|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
Molecular structure for the HIV-1 gp120 trimer in the unliganded state
|
|
Structure:
|
 |
HIV-1 envelope glycoprotein gp120. Chain: a, d, g. Fragment: core: residues 90-124. Synonym: su, glycoprotein 120, gp120. Engineered: yes. HIV-1 envelope glycoprotein gp120. Chain: b, e, h. Fragment: core: residues 198-396. Synonym: su, glycoprotein 120, gp120.
|
|
Source:
|
 |
HIV-1 m:b_hxb2r. Organism_taxid: 11706. Strain: isolate hxb2 group m subtype b, bal. Gene: env. Expressed in: homo sapiens. Expression_system_taxid: 9606. Expression_system_taxid: 9606
|
|
Authors:
|
 |
M.J.Borgnia,J.Liu,A.Bartesaghi,G.Sapiro,S.Subramaniam
|
Key ref:
|
 |
J.Liu
et al.
(2008).
Molecular architecture of native HIV-1 gp120 trimers.
Nature,
455,
109-113.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
02-Jul-08
|
Release date:
|
19-Aug-08
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P04578
(ENV_HV1H2) -
Envelope glycoprotein gp160 from Human immunodeficiency virus type 1 group M subtype B (isolate HXB2)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
856 a.a.
35 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
455:109-113
(2008)
|
|
PubMed id:
|
|
|
|
|
| |
|
Molecular architecture of native HIV-1 gp120 trimers.
|
|
J.Liu,
A.Bartesaghi,
M.J.Borgnia,
G.Sapiro,
S.Subramaniam.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The envelope glycoproteins (Env) of human and simian immunodeficiency viruses
(HIV and SIV, respectively) mediate virus binding to the cell surface receptor
CD4 on target cells to initiate infection. Env is a heterodimer of a
transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120), and forms
trimers on the surface of the viral membrane. Using cryo-electron tomography
combined with three-dimensional image classification and averaging, we report
the three-dimensional structures of trimeric Env displayed on native HIV-1 in
the unliganded state, in complex with the broadly neutralizing antibody b12 and
in a ternary complex with CD4 and the 17b antibody. By fitting the known crystal
structures of the monomeric gp120 core in the b12- and CD4/17b-bound
conformations into the density maps derived by electron tomography, we derive
molecular models for the native HIV-1 gp120 trimer in unliganded and CD4-bound
states. We demonstrate that CD4 binding results in a major reorganization of the
Env trimer, causing an outward rotation and displacement of each gp120 monomer.
This appears to be coupled with a rearrangement of the gp41 region along the
central axis of the trimer, leading to closer contact between the viral and
target cell membranes. Our findings elucidate the structure and conformational
changes of trimeric HIV-1 gp120 relevant to antibody neutralization and
attachment to target cells.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Averaged 3D structure of the HIV-1 spike in complex
with b12-Fab. a, Perspective view of the surface of the
density map shown at two thresholds; one to include the entire
spike (outer), and another to highlight the Fab and gp120
components (inner). b–d, Front (b, c) and top (d) views of the
map fitted with X-ray coordinates of the complex of the Fab
fragment of b12 (cyan) with gp120 (red, PDB ID, 2NY7); only
gp120 coordinates are shown in c, which is at the inner
threshold. Likely locations of the V1/V2 loop and gp41 regions
are indicated by asterisks in d and the white arrow in b,
respectively. The stumps of the V1/V2 and V3 loop regions are
shown in yellow and green, respectively.
|
 |
Figure 4.
Figure 4: Description of the conformational change in the gp120
trimer induced by CD4 binding. a–d, Model for the
conformational change from the unliganded (a, c) to the
CD4-bound state (b, d) shown as top (a, b) and front (c, d)
views. The gp120 core, CD4, V1/V2 and V3 stems are shown in
white, yellow, red and green colours, respectively. e, Schematic
description of the gp41 (blue) and gp120 (red/purple) regions of
the trimeric spike and the conformational changes that occur
upon CD4 binding. The yellow patch near the apex marks the
location of the CD4 binding site in the unliganded spike and the
green patch at the apex marks the location of the V3 loop region
in the spike after CD4 binding. f, Schematic view of the
consequence of the CD4-induced conformational changes for viral
attachment to the target cell and interaction with chemokine
receptors (green at top). Colours in f have same meaning as in e.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2008,
455,
109-113)
copyright 2008.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Engelman,
and
P.Cherepanov
(2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
|
| |
Nat Rev Microbiol,
10,
279-290.
|
 |
|
|
|
|
 |
Y.Mao,
L.Wang,
C.Gu,
A.Herschhorn,
S.H.Xiang,
H.Haim,
X.Yang,
and
J.Sodroski
(2012).
Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer.
|
| |
Nat Struct Mol Biol,
19,
893-899.
|
 |
|
|
|
|
 |
B.Wei,
N.Han,
H.Z.Liu,
A.Rayner,
and
S.Rayner
(2011).
Use of mutual information arrays to predict coevolving sites in the full length HIV gp120 protein for subtypes B and C.
|
| |
Virol Sin,
26,
95.
|
 |
|
|
|
|
 |
C.G.Moscoso,
Y.Sun,
S.Poon,
L.Xing,
E.Kan,
L.Martin,
D.Green,
F.Lin,
A.G.Vahlne,
S.Barnett,
I.Srivastava,
and
R.H.Cheng
(2011).
Quaternary structures of HIV Env immunogen exhibit conformational vicissitudes and interface diminution elicited by ligand binding.
|
| |
Proc Natl Acad Sci U S A,
108,
6091-6096.
|
 |
|
|
|
|
 |
I.Azimi,
J.W.Wong,
and
P.J.Hogg
(2011).
Control of mature protein function by allosteric disulfide bonds.
|
| |
Antioxid Redox Signal,
14,
113-126.
|
 |
|
|
|
|
 |
J.S.McLellan,
M.Pancera,
C.Carrico,
J.Gorman,
J.P.Julien,
R.Khayat,
R.Louder,
R.Pejchal,
M.Sastry,
K.Dai,
S.O'Dell,
N.Patel,
S.Shahzad-ul-Hussan,
Y.Yang,
B.Zhang,
T.Zhou,
J.Zhu,
J.C.Boyington,
G.Y.Chuang,
D.Diwanji,
I.Georgiev,
Y.D.Kwon,
D.Lee,
M.K.Louder,
S.Moquin,
S.D.Schmidt,
Z.Y.Yang,
M.Bonsignori,
J.A.Crump,
S.H.Kapiga,
N.E.Sam,
B.F.Haynes,
D.R.Burton,
W.C.Koff,
L.M.Walker,
S.Phogat,
R.Wyatt,
J.Orwenyo,
L.X.Wang,
J.Arthos,
C.A.Bewley,
J.R.Mascola,
G.J.Nabel,
W.R.Schief,
A.B.Ward,
I.A.Wilson,
and
P.D.Kwong
(2011).
Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9.
|
| |
Nature,
480,
336-343.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.T.Da,
J.M.Quan,
and
Y.D.Wu
(2011).
Understanding the binding mode and function of BMS-488043 against HIV-1 viral entry.
|
| |
Proteins,
79,
1810-1819.
|
 |
|
|
|
|
 |
M.Caffrey
(2011).
HIV envelope: challenges and opportunities for development of entry inhibitors.
|
| |
Trends Microbiol,
19,
191-197.
|
 |
|
|
|
|
 |
A.Nandi,
C.L.Lavine,
P.Wang,
I.Lipchina,
P.A.Goepfert,
G.M.Shaw,
G.D.Tomaras,
D.C.Montefiori,
B.F.Haynes,
P.Easterbrook,
J.E.Robinson,
J.G.Sodroski,
and
X.Yang
(2010).
Epitopes for broad and potent neutralizing antibody responses during chronic infection with human immunodeficiency virus type 1.
|
| |
Virology,
396,
339-348.
|
 |
|
|
|
|
 |
B.Wu,
E.Y.Chien,
C.D.Mol,
G.Fenalti,
W.Liu,
V.Katritch,
R.Abagyan,
A.Brooun,
P.Wells,
F.C.Bi,
D.J.Hamel,
P.Kuhn,
T.M.Handel,
V.Cherezov,
and
R.C.Stevens
(2010).
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
|
| |
Science,
330,
1066-1071.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Sundling,
S.O'Dell,
I.Douagi,
M.N.Forsell,
A.Mörner,
K.Loré,
J.R.Mascola,
R.T.Wyatt,
and
G.B.Karlsson Hedestam
(2010).
