spacer
spacer

PDBsum entry 5d4j

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
5d4j

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
335 a.a.
Ligands
GOL ×10
ACY ×3
Metals
_CU ×6
_CL ×3
Waters ×385
PDB id:
5d4j
Name: Oxidoreductase
Title: Chloride-bound form of a copper nitrite reductase from alcaligenes faecals
Structure: Copper-containing nitrite reductase. Chain: a, b, c. Fragment: unp residues 40-376. Synonym: cu-nir. Engineered: yes
Source: Alcaligenes faecalis. Organism_taxid: 511. Gene: nirk, nir. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.00Å     R-factor:   0.185     R-free:   0.232
Authors: Y.Fukuda,K.M.Tse,T.Nakane,T.Nakatsu,M.Suzuki,M.Sugahara,S.Inoue, F.Yumoto,N.Matsugaki,E.Nango,K.Tono,Y.Joti,T.Kameshima,C.Song, M.Yabashi,O.Nureki,M.E.P.Murphy,T.Inoue,S.Iwata,E.Mizohata
Key ref: Y.Fukuda et al. (2016). Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc Natl Acad Sci U S A, 113, 2928-2933. PubMed id: 26929369 DOI: 10.1073/pnas.1517770113
Date:
07-Aug-15     Release date:   09-Mar-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P38501  (NIR_ALCFA) -  Copper-containing nitrite reductase from Alcaligenes faecalis
Seq:
Struc:
376 a.a.
335 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.7.2.1  - nitrite reductase (NO-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: nitric oxide + Fe(III)-[cytochrome c] + H2O = Fe(II)-[cytochrome c] + nitrite + 2 H+
nitric oxide
+ Fe(III)-[cytochrome c]
+ H2O
= Fe(II)-[cytochrome c]
+ nitrite
+ 2 × H(+)
      Cofactor: Cu cation or Fe cation; FAD
Cu cation
or Fe cation
FAD
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.1517770113 Proc Natl Acad Sci U S A 113:2928-2933 (2016)
PubMed id: 26929369  
 
 
Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography.
Y.Fukuda, K.M.Tse, T.Nakane, T.Nakatsu, M.Suzuki, M.Sugahara, S.Inoue, T.Masuda, F.Yumoto, N.Matsugaki, E.Nango, K.Tono, Y.Joti, T.Kameshima, C.Song, T.Hatsui, M.Yabashi, O.Nureki, M.E.Murphy, T.Inoue, S.Iwata, E.Mizohata.
 
  ABSTRACT  
 
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
 

 

spacer

spacer