spacer
spacer

PDBsum entry 4xsh

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Signaling protein/transferase PDB id
4xsh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
177 a.a.
205 a.a.
Ligands
GSP
NAI
EDO ×3
Metals
_MG
Waters ×55
PDB id:
4xsh
Name: Signaling protein/transferase
Title: The complex structure of c3cer exoenzyme and gtp bound rhoa (nadh- bound state)
Structure: Transforming protein rhoa. Chain: a. Fragment: unp residues 1-179. Synonym: rho cdna clone 12,h12. Engineered: yes. Mutation: yes. Adp-ribosyltransferase. Chain: b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: rhoa, arh12, arha, rho12. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Bacillus cereus. Organism_taxid: 1396. Gene: c3cer.
Resolution:
2.50Å     R-factor:   0.196     R-free:   0.254
Authors: A.Toda,T.Tsurumura,T.Yoshida,H.Tsuge
Key ref: A.Toda et al. (2015). Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure. J Biol Chem, 290, 19423-19432. PubMed id: 26067270 DOI: 10.1074/jbc.M115.653220
Date:
22-Jan-15     Release date:   24-Jun-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P61586  (RHOA_HUMAN) -  Transforming protein RhoA from Homo sapiens
Seq:
Struc:
193 a.a.
177 a.a.*
Protein chain
Pfam   ArchSchema ?
Q8KNY0  (Q8KNY0_BACCE) -  ADP-ribosyltransferase (Fragment) from Bacillus cereus
Seq:
Struc:
219 a.a.
205 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chain A: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
Bound ligand (Het Group name = GSP)
matches with 93.94% similarity
+ H2O
= GDP
+ phosphate
+ H(+)
   Enzyme class 3: Chain B: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M115.653220 J Biol Chem 290:19423-19432 (2015)
PubMed id: 26067270  
 
 
Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.
A.Toda, T.Tsurumura, T.Yoshida, Y.Tsumori, H.Tsuge.
 
  ABSTRACT  
 
C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD(+) to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3.
 

 

spacer

spacer