spacer
spacer

PDBsum entry 4plz

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
4plz

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
302 a.a.
Ligands
OXM
NAI
Waters ×547
PDB id:
4plz
Name: Oxidoreductase
Title: Crystal structure of plasmodium falciparum lactate dehydrogenase mutant w107fa.
Structure: L-lactate dehydrogenase. Chain: a. Synonym: lactate dehydrogenase. Engineered: yes
Source: Plasmodium falciparum. Organism_taxid: 5833. Gene: ldh-p, ldh, ldh. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
1.05Å     R-factor:   0.130     R-free:   0.146
Authors: J.I.Boucher,J.R.Jacobowitz,B.C.Beckett,S.Classen,D.L.Theobald
Key ref: J.I.Boucher et al. (2014). An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. Elife, 3, e02304. PubMed id: 24966208 DOI: 10.7554/eLife.02304
Date:
20-May-14     Release date:   02-Jul-14    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q27743  (LDH_PLAFD) -  L-lactate dehydrogenase from Plasmodium falciparum (isolate CDC / Honduras)
Seq:
Struc:
316 a.a.
302 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.1.1.27  - L-lactate dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: (S)-lactate + NAD+ = pyruvate + NADH + H+
(S)-lactate
Bound ligand (Het Group name = OXM)
matches with 71.43% similarity
+
NAD(+)
Bound ligand (Het Group name = NAI)
corresponds exactly
= pyruvate
+ NADH
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.7554/eLife.02304 Elife 3:e02304 (2014)
PubMed id: 24966208  
 
 
An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases.
J.I.Boucher, J.R.Jacobowitz, B.C.Beckett, S.Classen, D.L.Theobald.
 
  ABSTRACT  
 
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.
 

 

spacer

spacer