Immunization with wild-type or CD4-binding-defective HIV-1 Env trimers reduces viremia equivalently following heterologous challenge with simian-human immunodeficiency virus.
|
| |
J Virol,
84,
9086-9095.
|
 |
|
|
|
|
 |
D.P.Leaman,
H.Kinkead,
and
M.B.Zwick
(2010).
In-solution virus capture assay helps deconstruct heterogeneous antibody recognition of human immunodeficiency virus type 1.
|
| |
J Virol,
84,
3382-3395.
|
 |
|
|
|
|
 |
D.R.Burton,
and
R.A.Weiss
(2010).
AIDS/HIV. A boost for HIV vaccine design.
|
| |
Science,
329,
770-773.
|
 |
|
|
|
|
 |
D.Tyssen,
S.A.Henderson,
A.Johnson,
J.Sterjovski,
K.Moore,
J.La,
M.Zanin,
S.Sonza,
P.Karellas,
M.P.Giannis,
G.Krippner,
S.Wesselingh,
T.McCarthy,
P.R.Gorry,
P.A.Ramsland,
R.Cone,
J.R.Paull,
G.R.Lewis,
and
G.Tachedjian
(2010).
Structure activity relationship of dendrimer microbicides with dual action antiviral activity.
|
| |
PLoS One,
5,
e12309.
|
 |
|
|
|
|
 |
G.Vasiliver-Shamis,
M.L.Dustin,
and
C.E.Hioe
(2010).
HIV-1 Virological Synapse is not Simply a Copycat of the Immunological Synapse.
|
| |
Viruses,
2,
1239-1260.
|
 |
|
|
|
|
 |
H.C.Kelker,
V.R.Itri,
and
F.T.Valentine
(2010).
A strategy for eliciting antibodies against cryptic, conserved, conformationally dependent epitopes of HIV envelope glycoprotein.
|
| |
PLoS One,
5,
e8555.
|
 |
|
|
|
|
 |
H.Mouquet,
J.F.Scheid,
M.J.Zoller,
M.Krogsgaard,
R.G.Ott,
S.Shukair,
M.N.Artyomov,
J.Pietzsch,
M.Connors,
F.Pereyra,
B.D.Walker,
D.D.Ho,
P.C.Wilson,
M.S.Seaman,
H.N.Eisen,
A.K.Chakraborty,
T.J.Hope,
J.V.Ravetch,
H.Wardemann,
and
M.C.Nussenzweig
(2010).
Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation.
|
| |
Nature,
467,
591-595.
|
 |
|
|
|
|
 |
H.S.Lee,
M.Contarino,
M.Umashankara,
A.Schön,
E.Freire,
A.B.Smith,
I.M.Chaiken,
and
L.S.Penn
(2010).
Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120.
|
| |
Anal Bioanal Chem,
396,
1143-1152.
|
 |
|
|
|
|
 |
I.Douagi,
M.N.Forsell,
C.Sundling,
S.O'Dell,
Y.Feng,
P.Dosenovic,
Y.Li,
R.Seder,
K.Loré,
J.R.Mascola,
R.T.Wyatt,
and
G.B.Karlsson Hedestam
(2010).
Influence of novel CD4 binding-defective HIV-1 envelope glycoprotein immunogens on neutralizing antibody and T-cell responses in nonhuman primates.
|
| |
J Virol,
84,
1683-1695.
|
 |
|
|
|
|
 |
I.Shrivastava,
and
J.M.LaLonde
(2010).
Fluctuation dynamics analysis of gp120 envelope protein reveals a topologically based communication network.
|
| |
Proteins,
78,
2935-2949.
|
 |
|
|
|
|
 |
J.D.Steckbeck,
C.Sun,
T.J.Sturgeon,
and
R.C.Montelaro
(2010).
Topology of the C-terminal tail of HIV-1 gp41: differential exposure of the Kennedy epitope on cell and viral membranes.
|
| |
PLoS One,
5,
e15261.
|
 |
|
|
|
|
 |
J.Liu,
E.R.Wright,
and
H.Winkler
(2010).
3D visualization of HIV virions by cryoelectron tomography.
|
| |
Methods Enzymol,
483,
267-290.
|
 |
|
|
|
|
 |
J.Liu,
Y.Deng,
Q.Li,
A.K.Dey,
J.P.Moore,
and
M.Lu
(2010).
