 |
PDBsum entry 3c4f
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Fgfr tyrosine kinase domain in complex with 3-(3-methoxybenzyl)-7- azaindole
|
|
Structure:
|
 |
Basic fibroblast growth factor receptor 1. Chain: a, b. Fragment: kinase domain. Synonym: fgfr-1, bfgf-r, fms-like tyrosine kinase 2, c-fgr, cd331 antigen. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: fgfr1, fgfbr, flg, flt2. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
Resolution:
|
 |
|
2.07Å
|
R-factor:
|
0.213
|
R-free:
|
0.264
|
|
|
Authors:
|
 |
K.Y.J.Zhang,W.Wang
|
Key ref:
|
 |
J.Tsai
et al.
(2008).
Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.
Proc Natl Acad Sci U S A,
105,
3041-3046.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
29-Jan-08
|
Release date:
|
26-Feb-08
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P11362
(FGFR1_HUMAN) -
Fibroblast growth factor receptor 1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
822 a.a.
290 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 1 residue position (black
cross)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.10.1
- receptor protein-tyrosine kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-tyrosyl-[protein] + ATP = O-phospho-L-tyrosyl-[protein] + ADP + H+
|
 |
 |
 |
 |
 |
L-tyrosyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-tyrosyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Proc Natl Acad Sci U S A
105:3041-3046
(2008)
|
|
PubMed id:
|
|
|
|
|
| |
|
Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.
|
|
J.Tsai,
J.T.Lee,
W.Wang,
J.Zhang,
H.Cho,
S.Mamo,
R.Bremer,
S.Gillette,
J.Kong,
N.K.Haass,
K.Sproesser,
L.Li,
K.S.Smalley,
D.Fong,
Y.L.Zhu,
A.Marimuthu,
H.Nguyen,
B.Lam,
J.Liu,
I.Cheung,
J.Rice,
Y.Suzuki,
C.Luu,
C.Settachatgul,
R.Shellooe,
J.Cantwell,
S.H.Kim,
J.Schlessinger,
K.Y.Zhang,
B.L.West,
B.Powell,
G.Habets,
C.Zhang,
P.N.Ibrahim,
P.Hirth,
D.R.Artis,
M.Herlyn,
G.Bollag.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
BRAF(V600E) is the most frequent oncogenic protein kinase mutation known.
Furthermore, inhibitors targeting "active" protein kinases have demonstrated
significant utility in the therapeutic repertoire against cancer. Therefore, we
pursued the development of specific kinase inhibitors targeting B-Raf, and the
V600E allele in particular. By using a structure-guided discovery approach, a
potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a
7-azaindole derivative that inhibits B-Raf(V600E) with an IC(50) of 13 nM,
defines a class of kinase inhibitor with marked selectivity in both biochemical
and cellular assays. PLX4720 preferentially inhibits the active B-Raf(V600E)
kinase compared with a broad spectrum of other kinases, and potent cytotoxic
effects are also exclusive to cells bearing the V600E allele. Consistent with
the high degree of selectivity, ERK phosphorylation is potently inhibited by
PLX4720 in B-Raf(V600E)-bearing tumor cell lines but not in cells lacking
oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and
apoptosis exclusively in B-Raf(V600E)-positive cells. In B-Raf(V600E)-dependent
tumor xenograft models, orally dosed PLX4720 causes significant tumor growth
delays, including tumor regressions, without evidence of toxicity. The work
described here represents the entire discovery process, from initial
identification through structural and biological studies in animal models to a
promising therapeutic for testing in cancer patients bearing B-Raf(V600E)-driven
tumors.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Structures of individual compounds leading to the discovery
of PLX4720 are shown. (A) The chemical structure of
3-aminophenyl-7-azaindole (compound 1) is shown beneath its
costructure with Pim-1 kinase. (B) The chemical structure of
3-(3-methoxybenzyl)-7-azaindole (compound 2) is shown beneath
its costructure with the kinase domain of FGFR1. (C) The
chemical structure of PLX4720 is shown beneath its costructure
with B-Raf kinase.
|
 |
Figure 2.
Depiction of the three-dimensional structure of PLX4720 bound
to B-Raf. (A) The structure of B-Raf^V600E bound to PLX4720
(yellow) is overlayed with an ATP model based on structures of
ATP analogs in complex with other tyrosine kinases (orange).
