spacer
spacer

PDBsum entry 4xkt

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Metal binding protein PDB id
4xkt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 6 more) 158 a.a.
Ligands
SO4 ×13
Waters ×2769
PDB id:
4xkt
Name: Metal binding protein
Title: E coli bfr variant y149f
Structure: Bacterioferritin. Chain: a, b, c, d, e, f, g, h, i, j, k, l. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: bfr, bn1008_2995, bn17_32701, bu34_11470, bu65_02845, bu66_00425, bu67_22375, bu68_21080, bu69_14600, cf57_02675, cf61_03435, do98_13405, dp79_03550, echms174_03989, ecrv308_03369, eh62_04010, eh63_09485, eh64_04335, eh65_17065, eh66_25435, el75_0360, el77_0399, el78_0411, el79_0379, el80_0371, ep08_09090, gr02_14320, gr05_21335, gr06_21735, kv39_17170, lf82_0224, pgd_00550.
Resolution:
1.82Å     R-factor:   0.169     R-free:   0.206
Authors: J.M.Bradley,A.M.Hemmings,N.E.Le Brun
Key ref: J.M.Bradley et al. (2015). Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin. Angew Chem Int Ed Engl, 54, 14763-14767. PubMed id: 26474305 DOI: 10.1002/anie.201507486
Date:
12-Jan-15     Release date:   16-Dec-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0ABD3  (BFR_ECOLI) -  Bacterioferritin from Escherichia coli (strain K12)
Seq:
Struc:
158 a.a.
158 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.1.16.3.1  - ferroxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 4 Fe2+ + O2 + 4 H+ = 4 Fe3+ + 2 H2O
4 × Fe(2+)
+ O2
+ 4 × H(+)
= 4 × Fe(3+)
+ 2 × H2O
      Cofactor: Cu cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1002/anie.201507486 Angew Chem Int Ed Engl 54:14763-14767 (2015)
PubMed id: 26474305  
 
 
Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.
J.M.Bradley, D.A.Svistunenko, T.L.Lawson, A.M.Hemmings, G.R.Moore, N.E.Le Brun.
 
  ABSTRACT  
 
Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe(3+) site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe(3+) into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe(2+) oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe(2+) oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2 .
 

 

spacer

spacer