 |
PDBsum entry 3qo9
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transferase, hydrolase/inhibitor
|
PDB id
|
|
|
|
3qo9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
Chains A, B:
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B:
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains A, B:
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
Chains A, B:
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
Chains A, B:
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
Chains A, B:
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
Chains A, B:
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
J Med Chem
54:2727-2737
(2011)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket.
|
|
K.Das,
J.D.Bauman,
A.S.Rim,
C.Dharia,
A.D.Clark,
M.J.Camarasa,
J.Balzarini,
E.Arnold.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
tert-Butyldimethylsilyl-spiroaminooxathioledioxide (TSAO) compounds have an
embedded thymidine-analogue backbone; however, TSAO compounds invoke
non-nucleoside RT inhibitor (NNRTI) resistance mutations. Our crystal structure
of RT:7 (TSAO-T) complex shows that 7 binds inside the NNRTI-binding pocket,
assuming a "dragon" shape, and interacts extensively with almost all
the pocket residues. The structure also explains the structure-activity
relationships and resistance data for TSAO compounds. The binding of 7 causes
hyper-expansion of the pocket and significant rearrangement of RT subdomains.
This nonoptimal complex formation is apparently responsible (1) for the lower
stability of a RT (p66/p51) dimer and (2) for the lower potency of 7 despite of
its extensive interactions with RT. However, the HIV-1 RT:7 structure reveals
novel design features such as (1) interactions with the conserved Tyr183 from
the YMDD-motif and (2) a possible way for an NNRTI to reach the polymerase
active site that may be exploited in designing new NNRTIs.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
');
}
}
 |
|