This view indicates that the PLX4720 scaffold overlaps with the
adenine-binding site, but the tail of PLX4720 binds to a
different pocket from the ATP ribose-triphosphate tail. The
positions of the hinge, activation loop (A-loop), and
phosphate-binding loop (P-loop) are also shown. (B) A surface
representation shows PLX4720 binding to the B-Raf-selective
pocket in the active conformation. (C) A surface representation
shows PLX4720 binding to the kinase general pocket in the
inactive conformation. (D) A close-up view shows the overlay
PLX4720 bound to both active (green) and inactive (purple)
conformations of the V600 protein, and PLX3203 (yellow) bound to
V600E protein in the active kinase conformation. (E) A
stereoview shows the specific interactions of PLX4720 to the
active kinase conformation. In this conformation, the
phenylalanine of the DFG loop is pointing in toward the
compound-binding site. (F) A stereoview shows the specific
interactions of PLX4720 to the inactive kinase conformation. In
this conformation, the phenylalanine of the DFG loop is pointing
away from the compound-binding site, and binding of PLX4720 is
disfavored, leading to partial occupancy of this site even at
the 1 mM compound concentration used in cocrystallography.
|
 |
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.Rodon,
R.Dienstmann,
V.Serra,
and
J.Tabernero
(2013).
Development of PI3K inhibitors: lessons learned from early clinical trials.
|
| |
Nat Rev Clin Oncol,
10,
143-153.
|
 |
|
|
|
|
 |
G.Bollag,
J.Tsai,
J.Zhang,
C.Zhang,
P.Ibrahim,
K.Nolop,
and
P.Hirth
(2012).
Vemurafenib: the first drug approved for BRAF-mutant cancer.
|
| |
Nat Rev Drug Discov,
11,
873-886.
|
 |
|
|
|
|
 |
J.Barretina,
G.Caponigro,
N.Stransky,
K.Venkatesan,
A.A.Margolin,
S.Kim,
C.J.Wilson,
J.Lehár,
G.V.Kryukov,
D.Sonkin,
A.Reddy,
M.Liu,
L.Murray,
M.F.Berger,
J.E.Monahan,
P.Morais,
J.Meltzer,
A.Korejwa,
J.Jané-Valbuena,
F.A.Mapa,
J.Thibault,
E.Bric-Furlong,
P.Raman,
A.Shipway,
I.H.Engels,
J.Cheng,
G.K.Yu,
J.Yu,
P.Aspesi,
M.de Silva,
K.Jagtap,
M.D.Jones,
L.Wang,
C.Hatton,
E.Palescandolo,
S.Gupta,
S.Mahan,
C.Sougnez,
R.C.Onofrio,
T.Liefeld,
L.MacConaill,
W.Winckler,
M.Reich,
N.Li,
J.P.Mesirov,
S.B.Gabriel,
G.Getz,
K.Ardlie,
V.Chan,
V.E.Myer,
B.L.Weber,
J.Porter,
M.Warmuth,
P.Finan,
J.L.Harris,
M.Meyerson,
T.R.Golub,
M.P.Morrissey,
W.R.Sellers,
R.Schlegel,
and
L.A.Garraway
(2012).
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
|
| |
Nature,
483,
603-607.
|
 |
|
|
|
|
 |
K.T.Flaherty,
F.S.Hodi,
and
D.E.Fisher
(2012).
From genes to drugs: targeted strategies for melanoma.
|
| |
Nat Rev Cancer,
12,
349-361.
|
 |
|
|
|
|
 |
M.Martini,
L.Vecchione,
S.Siena,
S.Tejpar,
and
A.Bardelli
(2012).
Targeted therapies: how personal should we go?
|
| |
Nat Rev Clin Oncol,
9,
87-97.
|
 |
|
|
|
|
 |
D.A.Haber,
N.S.Gray,
and
J.Baselga
(2011).
The evolving war on cancer.
|
| |
Cell,
145,
19-24.
|
 |
|
|
|
|
 |
E.Vakiani,
and
D.B.Solit
(2011).
KRAS and BRAF: drug targets and predictive biomarkers.
|
| |
J Pathol,
223,
219-229.
|
 |
|
|
|
|
 |
F.M.Kaplan,
Y.Shao,
M.M.Mayberry,
and
A.E.Aplin
(2011).
Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells.
|
| |
Oncogene,
30,
366-371.
|
 |
|
|
|
|
 |
F.McCormick
(2011).
Cancer therapy based on oncogene addiction.
|
| |
J Surg Oncol,
103,
464-467.
|
 |
|
|
|
|
 |
G.M.Boyle
(2011).
Therapy for metastatic melanoma: an overview and update.
|
| |
Expert Rev Anticancer Ther,
11,
725-737.
|
 |
|
|
|
|
 |
I.Puzanov,
P.Burnett,
and
K.T.Flaherty
(2011).
Biological challenges of BRAF inhibitor therapy.
|
| |
Mol Oncol,
5,
116-123.
|
 |
|
|
|
|
 |
J.Hu,
H.Yu,
A.P.Kornev,
J.Zhao,
E.L.Filbert,
S.S.Taylor,
and
A.S.Shaw
(2011).
Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF.
|
| |
Proc Natl Acad Sci U S A,
108,
6067-6072.
|
 |
|
|
|
|
 |
J.L.Yap,
S.Worlikar,
A.D.Mackerell,
P.Shapiro,
and
S.Fletcher
(2011).
Small-Molecule Inhibitors of the ERK Signaling Pathway: Towards Novel Anticancer Therapeutics.
|
| |
ChemMedChem,
6,
38-48.
|
 |
|
|
|
|
 |
J.Lin,
Y.Goto,
H.Murata,
K.Sakaizawa,
A.Uchiyama,
T.Saida,
and
M.Takata
(2011).
Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression.
|
| |
Br J Cancer,
104,
464-468.
|
 |
|
|
|
|
 |
J.M.Ko,
and
D.E.Fisher
(2011).
A new era: melanoma genetics and therapeutics.
|
| |
J Pathol,
223,
241-250.
|
 |
|
|
|
|
 |
K.Dissanayake,
R.Toth,
J.Blakey,
O.Olsson,
D.G.Campbell,
A.R.Prescott,
and
C.MacKintosh
(2011).
ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicúa.
|
| |
Biochem J,
433,
515-525.
|
 |
|
|
|
|
 |
K.T.Flaherty,
U.Yasothan,
and
P.Kirkpatrick
(2011).
Vemurafenib.
|
| |
Nat Rev Drug Discov,
10,
811-812.
|
 |
|
|
|
|
 |
M.K.Kiessling,
P.A.Oberholzer,
C.Mondal,
M.B.Karpova,
M.C.Zipser,
W.M.Lin,
M.Girardi,
L.E.Macconaill,
S.M.Kehoe,
C.Hatton,
L.E.French,
L.A.Garraway,
G.Polier,
D.Süss,
C.D.Klemke,
P.H.Krammer,
K.Gülow,
and
R.Dummer
(2011).
High-throughput mutation profiling of CTCL samples reveals KRAS and NRAS mutations sensitizing tumors toward inhibition of the RAS/RAF/MEK signaling cascade.
|
| |
Blood,
117,
2433-2440.
|
 |
|
|
|
|
 |
M.M.McKay,
D.A.Ritt,
and
D.K.Morrison
(2011).
RAF inhibitor-induced KSR1/B-RAF binding and its effects on ERK cascade signaling.
|
| |
Curr Biol,
21,
563-568.
|
 |
|
|
|
|
 |
M.McMahon
(2011).
Parsing out the complexity of RAF inhibitor resistance.
|
| |
Pigment Cell Melanoma Res,
24,
361-365.
|
 |
|
|
|
|
 |
R.Eglen,
and
T.Reisine
(2011).
Drug discovery and the human kinome: recent trends.
|
| |
Pharmacol Ther,
130,
144-156.
|
 |
|
|
|
|
 |
R.M.White,
J.Cech,
S.Ratanasirintrawoot,
C.Y.Lin,
P.B.Rahl,
C.J.Burke,
E.Langdon,
M.L.Tomlinson,
J.Mosher,
C.Kaufman,
F.Chen,
H.K.Long,
M.Kramer,
S.Datta,
D.Neuberg,
S.Granter,
R.A.Young,
S.Morrison,
G.N.Wheeler,
and
L.I.Zon
(2011).
DHODH modulates transcriptional elongation in the neural crest and melanoma.
|
| |
Nature,
471,
518-522.
|
 |
|
|
|
|
 |
S.P.Leong,
J.E.Gershenwald,
S.J.Soong,
D.Schadendorf,
A.A.Tarhini,
S.Agarwala,
A.Hauschild,
C.W.Soon,
A.Daud,
and
M.Kashani-Sabet
(2011).
Cutaneous melanoma: a model to study cancer metastasis.
|
| |
J Surg Oncol,
103,
538-549.
|
 |
|
|
|
|
 |
S.V.Madhunapantula,
and
G.P.Robertson
(2011).
Therapeutic Implications of Targeting AKT Signaling in Melanoma.
|
| |
Enzyme Res,
2011,
327923.
|
 |
|
|
|
|
 |
W.Pao,
and
N.Girard
(2011).
New driver mutations in non-small-cell lung cancer.
|
| |
Lancet Oncol,
12,
175-180.
|
 |
|
|
|
|
 |
A.D.Cox,
and
C.J.Der
(2010).
The raf inhibitor paradox: unexpected consequences of targeted drugs.
|
| |
Cancer Cell,
17,
221-223.
|
 |
|
|
|
|
 |
A.Hannigan,
and
J.B.Wilson
(2010).
Evaluation of LMP1 of Epstein-Barr virus as a therapeutic target by its inhibition.
|
| |
Mol Cancer,
9,
184.
|
 |
|
|
|
|
 |
C.A.Pratilas,
and
D.B.Solit
(2010).
Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response.
|
| |
Clin Cancer Res,
16,
3329-3334.
|
 |
|
|
|
|
 |
C.M.Johannessen,
J.S.Boehm,
S.Y.Kim,
S.R.Thomas,
L.Wardwell,
L.A.Johnson,
C.M.Emery,
N.Stransky,
A.P.Cogdill,
J.Barretina,
G.Caponigro,
H.Hieronymus,
R.R.Murray,
K.Salehi-Ashtiani,
D.E.Hill,
M.Vidal,
J.J.Zhao,
X.Yang,
O.Alkan,
S.Kim,
J.L.Harris,
C.J.Wilson,
V.E.Myer,
P.M.Finan,
D.E.Root,
T.M.Roberts,
T.Golub,
K.T.Flaherty,
R.Dummer,
B.L.Weber,
W.R.Sellers,
R.Schlegel,
J.A.Wargo,
W.C.Hahn,
and
L.A.Garraway
(2010).
COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
|
| |
Nature,
468,
968-972.
|
 |
|
|
|
|
 |
C.Nucera,
A.Porrello,
Z.A.Antonello,
M.Mekel,
M.A.Nehs,
T.J.Giordano,
D.Gerald,
L.E.Benjamin,
C.Priolo,
E.Puxeddu,
S.Finn,
B.Jarzab,
R.A.Hodin,
A.Pontecorvi,
V.Nose,
J.Lawler,
and
S.Parangi
(2010).
B-Raf(V600E) and thrombospondin-1 promote thyroid cancer progression.
|
| |
Proc Natl Acad Sci U S A,
107,
10649-10654.
|
 |
|
|
|
|
 |
C.Shepherd,
I.Puzanov,
and
J.A.Sosman
(2010).
B-RAF inhibitors: an evolving role in the therapy of malignant melanoma.
|
| |
Curr Oncol Rep,
12,
146-152.
|
 |
|
|
|
|
 |
C.W.Murray,
and
T.L.Blundell
(2010).
Structural biology in fragment-based drug design.
|
| |
Curr Opin Struct Biol,
20,
497-507.
|
 |
|
|
|
|
 |
E.W.Joseph,
C.A.Pratilas,
P.I.Poulikakos,
M.Tadi,
W.Wang,
B.S.Taylor,
E.Halilovic,
Y.Persaud,
F.Xing,
A.Viale,
J.Tsai,
P.B.Chapman,
G.Bollag,
D.B.Solit,
and
N.Rosen
(2010).
The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner.
|
| |
Proc Natl Acad Sci U S A,
107,
14903-14908.
|
 |
|
|
|
|
 |
F.D.Smith,
L.K.Langeberg,
C.Cellurale,
T.Pawson,
D.K.Morrison,
R.J.Davis,
and
J.D.Scott
(2010).
AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade.
|
| |
Nat Cell Biol,
12,
1242-1249.
|
 |
|
|
|
|
 |
F.M.Kaplan,
M.J.Mastrangelo,
and
A.E.Aplin
(2010).
The wrath of RAFs: rogue behavior of B-RAF kinase inhibitors.
|
| |
J Invest Dermatol,
130,
2669-2671.
|
 |
|
|
|
|
 |
F.Stegmeier,
M.Warmuth,
W.R.Sellers,
and
M.Dorsch
(2010).
