spacer
spacer

PDBsum entry 3c1c

Go to PDB code: 
protein dna_rna Protein-protein interface(s) links
Structural protein/DNA PDB id
3c1c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
98 a.a. *
78 a.a. *
105 a.a. *
93 a.a. *
84 a.a. *
DNA/RNA
Waters ×284
* Residue conservation analysis
PDB id:
3c1c
Name: Structural protein/DNA
Title: The effect of h3 k79 dimethylation and h4 k20 trimethylation on nucleosome and chromatin structure
Structure: Histone h3-like. Chain: a, e. Engineered: yes. Histone h4. Chain: b, f. Engineered: yes. Histone h2a type 1. Chain: c, g. Engineered: yes.
Source: Xenopus laevis. Clawed frog,common platanna,platanna. Organism_taxid: 8355. Gene: histone h3. Expressed in: escherichia coli. Gene: histone h4. Gene: histone h2a. Xenopus (silurana) tropicalis. Western clawed frog.
Resolution:
3.15Å     R-factor:   0.220     R-free:   0.290
Authors: X.Lu,M.Simon,J.Chodaparambil,J.Hansen,K.Shokat,K.Luger
Key ref:
X.Lu et al. (2008). The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Biol, 15, 1122-1124. PubMed id: 18794842 DOI: 10.1038/nsmb.1489
Date:
22-Jan-08     Release date:   07-Oct-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P84233  (H32_XENLA) -  Histone H3.2 from Xenopus laevis
Seq:
Struc:
136 a.a.
98 a.a.*
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
78 a.a.
Protein chains
Pfam   ArchSchema ?
P06897  (H2A1_XENLA) -  Histone H2A type 1 from Xenopus laevis
Seq:
Struc:
130 a.a.
105 a.a.*
Protein chains
Pfam   ArchSchema ?
Q28D68  (Q28D68_XENTR) -  Histone H2B from Xenopus tropicalis
Seq:
Struc:
126 a.a.
93 a.a.
Protein chain
Pfam   ArchSchema ?
P62799  (H4_XENLA) -  Histone H4 from Xenopus laevis
Seq:
Struc:
103 a.a.
84 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

DNA/RNA chains
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases
  A-T-C-A-A-T-A-T-C-C-A-C-C-T-G-C-A-G-A-T-T-C-T-A-C-C-A-A-A-A-G-T-G-T-A-T-T-T-G- 146 bases

 

 
DOI no: 10.1038/nsmb.1489 Nat Struct Biol 15:1122-1124 (2008)
PubMed id: 18794842  
 
 
The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure.
X.Lu, M.D.Simon, J.V.Chodaparambil, J.C.Hansen, K.M.Shokat, K.Luger.
 
  ABSTRACT  
 
Histone methylation regulates chromatin function dependent on the site and degree of the modification. In addition to creating binding sites for proteins, methylated lysine residues are likely to influence chromatin structure directly. Here we present crystal structures of nucleosomes reconstituted with methylated histones and investigate the folding behavior of resulting arrays. We demonstrate that dimethylation of histone H3 at lysine residue 79 locally alters the nucleosomal surface, whereas trimethylation of H4 at lysine residue 20 affects higher-order structure.
 
  Selected figure(s)  
 
