spacer
spacer

PDBsum entry 4qg9

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase PDB id
4qg9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
499 a.a.
417 a.a.
Ligands
ACT ×4
Metals
_MG ×3
Waters ×448
PDB id:
4qg9
Name: Transferase
Title: Crystal structure of pkm2-r399e mutant
Structure: Pyruvate kinase pkm. Chain: a, b, c, d. Synonym: cytosolic thyroid hormone-binding protein, cthbp, opa- interacting protein 3, oip-3, pyruvate kinase 2/3, pyruvate kinase muscle isozyme, thyroid hormone-binding protein 1, thbp1, tumor m2- pk, p58. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pkm, oip3, pk2, pk3, pkm2. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.38Å     R-factor:   0.212     R-free:   0.256
Authors: P.Wang,C.Sun,T.Zhu,Y.Xu
Key ref: P.Wang et al. (2015). Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell, 6, 275-287. PubMed id: 25645022 DOI: 10.1007/s13238-015-0132-x
Date:
22-May-14     Release date:   25-Feb-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P14618  (KPYM_HUMAN) -  Pyruvate kinase PKM from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
531 a.a.
499 a.a.*
Protein chains
Pfam   ArchSchema ?
P14618  (KPYM_HUMAN) -  Pyruvate kinase PKM from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
531 a.a.
417 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: Chains A, B, C, D: E.C.2.7.1.40  - pyruvate kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: pyruvate + ATP = phosphoenolpyruvate + ADP + H+
pyruvate
+
ATP
Bound ligand (Het Group name = ACT)
matches with 66.67% similarity
= phosphoenolpyruvate
+ ADP
+ H(+)
   Enzyme class 3: Chains A, B, C, D: E.C.2.7.10.2  - non-specific protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
   Enzyme class 4: Chains A, B, C, D: E.C.2.7.11.1  - non-specific serine/threonine protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
2. L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
L-seryl-[protein]
+ ATP
= O-phospho-L-seryl-[protein]
+ ADP
+ H(+)
L-threonyl-[protein]
+ ATP
= O-phospho-L-threonyl-[protein]
+ ADP
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1007/s13238-015-0132-x Protein Cell 6:275-287 (2015)
PubMed id: 25645022  
 
 
Structural insight into mechanisms for dynamic regulation of PKM2.
P.Wang, C.Sun, T.Zhu, Y.Xu.
 
  ABSTRACT  
 
Pyruvate kinase isoform M2 (PKM2) converts phosphoenolpyruvate (PEP) to pyruvate and plays an important role in cancer metabolism. Here, we show that post-translational modifications and a patient-derived mutation regulate pyruvate kinase activity of PKM2 through modulating the conformation of the PKM2 tetramer. We determined crystal structures of human PKM2 mutants and proposed a "seesaw" model to illustrate conformational changes between an inactive T-state and an active R-state tetramers of PKM2. Biochemical and structural analyses demonstrate that PKM2(Y105E) (phosphorylation mimic of Y105) decreases pyruvate kinase activity by inhibiting FBP (fructose 1,6-bisphosphate)-induced R-state formation, and PKM2(K305Q) (acetylation mimic of K305) abolishes the activity by hindering tetramer formation. K422R, a patient-derived mutation of PKM2, favors a stable, inactive T-state tetramer because of strong intermolecular interactions. Our study reveals the mechanism for dynamic regulation of PKM2 by post-translational modifications and a patient-derived mutation and provides a structural basis for further investigation of other modifications and mutations of PKM2 yet to be discovered.
 

 

spacer

spacer