spacer
spacer

PDBsum entry 5cn5

Go to PDB code: 
protein ligands links
Oxygen storage PDB id
5cn5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
152 a.a.
Ligands
HEM
SO4 ×2
CMO
Waters ×75
PDB id:
5cn5
Name: Oxygen storage
Title: Ultrafast dynamics in myoglobin: 0 ps time delay
Structure: Myoglobin. Chain: a
Source: Equus caballus. Horse. Organism_taxid: 9796
Resolution:
1.80Å     R-factor:   0.178     R-free:   0.231
Authors: T.R.M.Barends,L.Foucar,A.Ardevol,K.J.Nass,A.Aquila,S.Botha,R.B.Doak, K.Falahati,E.Hartmann,M.Hilpert,M.Heinz,M.C.Hoffmann,J.Koefinger, J.Koglin,G.Kovacsova,M.Liang,D.Milathianaki,H.T.Lemke,J.Reinstein, C.M.Roome,R.L.Shoeman,G.J.Williams,I.Burghardt,G.Hummer,S.Boutet, I.Schlichting
Key ref: T.R.Barends et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350, 445-450. PubMed id: 26359336 DOI: 10.1126/science.aac5492
Date:
17-Jul-15     Release date:   16-Sep-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P68082  (MYG_HORSE) -  Myoglobin from Equus caballus
Seq:
Struc:
154 a.a.
152 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1126/science.aac5492 Science 350:445-450 (2015)
PubMed id: 26359336  
 
 
Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation.
T.R.Barends, L.Foucar, A.Ardevol, K.Nass, A.Aquila, S.Botha, R.B.Doak, K.Falahati, E.Hartmann, M.Hilpert, M.Heinz, M.C.Hoffmann, J.Köfinger, J.E.Koglin, G.Kovacsova, M.Liang, D.Milathianaki, H.T.Lemke, J.Reinstein, C.M.Roome, R.L.Shoeman, G.J.Williams, I.Burghardt, G.Hummer, S.Boutet, I.Schlichting.
 
  ABSTRACT  
 
The hemoprotein myoglobin is a model system for the study of protein dynamics. We used time-resolved serial femtosecond crystallography at an x-ray free-electron laser to resolve the ultrafast structural changes in the carbonmonoxy myoglobin complex upon photolysis of the Fe-CO bond. Structural changes appear throughout the protein within 500 femtoseconds, with the C, F, and H helices moving away from the heme cofactor and the E and A helices moving toward it. These collective movements are predicted by hybrid quantum mechanics/molecular mechanics simulations. Together with the observed oscillations of residues contacting the heme, our calculations support the prediction that an immediate collective response of the protein occurs upon ligand dissociation, as a result of heme vibrational modes coupling to global modes of the protein.
 

 

spacer

spacer