spacer
spacer

PDBsum entry 4l98

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transcription/transcription inhibitor PDB id
4l98

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
244 a.a.
258 a.a.
Ligands
LRG ×2
Waters ×227
PDB id:
4l98
Name: Transcription/transcription inhibitor
Title: Crystal structure of the complex of f360l ppargamma mutant with the ligand lt175
Structure: Peroxisome proliferator-activated receptor gamma. Chain: a, b. Fragment: ligand binding domain (unp residues 235-505). Synonym: ppar-gamma, nuclear receptor subfamily 1 group c member 3. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pparg, nr1c3. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.28Å     R-factor:   0.213     R-free:   0.258
Authors: G.Pochetti,R.Montanari,V.Consalvi,R.Chiaraluce,A.Pasquo,D.Capelli, F.Loiodice,A.Laghezza,C.Lori
Key ref: C.Lori et al. (2014). Structural basis of the transactivation deficiency of the human PPARγ F360L mutant associated with familial partial lipodystrophy. Acta Crystallogr D Biol Crystallogr, 70, 1965-1976. PubMed id: 25004973 DOI: 10.1107/S1399004714009638
Date:
18-Jun-13     Release date:   25-Jun-14    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P37231  (PPARG_HUMAN) -  Peroxisome proliferator-activated receptor gamma from Homo sapiens
Seq:
Struc:
505 a.a.
244 a.a.*
Protein chain
Pfam   ArchSchema ?
P37231  (PPARG_HUMAN) -  Peroxisome proliferator-activated receptor gamma from Homo sapiens
Seq:
Struc:
505 a.a.
258 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1107/S1399004714009638 Acta Crystallogr D Biol Crystallogr 70:1965-1976 (2014)
PubMed id: 25004973  
 
 
Structural basis of the transactivation deficiency of the human PPARγ F360L mutant associated with familial partial lipodystrophy.
C.Lori, A.Pasquo, R.Montanari, D.Capelli, V.Consalvi, R.Chiaraluce, L.Cervoni, F.Loiodice, A.Laghezza, M.Aschi, A.Giorgi, G.Pochetti.
 
  ABSTRACT  
 
The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.
 

 

spacer

spacer