spacer
spacer

PDBsum entry 4i4l

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Motor protein PDB id
4i4l

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
299 a.a.
305 a.a.
Ligands
ADP
SO4 ×6
PDB id:
4i4l
Name: Motor protein
Title: Crystal structure of nucleotide-bound w-w-w clpx hexamer
Structure: Atp-dependent clp protease atp-binding subunit clpx. Chain: a, b, c, d, e, f. Engineered: yes
Source: Escherichia coli. Organism_taxid: 83333. Strain: k12. Gene: b0438, clpx, jw0428, lopc. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
3.70Å     R-factor:   0.301     R-free:   0.323
Authors: S.E.Glynn,A.R.Nager,B.S.Stinson,K.R.Schmitz,T.A.Baker,R.T.Sauer
Key ref: B.M.Stinson et al. (2013). Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell, 153, 628-639. PubMed id: 23622246 DOI: 10.1016/j.cell.2013.03.029
Date:
27-Nov-12     Release date:   15-May-13    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A6H1  (CLPX_ECOLI) -  ATP-dependent Clp protease ATP-binding subunit ClpX from Escherichia coli (strain K12)
Seq:
Struc:
424 a.a.
299 a.a.*
Protein chains
Pfam   ArchSchema ?
P0A6H1  (CLPX_ECOLI) -  ATP-dependent Clp protease ATP-binding subunit ClpX from Escherichia coli (strain K12)
Seq:
Struc:
424 a.a.
305 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1016/j.cell.2013.03.029 Cell 153:628-639 (2013)
PubMed id: 23622246  
 
 
Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
B.M.Stinson, A.R.Nager, S.E.Glynn, K.R.Schmitz, T.A.Baker, R.T.Sauer.
 
  ABSTRACT  
 
ClpX, a AAA+ ring homohexamer, uses the energy of ATP binding and hydrolysis to power conformational changes that unfold and translocate target proteins into the ClpP peptidase for degradation. In multiple crystal structures, some ClpX subunits adopt nucleotide-loadable conformations, others adopt unloadable conformations, and each conformational class exhibits substantial variability. Using mutagenesis of individual subunits in covalently tethered hexamers together with fluorescence methods to assay the conformations and nucleotide-binding properties of these subunits, we demonstrate that dynamic interconversion between loadable and unloadable conformations is required to couple ATP hydrolysis by ClpX to mechanical work. ATP binding to different classes of subunits initially drives staged allosteric changes, which set the conformation of the ring to allow hydrolysis and linked mechanical steps. Subunit switching between loadable and unloadable conformations subsequently isomerizes or resets the configuration of the nucleotide-loaded ring and is required for mechanical function.
 

 

spacer

spacer