spacer
spacer

PDBsum entry 4id4

Go to PDB code: 
protein metals links
Hydrolase PDB id
4id4

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
263 a.a.
Metals
_MG
_CL ×5
Waters ×425
PDB id:
4id4
Name: Hydrolase
Title: Crystal structure of chimeric beta-lactamase ctem-17m
Structure: Beta-lactamase tem, beta-lactamase pse-4. Chain: a. Synonym: irt-4, penicillinase, tem-1, tem-16/caz-7, tem-2, tem- 24/caz-6, tem-3, tem-4, tem-5, tem-6, tem-8/caz-2, beta-lactamase carb-1, carbenicillinase 1. Engineered: yes
Source: Escherichia coli, pseudomonas aeruginosa. Organism_taxid: 562, 287. Gene: bla, blat-3, blat-4, blat-5, blat-6, carb1, pse4. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.05Å     R-factor:   0.116     R-free:   0.138
Authors: J.Park,S.Gobeil,J.N.Pelletier,A.M.Berghuis
Key ref: S.M.Gobeil et al. (2014). Maintenance of native-like protein dynamics may not be required for engineering functional proteins. Chem Biol, 21, 1330-1340. PubMed id: 25200606 DOI: 10.1016/j.chembiol.2014.07.016
Date:
11-Dec-12     Release date:   25-Dec-13    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P16897  (BLP4_PSEAI) -  Beta-lactamase PSE-4 from Pseudomonas aeruginosa
Seq:
Struc:
288 a.a.
263 a.a.*
Protein chain
Pfam   ArchSchema ?
P62593  (BLAT_ECOLX) -  Beta-lactamase TEM from Escherichia coli
Seq:
Struc:
286 a.a.
263 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 150 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.5.2.6  - beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin Biosynthesis and Metabolism
      Reaction: a beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zn(2+)

 

 
DOI no: 10.1016/j.chembiol.2014.07.016 Chem Biol 21:1330-1340 (2014)
PubMed id: 25200606  
 
 
Maintenance of native-like protein dynamics may not be required for engineering functional proteins.
S.M.Gobeil, C.M.Clouthier, J.Park, D.Gagné, A.M.Berghuis, N.Doucet, J.N.Pelletier.
 
  ABSTRACT  
 
Proteins are dynamic systems, and understanding dynamics is critical for fully understanding protein function. Therefore, the question of whether laboratory engineering has an impact on protein dynamics is of general interest. Here, we demonstrate that two homologous, naturally evolved enzymes with high degrees of structural and functional conservation also exhibit conserved dynamics. Their similar set of slow timescale dynamics is highly restricted, consistent with evolutionary conservation of a functionally important feature. However, we also show that dynamics of a laboratory-engineered chimeric enzyme obtained by recombination of the two homologs exhibits striking difference on the millisecond timescale, despite function and high-resolution crystal structure (1.05 Å) being conserved. The laboratory-engineered chimera is thus functionally tolerant to modified dynamics on the timescale of catalytic turnover. Tolerance to dynamic variation implies that maintenance of native-like protein dynamics may not be required when engineering functional proteins.
 

 

spacer

spacer