->4)-beta-D-glucosyl](n)
+ UDP-alpha-D-glucose
= [(1->4)-beta-D- glucosyl](n+1)
+ UDP
+ H(+)
Bound ligand (Het Group name = 660)
matches with 64.86% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/nature16966 Nature 531:329-334 (2016)
PubMed id: 26958837  
 
 
Observing cellulose biosynthesis and membrane translocation in crystallo.
J.L.Morgan, J.T.McNamara, M.Fischer, J.Rich, H.M.Chen, S.G.Withers, J.Zimmer.
 
  ABSTRACT  
 
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.
 

 

spacer

spacer