Role of a putative gp41 dimerization domain in human immunodeficiency virus type 1 membrane fusion.
|
| |
J Virol,
84,
201-209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.M.Binley,
Y.E.Ban,
E.T.Crooks,
D.Eggink,
K.Osawa,
W.R.Schief,
and
R.W.Sanders
(2010).
Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization.
|
| |
J Virol,
84,
5637-5655.
|
 |
|
|
|
|
 |
J.Pietzsch,
J.F.Scheid,
H.Mouquet,
F.Klein,
M.S.Seaman,
M.Jankovic,
D.Corti,
A.Lanzavecchia,
and
M.C.Nussenzweig
(2010).
Human anti-HIV-neutralizing antibodies frequently target a conserved epitope essential for viral fitness.
|
| |
J Exp Med,
207,
1995-2002.
|
 |
|
|
|
|
 |
J.S.Klein,
and
P.J.Bjorkman
(2010).
Few and far between: how HIV may be evading antibody avidity.
|
| |
PLoS Pathog,
6,
e1000908.
|
 |
|
|
|
|
 |
J.S.McLellan,
M.Chen,
A.Kim,
Y.Yang,
B.S.Graham,
and
P.D.Kwong
(2010).
Structural basis of respiratory syncytial virus neutralization by motavizumab.
|
| |
Nat Struct Mol Biol,
17,
248-250.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.J.Doores,
Z.Fulton,
M.Huber,
I.A.Wilson,
and
D.R.Burton
(2010).
Antibody 2G12 recognizes di-mannose equivalently in domain- and nondomain-exchanged forms but only binds the HIV-1 glycan shield if domain exchanged.
|
| |
J Virol,
84,
10690-10699.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Miyauchi,
A.R.Curran,
Y.Long,
N.Kondo,
A.Iwamoto,
D.M.Engelman,
and
Z.Matsuda
(2010).
The membrane-spanning domain of gp41 plays a critical role in intracellular trafficking of the HIV envelope protein.
|
| |
Retrovirology,
7,
95.
|
 |
|
|
|
|
 |
L.A.Carlson,
A.de Marco,
H.Oberwinkler,
A.Habermann,
J.A.Briggs,
H.G.Kräusslich,
and
K.Grünewald
(2010).
Cryo electron tomography of native HIV-1 budding sites.
|
| |
PLoS Pathog,
6,
e1001173.
|
 |
|
|
|
|
 |
L.J.Gamble,
and
Q.L.Matthews
(2010).
Current progress in the development of a prophylactic vaccine for HIV-1.
|
| |
Drug Des Devel Ther,
5,
9.
|
 |
|
|
|
|
 |
L.Kong,
C.C.Huang,
S.J.Coales,
K.S.Molnar,
J.Skinner,
Y.Hamuro,
and
P.D.Kwong
(2010).
Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange.
|
| |
J Virol,
84,
10311-10321.
|
 |
|
|
|
|
 |
L.M.Walker,
and
D.R.Burton
(2010).
Rational antibody-based HIV-1 vaccine design: current approaches and future directions.
|
| |
Curr Opin Immunol,
22,
358-366.
|
 |
|
|
|
|
 |
M.Pancera,
S.Majeed,
Y.E.Ban,
L.Chen,
C.C.Huang,
L.Kong,
Y.D.Kwon,
J.Stuckey,
T.Zhou,
J.E.Robinson,
W.R.Schief,
J.Sodroski,
R.Wyatt,
and
P.D.Kwong
(2010).
Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility.
|
| |
Proc Natl Acad Sci U S A,
107,
1166-1171.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Seitz,
P.Rusert,
K.Moehle,
A.Trkola,
and
J.A.Robinson
(2010).
Peptidomimetic inhibitors targeting the CCR5-binding site on the human immunodeficiency virus type-1 gp120 glycoprotein complexed to CD4.
|
| |
Chem Commun (Camb),
46,
7754-7756.
|
 |
|
|
|
|
 |
P.Utachee,
S.Nakamura,
P.Isarangkura-Na-Ayuthaya,
K.Tokunaga,
P.Sawanpanyalert,
K.Ikuta,
W.Auwanit,
and
M.Kameoka
(2010).
Two N-linked glycosylation sites in the V2 and C2 regions of human immunodeficiency virus type 1 CRF01_AE envelope glycoprotein gp120 regulate viral neutralization susceptibility to the human monoclonal antibody specific for the CD4 binding domain.
|
| |
J Virol,
84,
4311-4320.
|
 |
|
|
|
|
 |
P.Wang,
and
X.Yang
(2010).
Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins.
|
| |
J Virol,
84,
7114-7123.
|
 |
|
|
|
|
 |
Q.J.Sattentau,
and
A.J.McMichael
(2010).
New templates for HIV-1 antibody-based vaccine design.
|
| |
F1000 Biol Rep,
2,
60.
|
 |
|
|
|
|
 |
R.Pejchal,
L.M.Walker,
R.L.Stanfield,
S.K.Phogat,
W.C.Koff,
P.Poignard,
D.R.Burton,
and
I.A.Wilson
(2010).
Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1.
|
| |
Proc Natl Acad Sci U S A,
107,
11483-11488.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Song,
D.Franco,
C.Y.Kao,
F.Yu,
Y.Huang,
and
D.D.Ho
(2010).
Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients.
|
| |
J Virol,
84,
6935-6942.
|
 |
|
|
|
|
 |
S.H.Xiang,
A.Finzi,
B.Pacheco,
K.Alexander,
W.Yuan,
C.Rizzuto,
C.C.Huang,
P.D.Kwong,
and
J.Sodroski
(2010).
A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer.
|
| |
J Virol,
84,
3147-3161.
|
 |
|
|
|
|
 |
S.R.Wu,
R.Löving,
B.Lindqvist,
H.Hebert,
P.J.Koeck,
M.Sjöberg,
and
H.Garoff
(2010).
Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure.
|
| |
Proc Natl Acad Sci U S A,
107,
18844-18849.
|
 |
|
|
|
|
 |
S.Zolla-Pazner,
and
T.Cardozo
(2010).
Structure-function relationships of HIV-1 envelope sequence-variable regions refocus vaccine design.
|
| |
Nat Rev Immunol,
10,
527-535.
|
 |
|
|
|
|
 |
T.A.White,
A.Bartesaghi,
M.J.Borgnia,
J.R.Meyerson,
M.J.de la Cruz,
J.W.Bess,
R.Nandwani,
J.A.Hoxie,
J.D.Lifson,
J.L.Milne,
and
S.Subramaniam
(2010).
Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure.
|
| |
PLoS Pathog,
6,
e1001249.
|
 |
|
|
|
|
 |
T.M.Dobrowsky,
B.R.Daniels,
R.F.Siliciano,
S.X.Sun,
and
D.Wirtz
(2010).
Organization of cellular receptors into a nanoscale junction during HIV-1 adhesion.
|
| |
PLoS Comput Biol,
6,
e1000855.
|
 |
|
|
|
|
 |
V.K.Gangupomu,
and
C.F.Abrams
(2010).
All-atom models of the membrane-spanning domain of HIV-1 gp41 from metadynamics.
|
| |
Biophys J,
99,
3438-3444.
|
 |
|
|
|
|
 |
W.W.Yeh,
I.Rahman,
P.Hraber,
R.T.Coffey,
D.Nevidomskyte,
A.Giri,
M.Asmal,
S.Miljkovic,
M.Daniels,
J.B.Whitney,
B.F.Keele,
B.H.Hahn,
B.T.Korber,
G.M.Shaw,
M.S.Seaman,
and
N.L.Letvin
(2010).
Autologous neutralizing antibodies to the transmitted/founder viruses emerge late after simian immunodeficiency virus SIVmac251 infection of rhesus monkeys.
|
| |
J Virol,
84,
6018-6032.
|
 |
|
|
|
|
 |
A.Bartesaghi,
and
S.Subramaniam
(2009).
Membrane protein structure determination using cryo-electron tomography and 3D image averaging.
|
| |
Curr Opin Struct Biol,
19,
402-407.
|
 |
|
|
|
|
 |
A.Bhattacharya
(2009).
Protein structures: Structures of desire.
|
| |
Nature,
459,
24-27.
|
 |
|
|
|
|
 |
A.Cambi,
I.Beeren,
B.Joosten,
J.A.Fransen,
and
C.G.Figdor
(2009).
The C-type lectin DC-SIGN internalizes soluble antigens and HIV-1 virions via a clathrin-dependent mechanism.
|
| |
Eur J Immunol,
39,
1923-1928.
|
 |
|
|
|
|
 |
A.Kassa,
A.Finzi,
M.Pancera,
J.R.Courter,
A.B.Smith,
and
J.Sodroski
(2009).
Identification of a human immunodeficiency virus type 1 envelope glycoprotein variant resistant to cold inactivation.
|
| |
J Virol,
83,
4476-4488.
|
 |
|
|
|
|
 |
A.Kassa,
N.Madani,
A.Schön,
H.Haim,
A.Finzi,
S.H.Xiang,
L.Wang,
A.Princiotto,
M.Pancera,
J.Courter,
A.B.Smith,
E.Freire,
P.D.Kwong,
and
J.Sodroski
(2009).
Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain.
|
| |
J Virol,
83,
8364-8378.
|
 |
|
|
|
|
 |
A.S.Veiga,
L.K.Pattenden,
J.M.Fletcher,
M.A.Castanho,
and
M.I.Aguilar
(2009).
Interactions of HIV-1 antibodies 2F5 and 4E10 with a gp41 epitope prebound to host and viral membrane model systems.
|
| |
Chembiochem,
10,
1032-1044.
|
 |
|
|
|
|
 |
C.Cicala,
E.Martinelli,
J.P.McNally,
D.J.Goode,
R.Gopaul,
J.Hiatt,
K.Jelicic,
S.Kottilil,
K.Macleod,
A.O'Shea,
N.Patel,
D.Van Ryk,
D.Wei,
M.Pascuccio,
L.Yi,
L.McKinnon,
P.Izulla,
J.Kimani,
R.Kaul,
A.S.Fauci,
and
J.Arthos
(2009).
The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1.
|
| |
Proc Natl Acad Sci U S A,
106,
20877-20882.
|
 |
|
|
|
|
 |
C.S.Goldsmith,
and
S.E.Miller
(2009).
Modern uses of electron microscopy for detection of viruses.
|
| |
Clin Microbiol Rev,
22,
552-563.
|
 |
|
|
|
|
 |
D.D.Sachdev,
B.Zerhouni-Layachi,
M.Ortigoza,
A.T.Profy,
M.Tuen,
C.E.Hioe,
and
M.E.Klotman
(2009).
The differential binding and activity of PRO 2000 against diverse HIV-1 envelopes.
|
| |
J Acquir Immune Defic Syndr,
51,
125-129.
|
 |
|
|
|
|
 |
G.Zanetti,
J.D.Riches,
S.D.Fuller,
and
J.A.Briggs
(2009).
Contrast transfer function correction applied to cryo-electron tomography and sub-tomogram averaging.
|
| |
J Struct Biol,
168,
305-312.
|
 |
|
|
|
|
 |
H.Boukari,
B.Brichacek,
P.Stratton,
S.F.Mahoney,
J.D.Lifson,
L.Margolis,
and
R.Nossal
(2009).
Movements of HIV-virions in human cervical mucus.
|
| |
Biomacromolecules,
10,
2482-2488.
|
 |
|
|
|
|
 |
H.Li,
C.F.Xu,
S.Blais,
Q.Wan,
H.T.Zhang,
S.J.Landry,
and
C.E.Hioe
(2009).
Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes.
|
| |
J Immunol,
182,
6369-6378.
|
 |
|
|
|
|
 |
J.A.Briggs,
J.D.Riches,
B.Glass,
V.Bartonova,
G.Zanetti,
and
H.G.Kräusslich
(2009).
Structure and assembly of immature HIV.
|
| |
Proc Natl Acad Sci U S A,
106,
11090-11095.
|
 |
|
|
|
|
 |
J.Liu,
T.Lin,
D.J.Botkin,
E.McCrum,
H.Winkler,
and
S.J.Norris
(2009).
Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion.
|
| |
J Bacteriol,
191,
5026-5036.
|
 |
|
|
|
|
 |
J.Liu,
Y.Deng,
A.K.Dey,
J.P.Moore,
and
M.Lu
(2009).
Structure of the HIV-1 gp41 membrane-proximal ectodomain region in a putative prefusion conformation.
|
| |
Biochemistry,
48,
2915-2923.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Klein,
P.N.Gnanapragasam,
R.P.Galimidi,
C.P.Foglesong,
A.P.West,
and
P.J.Bjorkman
(2009).
Examination of the contributions of size and avidity to the neutralization mechanisms of the anti-HIV antibodies b12 and 4E10.
|
| |
Proc Natl Acad Sci U S A,
106,
7385-7390.
|
 |
|
|
|
|
 |
K.Wiederhold,
and
D.Fasshauer
(2009).
Is Assembly of the SNARE Complex Enough to Fuel Membrane Fusion?
|
| |
J Biol Chem,
284,
13143-13152.
|
 |
|
|
|
|
 |
L.Chen,
Y.Do Kwon,
T.Zhou,
X.Wu,
S.O'Dell,
L.Cavacini,
A.J.Hessell,
M.Pancera,
M.Tang,
L.Xu,
Z.Y.Yang,
M.Y.Zhang,
J.Arthos,
D.R.Burton,
D.S.Dimitrov,
G.J.Nabel,
M.R.Posner,
J.Sodroski,
R.Wyatt,
J.R.Mascola,
and
P.D.Kwong
(2009).
Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120.
|
| |
Science,
326,
1123-1127.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Song,
Z.Y.Sun,
K.E.Coleman,
M.B.Zwick,
J.S.Gach,
J.H.Wang,
E.L.Reinherz,
G.Wagner,
and
M.Kim
(2009).
Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface.
|
| |
Proc Natl Acad Sci U S A,
106,
9057-9062.
|
 |
|
|
|
|
 |
P.D.Kwong,
and
I.A.Wilson
(2009).
HIV-1 and influenza antibodies: seeing antigens in new ways.
|
| |
Nat Immunol,
10,
573-578.
|
 |
|
|
|
|
 |
R.Pantophlet,
M.Wang,
R.O.Aguilar-Sino,
and
D.R.Burton
(2009).
The human immunodeficiency virus type 1 envelope spike of primary viruses can suppress antibody access to variable regions.
|
| |
J Virol,
83,
1649-1659.
|
 |
|
|
|
|
 |
R.Rong,
B.Li,
R.M.Lynch,
R.E.Haaland,
M.K.Murphy,
J.Mulenga,
S.A.Allen,
A.Pinter,
G.M.Shaw,
E.Hunter,
J.E.Robinson,
S.Gnanakaran,
and
C.A.Derdeyn
(2009).
Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways.
|
| |
PLoS Pathog,
5,
e1000594.
|
 |
|
|
|
|
 |
S.G.Boxer,
M.L.Kraft,
and
P.K.Weber
(2009).
Advances in imaging secondary ion mass spectrometry for biological samples.
|
| |
Annu Rev Biophys,
38,
53-74.
|
 |
|
|
|
|
 |
S.H.Scheres,
R.Melero,
M.Valle,
and
J.M.Carazo
(2009).
Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization.
|
| |
Structure,
17,
1563-1572.
|
 |
|
|
|
|
 |
S.X.Du,
R.J.Idiart,
E.B.Mariano,
H.Chen,
P.Jiang,
L.Xu,
K.M.Ostrow,
T.Wrin,
P.Phung,
J.M.Binley,
C.J.Petropoulos,
J.A.Ballantyne,
and
R.G.Whalen
(2009).
Effect of trimerization motifs on quaternary structure, antigenicity, and immunogenicity of a noncleavable HIV-1 gp140 envelope glycoprotein.
|
| |
Virology,
395,
33-44.
|
 |
|
|
|
|
 |
X.Wu,
T.Zhou,
S.O'Dell,
R.T.Wyatt,
P.D.Kwong,
and
J.R.Mascola
(2009).
Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment.
|
| |
J Virol,
83,
10892-10907.
|
 |
|
|
|
|
 |
Y.Kliger,
O.Levy,
A.Oren,
H.Ashkenazy,
Z.Tiran,
A.Novik,
A.Rosenberg,
A.Amir,
A.Wool,
A.Toporik,
E.Schreiber,
D.Eshel,
Z.Levine,
Y.Cohen,
C.Nold-Petry,
C.A.Dinarello,
and
I.Borukhov
(2009).
Peptides modulating conformational changes in secreted chaperones: from in silico design to preclinical proof of concept.
|
| |
Proc Natl Acad Sci U S A,
106,
13797-13801.
|
 |
|
|
|
|
 |
F.Rossi,
B.Querido,
M.Nimmagadda,
S.Cocklin,
S.Navas-Martín,
and
J.Martín-García
(2008).
The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors.
|
| |
Retrovirology,
5,
89.
|
 |
|
|
|
|
 |
P.Zhu,
H.Winkler,
E.Chertova,
K.A.Taylor,
and
K.H.Roux
(2008).
Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs.
|
| |
PLoS Pathog,
4,
e1000203.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |
|