spacer
spacer

PDBsum entry 5o5e

Go to PDB code: 
protein ligands links
Transferase PDB id
5o5e

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
381 a.a.
Ligands
P6L
9LH
UNL
Waters ×9
PDB id:
5o5e
Name: Transferase
Title: Crystal structure of human udp-n-acetylglucosamine-dolichyl-phosphate n-acetylglucosaminephosphotransferase (dpagt1) (v264g mutant) in complex with tunicamycin
Structure: Udp-n-acetylglucosamine--dolichyl-phosphate n- acetylglucosaminephosphotransferase. Chain: a. Synonym: glcnac-1-p transferase,gpt,n-acetylglucosamine-1-phosphate transferase. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: dpagt1, dpagt2. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108.
Resolution:
3.40Å     R-factor:   0.230     R-free:   0.236
Authors: A.C.W.Pike,Y.Y.Dong,A.Chu,A.Tessitore,S.Goubin,L.Dong,S.Mukhopadhyay, P.Mahajan,R.Chalk,G.Berridge,D.Wang,K.Kupinska,K.Belaya,D.Beeson, N.Burgess-Brown,A.M.Edwards,C.H.Arrowsmith,C.Bountra,E.P.Carpenter, Structural Genomics Consortium (Sgc)
Key ref: Y.Y.Dong et al. (2018). Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell, 175, 1045. PubMed id: 30388443 DOI: 10.1016/j.cell.2018.10.037
Date:
01-Jun-17     Release date:   28-Feb-18    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9H3H5  (GPT_HUMAN) -  UDP-N-acetylglucosamine--dolichyl-phosphate N-acetylglucosaminephosphotransferase from Homo sapiens
Seq:
Struc:
408 a.a.
381 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.2.7.8.15  - UDP-N-acetylglucosamine--dolichyl-phosphate
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a di-trans,poly-cis-dolichyl phosphate + UDP-N-acetyl-alpha-D-glucosamine = an N-acetyl-alpha-D-glucosaminyl-diphospho-di-trans,poly-cis-dolichol + UMP
di-trans,poly-cis-dolichyl phosphate
Bound ligand (Het Group name = P6L)
matches with 43.59% similarity
+ UDP-N-acetyl-alpha-D-glucosamine
= N-acetyl-alpha-D-glucosaminyl-diphospho-di-trans,poly-cis-dolichol
+ UMP
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1016/j.cell.2018.10.037 Cell 175:1045 (2018)
PubMed id: 30388443  
 
 
Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design.
Y.Y.Dong, H.Wang, A.C.W.Pike, S.A.Cochrane, S.Hamedzadeh, F.J.Wyszyński, S.R.Bushell, S.F.Royer, D.A.Widdick, A.Sajid, H.I.Boshoff, Y.Park, R.Lucas, W.M.Liu, S.S.Lee, T.Machida, L.Minall, S.Mehmood, K.Belaya, W.W.Liu, A.Chu, L.Shrestha, S.M.M.Mukhopadhyay, C.Strain-Damerell, R.Chalk, N.A.Burgess-Brown, M.J.Bibb, C.E.Barry Iii, C.V.Robinson, D.Beeson, B.G.Davis, E.P.Carpenter.
 
  ABSTRACT  
 
Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic "lipid-altered" tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug.
 

 

spacer

spacer