spacer
spacer

PDBsum entry 3bbt

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
3bbt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
274 a.a. *
259 a.a. *
Ligands
FMM ×2
Waters ×84
* Residue conservation analysis
PDB id:
3bbt
Name: Transferase
Title: Crystal structure of the erbb4 kinase in complex with lapatinib
Structure: Receptor tyrosine-protein kinase erbb-4. Chain: b, d. Synonym: p180erbb4, tyrosine kinase-type cell surface receptor her4. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: erbb4, her4. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108.
Resolution:
2.80Å     R-factor:   0.253     R-free:   0.289
Authors: C.Qiu
Key ref:
C.Qiu et al. (2008). Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure, 16, 460-467. PubMed id: 18334220 DOI: 10.1016/j.str.2007.12.016
Date:
11-Nov-07     Release date:   12-Feb-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q15303  (ERBB4_HUMAN) -  Receptor tyrosine-protein kinase erbB-4 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1308 a.a.
274 a.a.
Protein chain
Pfam   ArchSchema ?
Q15303  (ERBB4_HUMAN) -  Receptor tyrosine-protein kinase erbB-4 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1308 a.a.
259 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains B, D: E.C.2.7.10.1  - receptor protein-tyrosine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
L-tyrosyl-[protein]
+ ATP
= O-phospho-L-tyrosyl-[protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.str.2007.12.016 Structure 16:460-467 (2008)
PubMed id: 18334220  
 
 
Mechanism of activation and inhibition of the HER4/ErbB4 kinase.
C.Qiu, M.K.Tarrant, S.H.Choi, A.Sathyamurthy, R.Bose, S.Banjade, A.Pal, W.G.Bornmann, M.A.Lemmon, P.A.Cole, D.J.Leahy.
 
  ABSTRACT  
 
HER4/ErbB4 is a ubiquitously expressed member of the EGF/ErbB family of receptor tyrosine kinases that is essential for normal development of the heart, nervous system, and mammary gland. We report here crystal structures of the ErbB4 kinase domain in active and lapatinib-inhibited forms. Active ErbB4 kinase adopts an asymmetric dimer conformation essentially identical to that observed to be important for activation of the EGF receptor/ErbB1 kinase. Mutagenesis studies of intact ErbB4 in Ba/F3 cells confirm the importance of this asymmetric dimer for activation of intact ErbB4. Lapatinib binds to an inactive form of the ErbB4 kinase in a mode equivalent to its interaction with the EGF receptor. All ErbB4 residues contacted by lapatinib are conserved in the EGF receptor and HER2/ErbB2, which lapatinib also targets. These results demonstrate that key elements of kinase activation and inhibition are conserved among ErbB family members.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Ribbon Diagrams of ErbB4 Kinase Structures
(A) The active conformation of the ErbB4 kinase. The activation loop is colored red.
(B) An inactive conformation of the ErbB4 kinase in complex with lapatinib, which is shown as a red stick model. The activation loop is disordered, but the loop termini are colored red.
(C) Superposition of the active and inactive conformations of the ErbB4 kinase.
Figure 2.
Figure 2. Superposition of the Asymmetric Dimers of EGFR and ErbB4 Kinase
The ErbB4 kinase subunits are colored blue and cyan. An EGFR dimer is colored light yellow. Only the single blue colored ErbB4 kinase subunit and corresponding EGFR subunit were included in the superposition.
 