Figure 1.
(a) Location of H3K79 and H4K20 (red) on the unmodified NCP structure (surface representation; PDB 1AOI). Histones H2A, H2B, H3 and H4 are shown in light yellow, red, blue and green, respectively. (b) H3K[c]79me2 adopts an alternative side chain conformation. The structures of the NCP containing H3[c]79me2 (light blue and light green) were superimposed onto unmodified NCP (dark blue and dark green). H3K[c]79me2 is shown in yellow and unmodified K79 is shown in red. (c) Electrostatic potential of the same region in NCP containing H3K[c]79me2 as shown in b. (d) The equivalent region for unmodified NCP. Red indicates negative surface potential and blue indicates positive surface potential, scaled from -15 to +15. Note the small hydrophobic cavity (indicated with an arrow in c) that is uncovered by the reorientation of H3K[c]79me2. (e) Superposition of nucleosomes with H4K[c]20me3 (light green, light blue) with unmodified NCP (dark green, dark blue). (f) Superposition of H4 tails from published nucleosome structures. Blue, human NCP (PDB 2CV5)^19; yellow, X. laevis NCP (PDB 1KX5)^20; red, acetylated histone H4 (PDB 16EI)^21; green, NCP with H4K[c]20me3 (this work, PDB 3C1B).
Figure 2.
(a–c) Analysis was carried out in TEN buffer (a), in buffer contain 1 mM MgCl[2] (b) and 1.5 mM MgCl[2] (c). (d) Self-association of unmodified, H3K[c]79me2 and H4K[c]20Me3 nucleosomal arrays. Symbols in a–d: circle , H3K[c]79me2 nucleosomal array; , unmodified nucleosomal array; triangle , H4K[c]20Me3 nucleosomal array. The experiments were repeated three times with identical results (see also Supplementary Fig. 3); one representative experiment is shown. Error bars are s.d.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: Nat Struct Biol (2008, 15, 1122-1124) copyright 2008.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21332355 A.J.Andrews, and K.Luger (2011).
Nucleosome structure(s) and stability: variations on a theme.
  Annu Rev Biophys, 40, 99.  
21208404 A.Marathe, and M.Bansal (2011).
An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression.
  BMC Struct Biol, 11, 1.  
21196936 B.Fierz, C.Chatterjee, R.K.McGinty, M.Bar-Dagan, D.P.Raleigh, and T.W.Muir (2011).
Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction.
  Nat Chem Biol, 7, 113-119.  
21243714 C.D.Allis, and T.W.Muir (2011).
Spreading chromatin into chemical biology.
  Chembiochem, 12, 264-279.  
21245855 C.L.Peterson (2011).
Chromatin: a ubiquitin crowbar opens chromatin.
  Nat Chem Biol, 7, 68-69.  
21262833 E.A.Osborne, Y.Hiraoka, and J.Rine (2011).
Symmetry, asymmetry, and kinetics of silencing establishment in Saccharomyces cerevisiae revealed by single-cell optical assays.
  Proc Natl Acad Sci U S A, 108, 1209-1216.  
21243718 F.Frederiks, I.J.Stulemeijer, H.Ovaa, and F.van Leeuwen (2011).
A modified epigenetics toolbox to study histone modifications on the nucleosome core.
  Chembiochem, 12, 308-313.  
21423274 M.Yun, J.Wu, J.L.Workman, and B.Li (2011).
Readers of histone modifications.
  Cell Res, 21, 564-578.  
21243712 P.Voigt, and D.Reinberg (2011).
Histone tails: ideal motifs for probing epigenetics through chemical biology approaches.
  Chembiochem, 12, 236-252.  
21039975 S.C.Biddie (2011).
Chromatin architecture and the regulation of nuclear receptor inducible transcription.
  J Neuroendocrinol, 23, 94.  
21220508 S.Jørgensen, M.Eskildsen, K.Fugger, L.Hansen, M.S.Larsen, A.N.Kousholt, R.G.Syljuåsen, M.B.Trelle, O.N.Jensen, K.Helin, and C.S.Sørensen (2011).
SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation.
  J Cell Biol, 192, 43-54.  
21176878 S.Tan, and C.A.Davey (2011).
Nucleosome structural studies.
  Curr Opin Struct Biol, 21, 128-136.  
21088799 W.R.Liu, Y.S.Wang, and W.Wan (2011).
Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach.
  Mol Biosyst, 7, 38-47.  
20862720 D.Schwarzer (2010).
Chemical tools in chromatin research.
  J Pept Sci, 16, 530-537.  
20486121 J.Han, and C.H.Borchers (2010).
Top-down analysis of recombinant histone H3 and its methylated analogs by ESI/FT-ICR mass spectrometry.
  Proteomics, 10, 3621-3630.  
21075673 J.M.Chalker, and B.G.Davis (2010).
Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues.
  Curr Opin Chem Biol, 14, 781-789.  
  20735237 L.Balakrishnan, and B.Milavetz (2010).
Decoding the histone H4 lysine 20 methylation mark.
  Crit Rev Biochem Mol Biol, 45, 440-452.  
21206904 L.W.Tsang, N.Hu, and D.A.Underhill (2010).
Comparative analyses of SUV420H1 isoforms and SUV420H2 reveal differences in their cellular localization and effects on myogenic differentiation.
  PLoS One, 5, e14447.  
20739937 N.Sekulic, E.A.Bassett, D.J.Rogers, and B.E.Black (2010).
The structure of (CENP-A-H4)(2) reveals physical features that mark centromeres.
  Nature, 467, 347-351.
PDB codes: 3nqj 3nqu
20100606 S.Watanabe, M.Resch, W.Lilyestrom, N.Clark, J.C.Hansen, C.Peterson, and K.Luger (2010).
Structural characterization of H3K56Q nucleosomes and nucleosomal arrays.
  Biochim Biophys Acta, 1799, 480-486.
PDB codes: 3kwq 3kxb
20685123 T.K.Barth, and A.Imhof (2010).
Fast signals and slow marks: the dynamics of histone modifications.
  Trends Biochem Sci, 35, 618-626.  
19682614 X.Lu, and S.J.Triezenberg (2010).
Chromatin assembly on herpes simplex virus genomes during lytic infection.
  Biochim Biophys Acta, 1799, 217-222.  
19346124 A.Bassett, S.Cooper, C.Wu, and A.Travers (2009).
The folding and unfolding of eukaryotic chromatin.
  Curr Opin Genet Dev, 19, 159-165.  
19682934 J.M.Schulze, J.Jackson, S.Nakanishi, J.M.Gardner, T.Hentrich, J.Haug, M.Johnston, S.L.Jaspersen, M.S.Kobor, and A.Shilatifard (2009).
Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation.
  Mol Cell, 35, 626-641.  
19638198 K.F.Verzijlbergen, A.W.Faber, I.J.Stulemeijer, and F.van Leeuwen (2009).
Multiple histone modifications in euchromatin promote heterochromatin formation by redundant mechanisms in Saccharomyces cerevisiae.
  BMC Mol Biol, 10, 76.  
19620290 S.J.Ellison-Zelski, N.M.Solodin, and E.T.Alarid (2009).
Repression of ESR1 through actions of estrogen receptor alpha and Sin3A at the proximal promoter.
  Mol Cell Biol, 29, 4949-4958.  
19395382 S.J.McBryant, J.Klonoski, T.C.Sorensen, S.S.Norskog, S.Williams, M.G.Resch, J.A.Toombs, S.E.Hobdey, and J.C.Hansen (2009).
Determinants of Histone H4 N-terminal Domain Function during Nucleosomal Array Oligomerization: ROLES OF AMINO ACID SEQUENCE, DOMAIN LENGTH, AND CHARGE DENSITY.
  J Biol Chem, 284, 16716-16722.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer