spacer
spacer

PDBsum entry 4zcc

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
4zcc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
320 a.a.
Ligands
FAD ×4
NAI ×4
FMT ×4
Waters ×736
PDB id:
4zcc
Name: Oxidoreductase
Title: Renalase in complex with nadh
Structure: Renalase. Chain: a, b, c, d. Engineered: yes. Mutation: yes
Source: Pseudomonas syringae pv. Phaseolicola (strain 1448a / race 6). Organism_taxid: 264730. Strain: 1448a / race 6. Variant: race 6. Gene: pspph_1014. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.00Å     R-factor:   0.171     R-free:   0.215
Authors: N.R.Silvaggi,G.R.Moran,J.V.Roman
Key ref: M.R.Hoag et al. (2015). Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola. Biochemistry, 54, 3791-3802. PubMed id: 26016690 DOI: 10.1021/acs.biochem.5b00451
Date:
15-Apr-15     Release date:   15-Jul-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q48MT7  (RNLS_PSE14) -  Renalase from Pseudomonas savastanoi pv. phaseolicola (strain 1448A / Race 6)
Seq:
Struc:
328 a.a.
320 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.6.3.5  - renalase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. 1,2-dihydro-beta-NAD + O2 + H+ = H2O2 + NAD+
2. 1,2-dihydro-beta-NADP + O2 + H+ = H2O2 + NADP+
3. 1,6-dihydro-beta-NAD + O2 + H+ = H2O2 + NAD+
4. 1,6-dihydro-beta-NADP + O2 + H+ = H2O2 + NADP+
1,2-dihydro-beta-NAD
+ O2
+ H(+)
= H2O2
+
NAD(+)
Bound ligand (Het Group name = NAI)
corresponds exactly
1,2-dihydro-beta-NADP
+ O2
+ H(+)
= H2O2
+
NADP(+)
Bound ligand (Het Group name = NAI)
matches with 91.67% similarity
1,6-dihydro-beta-NAD
+ O2
+ H(+)
= H2O2
+
NAD(+)
Bound ligand (Het Group name = NAI)
corresponds exactly
1,6-dihydro-beta-NADP
+ O2
+ H(+)
= H2O2
+
NADP(+)
Bound ligand (Het Group name = NAI)
matches with 91.67% similarity
      Cofactor: FAD
FAD
Bound ligand (Het Group name = FAD) corresponds exactly
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/acs.biochem.5b00451 Biochemistry 54:3791-3802 (2015)
PubMed id: 26016690  
 
 
Bacterial Renalase: Structure and Kinetics of an Enzyme with 2- and 6-Dihydro-β-NAD(P) Oxidase Activity from Pseudomonas phaseolicola.
M.R.Hoag, J.Roman, B.A.Beaupre, N.R.Silvaggi, G.R.Moran.
 
  ABSTRACT  
 
Despite a lack of convincing in vitro evidence and a number of sound refutations, it is widely accepted that renalase is an enzyme unique to animals that catalyzes the oxidative degradation of catecholamines in blood in order to lower vascular tone. Very recently, we identified isomers of β-NAD(P)H as substrates for renalase (Beaupre, B. A. et al. (2015) Biochemistry, 54, 795-806). These molecules carry the hydride equivalent on the 2 or 6 position of the nicotinamide base and presumably arise in nonspecific redox reactions of nicotinamide dinucleotides. Renalase serves to rapidly oxidize these isomers to form β-NAD(P)(+) and then pass the electrons to dioxygen, forming H2O2. We have also shown that these substrate molecules are highly inhibitory to dehydrogenase enzymes and thus have proposed an intracellular metabolic role for this enzyme. Here, we identify a renalase from an organism without a circulatory system. This bacterial form of renalase has the same substrate specificity profile as that of human renalase but, in terms of binding constant (Kd), shows a marked preference for substrates derived from β-NAD(+). 2-dihydroNAD(P) substrates reduce the enzyme with rate constants (kred) that greatly exceed those for 6-dihydroNAD(P) substrates. Taken together, kred/Kd values indicate a minimum 20-fold preference for 2DHNAD. We also offer the first structures of a renalase in complex with catalytically relevant ligands β-NAD(+) and β-NADH (the latter being an analogue of the substrate(s)). These structures show potential electrostatic repulsion interactions with the product and a unique binding orientation for the substrate nicotinamide base that is consistent with the identified activity.
 

 

spacer

spacer