  The above figures are reprinted by permission from Cell Press: Structure (2008, 16, 460-467) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21474065 N.Jura, X.Zhang, N.F.Endres, M.A.Seeliger, T.Schindler, and J.Kuriyan (2011).
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms.
  Mol Cell, 42, 9.  
20946980 A.Bill, A.Schmitz, B.Albertoni, J.N.Song, L.C.Heukamp, D.Walrafen, F.Thorwirth, P.J.Verveer, S.Zimmer, L.Meffert, A.Schreiber, S.Chatterjee, R.K.Thomas, R.T.Ullrich, T.Lang, and M.Famulok (2010).
Cytohesins are cytoplasmic ErbB receptor activators.
  Cell, 143, 201-211.  
20084478 C.S.Gerbin, and R.Landgraf (2010).
Geldanamycin selectively targets the nascent form of ERBB3 for degradation.
  Cell Stress Chaperones, 15, 529-544.  
20723758 D.Alvarado, D.E.Klein, and M.A.Lemmon (2010).
Structural basis for negative cooperativity in growth factor binding to an EGF receptor.
  Cell, 142, 568-579.
PDB codes: 3ltf 3ltg
  20371474 D.N.Amin, N.Sergina, D.Ahuja, M.McMahon, J.A.Blair, D.Wang, B.Hann, K.M.Koch, K.M.Shokat, and M.M.Moasser (2010).
Resiliency and vulnerability in the HER2-HER3 tumorigenic driver.
  Sci Transl Med, 2, 16ra7.  
20351256 F.Shi, S.E.Telesco, Y.Liu, R.Radhakrishnan, and M.A.Lemmon (2010).
ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation.
  Proc Natl Acad Sci U S A, 107, 7692-7697.
PDB code: 3lmg
20022944 J.Monsey, W.Shen, P.Schlesinger, and R.Bose (2010).
Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system.
  J Biol Chem, 285, 7035-7044.  
20140937 W.W.Li, J.J.Chen, R.L.Zheng, W.Q.Zhang, Z.X.Cao, L.L.Yang, X.Y.Qing, L.X.Zhou, L.Yang, L.D.Yu, L.J.Chen, Y.Q.Wei, and S.Y.Yang (2010).
Taking quinazoline as a general support-Nog to design potent and selective kinase inhibitors: application to FMS-like tyrosine kinase 3.
  ChemMedChem, 5, 513-516.  
  21165163 Z.Zhang, A.L.Stiegler, T.J.Boggon, S.Kobayashi, and B.Halmos (2010).
EGFR-mutated lung cancer: a paradigm of molecular oncology.
  Oncotarget, 1, 497-514.  
19518076 C.Qiu, M.K.Tarrant, T.Boronina, P.A.Longo, J.M.Kavran, R.N.Cole, P.A.Cole, and D.J.Leahy (2009).
In vitro enzymatic characterization of near full length EGFR in activated and inhibited states.
  Biochemistry, 48, 6624-6632.  
19098003 D.Tvorogov, M.Sundvall, K.Kurppa, M.Hollmén, S.Repo, M.S.Johnson, and K.Elenius (2009).
Somatic mutations of ErbB4: selective loss-of-function phenotype affecting signal transduction pathways in cancer.
  J Biol Chem, 284, 5582-5591.  
19260709 K.E.Muratore, M.A.Seeliger, Z.Wang, D.Fomina, J.Neiswinger, J.J.Havranek, D.Baker, J.Kuriyan, and P.A.Cole (2009).
Comparative analysis of mutant tyrosine kinase chemical rescue.
  Biochemistry, 48, 3378-3386.
PDB code: 3geq
19038249 M.A.Lemmon (2009).
Ligand-induced ErbB receptor dimerization.
  Exp Cell Res, 315, 638-648.  
19629792 M.Bennett (2009).
Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression.
  Aust N Z J Psychiatry, 43, 711-721.  
19560417 M.Red Brewer, S.H.Choi, D.Alvarado, K.Moravcevic, A.Pozzi, M.A.Lemmon, and G.Carpenter (2009).
The juxtamembrane region of the EGF receptor functions as an activation domain.
  Mol Cell, 34, 641-651.
PDB code: 3gop
19563760 N.Jura, N.F.Endres, K.Engel, S.Deindl, R.Das, M.H.Lamers, D.E.Wemmer, X.Zhang, and J.Kuriyan (2009).
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment.
  Cell, 137, 1293-1307.
PDB code: 3gt8
20007378 N.Jura, Y.Shan, X.Cao, D.E.Shaw, and J.Kuriyan (2009).
Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3.
  Proc Natl Acad Sci U S A, 106, 21608-21613.
PDB code: 3kex
19527647 P.Sengupta, E.Bosis, E.Nachliel, M.Gutman, S.O.Smith, G.Mihályné, I.Zaitseva, and S.McLaughlin (2009).
EGFR juxtamembrane domain, membranes, and calmodulin: kinetics of their interaction.
  Biophys J, 96, 4887-4895.  
18761339 R.Bose, and X.Zhang (2009).
The ErbB kinase domain: structural perspectives into kinase activation and inhibition.
  Exp Cell Res, 315, 649-658.  
19289058 S.E.Telesco, and R.Radhakrishnan (2009).
Atomistic insights into regulatory mechanisms of the HER2 tyrosine kinase domain: a molecular dynamics study.
  Biophys J, 96, 2321-2334.  
18778701 S.Morgan, and J.R.Grandis (2009).
ErbB receptors in the biology and pathology of the aerodigestive tract.
  Exp Cell Res, 315, 572-582.  
19718025 T.D.Prickett, N.S.Agrawal, X.Wei, K.E.Yates, J.C.Lin, J.R.Wunderlich, J.C.Cronin, P.Cruz, S.A.Rosenberg, and Y.Samuels (2009).
Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4.
  Nat Genet, 41, 1127-1132.  
19396377 A.J.Shih, J.Purvis, and R.Radhakrishnan (2008).
Molecular systems biology of ErbB1 signaling: bridging the gap through multiscale modeling and high-performance computing.
  Mol Biosyst, 4, 1151-1159.  
18454306 D.F.Stern (2008).
ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer.
  J Mammary Gland Biol Neoplasia, 13, 215-223.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer