spacer
spacer

PDBsum entry 3hap

Go to PDB code: 
protein ligands links
Transport protein PDB id
3hap

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
226 a.a. *
Ligands
RET
D12 ×8
D10 ×4
R16
CPS
HP6
DD9
Waters ×154
* Residue conservation analysis
PDB id:
3hap
Name: Transport protein
Title: Crystal structure of bacteriorhodopsin mutant l111a crystallized from bicelles
Structure: Bacteriorhodopsin. Chain: a. Synonym: br. Engineered: yes. Mutation: yes
Source: Halobacterium salinarum. Halobacterium halobium. Organism_taxid: 2242. Gene: bop, vng_1467g. Expressed in: halobacterium salinarum. Expression_system_taxid: 2242.
Resolution:
1.60Å     R-factor:   0.169     R-free:   0.192
Authors: N.H.Joh,D.Yang,J.U.Bowie
Key ref: N.H.Joh et al. (2009). Similar energetic contributions of packing in the core of membrane and water-soluble proteins. J Am Chem Soc, 131, 10846-10847. PubMed id: 19603754
Date:
02-May-09     Release date:   22-Sep-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02945  (BACR_HALSA) -  Bacteriorhodopsin from Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1)
Seq:
Struc:
262 a.a.
226 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
J Am Chem Soc 131:10846-10847 (2009)
PubMed id: 19603754  
 
 
Similar energetic contributions of packing in the core of membrane and water-soluble proteins.
N.H.Joh, A.Oberai, D.Yang, J.P.Whitelegge, J.U.Bowie.
 
  ABSTRACT  
 
A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21377472 C.N.Pace, H.Fu, K.L.Fryar, J.Landua, S.R.Trevino, B.A.Shirley, M.M.Hendricks, S.Iimura, K.Gajiwala, J.M.Scholtz, and G.R.Grimsley (2011).
Contribution of hydrophobic interactions to protein stability.
  J Mol Biol, 408, 514-528.  
21399632 S.Kleinlogel, K.Feldbauer, R.E.Dempski, H.Fotis, P.G.Wood, C.Bamann, and E.Bamberg (2011).
Ultra light-sensitive and fast neuronal activation with the Ca²+-permeable channelrhodopsin CatCh.
  Nat Neurosci, 14, 513-518.  
20101433 S.Fiedler, J.Broecker, and S.Keller (2010).
Protein folding in membranes.
  Cell Mol Life Sci, 67, 1779-1798.  
20095051 W.A.Baase, L.Liu, D.E.Tronrud, and B.W.Matthews (2010).
Lessons from the lysozyme of phage T4.
  Protein Sci, 19, 631-641.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer