spacer
spacer

PDBsum entry 3onc

Go to PDB code: 
protein ligands metals links
Oxidoreductase/oxidoreductase inhibitor PDB id
3onc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
313 a.a.
Ligands
NAP
LDT
CIT
Metals
_BR
Waters ×462
PDB id:
3onc
Name: Oxidoreductase/oxidoreductase inhibitor
Title: Bond breakage and relocation of a covalently bound bromine of idd594 in a complex with har t113a mutant after moderate radiation dose
Structure: Aldose reductase. Chain: a. Synonym: ar, aldehyde reductase, aldo-keto reductase family 1 member b1. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: alr2. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.06Å     R-factor:   0.096     R-free:   0.118
Authors: C.Koch,A.Heine,G.Klebe
Key ref: C.Koch et al. (2011). Radiation damage reveals promising interaction position. J Synchrotron Radiat, 18, 782-789. PubMed id: 21862860
Date:
28-Aug-10     Release date:   17-Aug-11    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P15121  (ALDR_HUMAN) -  Aldo-keto reductase family 1 member B1 from Homo sapiens
Seq:
Struc:
316 a.a.
313 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.1.1.1.21  - aldose reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. an alditol + NAD+ = an aldose + NADH + H+
2. an alditol + NADP+ = an aldose + NADPH + H+
alditol
+
NAD(+)
Bound ligand (Het Group name = NAP)
matches with 91.67% similarity
= aldose
+ NADH
+ H(+)
alditol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= aldose
+ NADPH
+ H(+)
   Enzyme class 2: E.C.1.1.1.300  - NADP-retinol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: all-trans-retinol + NADP+ = all-trans-retinal + NADPH + H+
all-trans-retinol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= all-trans-retinal
+ NADPH
+ H(+)
   Enzyme class 3: E.C.1.1.1.372  - D/L-glyceraldehyde reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. glycerol + NADP+ = L-glyceraldehyde + NADPH + H+
2. glycerol + NADP+ = D-glyceraldehyde + NADPH + H+
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= L-glyceraldehyde
+ NADPH
+ H(+)
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= D-glyceraldehyde
+ NADPH
+ H(+)
   Enzyme class 4: E.C.1.1.1.54  - allyl-alcohol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: allyl alcohol + NADP+ = acrolein + NADPH + H+
allyl alcohol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= acrolein
+ NADPH
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Synchrotron Radiat 18:782-789 (2011)
PubMed id: 21862860  
 
 
Radiation damage reveals promising interaction position.
C.Koch, A.Heine, G.Klebe.
 
  ABSTRACT  
 
High-resolution structural data of protein inhibitor complexes are the key to rational drug design. Synchrotron radiation allows for atomic resolutions but is frequently accompanied by radiation damage to protein complexes. In this study a human aldose reductase mutant complexed with a bromine-substituted inhibitor was determined to atomic resolution [Protein Data Bank (PDB) code 3onc]. Though the radiation dose was moderate, a selective disruption of a bromine-inhibitor bond during the experiment was observed while the protein appears unaffected. A covalent bond to bromine is cleaved and the displaced atom is not scattered throughout the crystal but can most likely be assigned as a bromide to an additional difference electron density peak observed in the structure. The bromide relocates to an adjacent unoccupied site where promising interactions to protein residues stabilize its position. These findings were verified by a second similar structure determined with considerably higher radiation dose (PDB code 3onb).
 

 

spacer

spacer