spacer
spacer

PDBsum entry 3o9h

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
3o9h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a.
Ligands
PO4 ×4
ACT
K2E
Waters ×156
PDB id:
3o9h
Name: Hydrolase/hydrolase inhibitor
Title: Crystal structure of wild-type HIV-1 protease in complex with kd26
Structure: Protease. Chain: a, b. Fragment: HIV-1 protease. Engineered: yes. Mutation: yes
Source: Human immunodeficiency virus 1. HIV-1. Organism_taxid: 11676. Strain: hxb2. Gene: gag-pol, pol. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.70Å     R-factor:   0.168     R-free:   0.208
Authors: C.A.Schiffer,M.N.L.Nalam
Key ref: M.N.Nalam et al. (2013). Substrate envelope-designed potent HIV-1 protease inhibitors to avoid drug resistance. Chem Biol, 20, 1116-1124. PubMed id: 24012370 DOI: 10.1016/j.chembiol.2013.07.014
Date:
04-Aug-10     Release date:   10-Aug-11    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03369  (POL_HV1A2) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate ARV2/SF2)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1437 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
Bound ligand (Het Group name = PO4)
matches with 55.56% similarity
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
Bound ligand (Het Group name = PO4)
matches with 55.56% similarity
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.chembiol.2013.07.014 Chem Biol 20:1116-1124 (2013)
PubMed id: 24012370  
 
 
Substrate envelope-designed potent HIV-1 protease inhibitors to avoid drug resistance.
M.N.Nalam, A.Ali, G.S.Reddy, H.Cao, S.G.Anjum, M.D.Altman, N.K.Yilmaz, B.Tidor, T.M.Rana, C.A.Schiffer.
 
  ABSTRACT  
 
The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against different clades of HIV as well as a panel of 12 drug-resistant viral strains. The substrate envelope model proves to be a powerful strategy to develop potent and robust inhibitors that avoid drug resistance.
 

 

spacer

spacer