spacer
spacer

PDBsum entry 4j98

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
4j98

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
304 a.a.
Ligands
SO4 ×5
ACP
Waters ×230
PDB id:
4j98
Name: Transferase
Title: Crystal structure of fgf receptor 2 (fgfr2) kinase domain harboring the gain-of-function k659q mutation.
Structure: Fibroblast growth factor receptor 2. Chain: a, b. Fragment: human fgf receptor 2 kinase domain (unp residues 458-768). Synonym: fgfr-2, k-sam, kgfr, keratinocyte growth factor receptor. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: bek, fgfr2, kgfr, ksam. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.31Å     R-factor:   0.190     R-free:   0.235
Authors: Z.Huang,H.Chen,M.Mohammadi
Key ref: H.Chen et al. (2013). Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep, 4, 376-384. PubMed id: 23871672 DOI: 10.1016/j.celrep.2013.06.025
Date:
15-Feb-13     Release date:   07-Aug-13    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P21802  (FGFR2_HUMAN) -  Fibroblast growth factor receptor 2 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
821 a.a.
304 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.2.7.10.1  - receptor protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
Bound ligand (Het Group name = ACP)
matches with 81.25% similarity
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.celrep.2013.06.025 Cell Rep 4:376-384 (2013)
PubMed id: 23871672  
 
 
Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations.
H.Chen, Z.Huang, K.Dutta, S.Blais, T.A.Neubert, X.Li, D.Cowburn, N.J.Traaseth, M.Mohammadi.
 
  ABSTRACT  
 
The basal (ligand-independent) kinase activity of receptor tyrosine kinases (RTKs) promotes trans-phosphorylation on activation loop tyrosines upon ligand-induced receptor dimerization, thus upregulating intrinsic kinase activity and triggering intracellular signaling. To understand the molecular determinants of intrinsic kinase activity, we used X-ray crystallography and NMR spectroscopy to analyze pathogenic FGF receptor mutants with gradations in gain-of-function activity. These structural analyses revealed a "two-state" dynamic equilibrium model whereby the kinase toggles between an "inhibited," structurally rigid ground state and a more dynamic and heterogeneous active state. The pathogenic mutations have different abilities to shift this equilibrium toward the active state. The increase in the fractional population of FGF receptors in the active state correlates with the degree of gain-of-function activity and clinical severity. Our data demonstrate that the fractional population of RTKs in the active state determines intrinsic kinase activity and underscore how a slight increase in the active population of kinases can have grave consequences for human health.
 

 

spacer

spacer