spacer
spacer

PDBsum entry 4ufc

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
4ufc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
787 a.a.
Ligands
GIV ×2
CAC ×2
Metals
_CA ×3
PDB id:
4ufc
Name: Hydrolase
Title: Crystal structure of the gh95 enzyme bacova_03438
Structure: Gh95. Chain: a, b. Engineered: yes
Source: Bacteroides ovatus. Organism_taxid: 28116. Atcc: 8483. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.81Å     R-factor:   0.188     R-free:   0.228
Authors: A.Rogowski,J.A.Briggs,J.C.Mortimer,T.Tryfona,N.Terrapon,E.C.Lowe, A.Basle,C.Morland,A.M.Day,H.Zheng,T.E.Rogers,P.Thompson,A.R.Hawkins, M.P.Yadav,B.Henrissat,E.C.Martens,P.Dupree,H.J.Gilbert,D.N.Bolam
Key ref: A.Rogowski et al. (2015). Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun, 6, 7481. PubMed id: 26112186 DOI: 10.1038/ncomms8481
Date:
16-Mar-15     Release date:   08-Jul-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
A7M011  (A7M011_BACO1) -  Glycosyl hydrolase family 95 N-terminal domain-containing protein from Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153)
Seq:
Struc:
 
Seq:
Struc:
811 a.a.
787 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/ncomms8481 Nat Commun 6:7481 (2015)
PubMed id: 26112186  
 
 
Glycan complexity dictates microbial resource allocation in the large intestine.
A.Rogowski, J.A.Briggs, J.C.Mortimer, T.Tryfona, N.Terrapon, E.C.Lowe, A.Baslé, C.Morland, A.M.Day, H.Zheng, T.E.Rogers, P.Thompson, A.R.Hawkins, M.P.Yadav, B.Henrissat, E.C.Martens, P.Dupree, H.J.Gilbert, D.N.Bolam.
 
  ABSTRACT  
 
The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota.
 

 

spacer

spacer