Targeted cancer therapies in the twenty-first century: lessons from imatinib.
|
| |
Clin Pharmacol Ther,
87,
543-552.
|
 |
|
|
|
|
 |
G.Bollag,
P.Hirth,
J.Tsai,
J.Zhang,
P.N.Ibrahim,
H.Cho,
W.Spevak,
C.Zhang,
Y.Zhang,
G.Habets,
E.A.Burton,
B.Wong,
G.Tsang,
B.L.West,
B.Powell,
R.Shellooe,
A.Marimuthu,
H.Nguyen,
K.Y.Zhang,
D.R.Artis,
J.Schlessinger,
F.Su,
B.Higgins,
R.Iyer,
K.D'Andrea,
A.Koehler,
M.Stumm,
P.S.Lin,
R.J.Lee,
J.Grippo,
I.Puzanov,
K.B.Kim,
A.Ribas,
G.A.McArthur,
J.A.Sosman,
P.B.Chapman,
K.T.Flaherty,
X.Xu,
K.L.Nathanson,
and
K.Nolop
(2010).
Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma.
|
| |
Nature,
467,
596-599.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Hatzivassiliou,
K.Song,
I.Yen,
B.J.Brandhuber,
D.J.Anderson,
R.Alvarado,
M.J.Ludlam,
D.Stokoe,
S.L.Gloor,
G.Vigers,
T.Morales,
I.Aliagas,
B.Liu,
S.Sideris,
K.P.Hoeflich,
B.S.Jaiswal,
S.Seshagiri,
H.Koeppen,
M.Belvin,
L.S.Friedman,
and
S.Malek
(2010).
RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.
|
| |
Nature,
464,
431-435.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Søndergaard,
R.Nazarian,
Q.Wang,
D.Guo,
T.Hsueh,
S.Mok,
H.Sazegar,
L.E.MacConaill,
J.G.Barretina,
S.M.Kehoe,
N.Attar,
E.von Euw,
J.E.Zuckerman,
B.Chmielowski,
B.Comin-Anduix,
R.C.Koya,
P.S.Mischel,
R.S.Lo,
and
A.Ribas
(2010).
Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032.
|
| |
J Transl Med,
8,
39.
|
 |
|
|
|
|
 |
J.T.Lee,
L.Li,
P.A.Brafford,
M.van den Eijnden,
M.B.Halloran,
K.Sproesser,
N.K.Haass,
K.S.Smalley,
J.Tsai,
G.Bollag,
and
M.Herlyn
(2010).
PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas.
|
| |
Pigment Cell Melanoma Res,
23,
820-827.
|
 |
|
|
|
|
 |
K.H.Paraiso,
I.V.Fedorenko,
L.P.Cantini,
A.C.Munko,
M.Hall,
V.K.Sondak,
J.L.Messina,
K.T.Flaherty,
and
K.S.Smalley
(2010).
Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy.
|
| |
Br J Cancer,
102,
1724-1730.
|
 |
|
|
|
|
 |
K.S.Smalley
(2010).
Understanding melanoma signaling networks as the basis for molecular targeted therapy.
|
| |
J Invest Dermatol,
130,
28-37.
|
 |
|
|
|
|
 |
K.T.Flaherty
(2010).
Where does the combination of sorafenib and interferon in renal cell carcinoma stand?
|
| |
Cancer,
116,
4-7.
|
 |
|
|
|
|
 |
M.A.Davies,
and
Y.Samuels
(2010).
Analysis of the genome to personalize therapy for melanoma.
|
| |
Oncogene,
29,
5545-5555.
|
 |
|
|
|
|
 |
M.Hewish,
C.J.Lord,
S.A.Martin,
D.Cunningham,
and
A.Ashworth
(2010).
Mismatch repair deficient colorectal cancer in the era of personalized treatment.
|
| |
Nat Rev Clin Oncol,
7,
197-208.
|
 |
|
|
|
|
 |
M.R.Lackner
(2010).
Prospects for personalized medicine with inhibitors targeting the RAS and PI3K pathways.
|
| |
Expert Rev Mol Diagn,
10,
75-87.
|
 |
|
|
|
|
 |
N.T.Ihle,
and
G.Powis
(2010).
Inhibitors of phosphatidylinositol-3-kinase in cancer therapy.
|
| |
Mol Aspects Med,
31,
135-144.
|
 |
|
|
|
|
 |
P.A.Ott,
A.Hamilton,
C.Min,
S.Safarzadeh-Amiri,
L.Goldberg,
J.Yoon,
H.Yee,
M.Buckley,
P.J.Christos,
J.J.Wright,
D.Polsky,
I.Osman,
L.Liebes,
and
A.C.Pavlick
(2010).
A phase II trial of sorafenib in metastatic melanoma with tissue correlates.
|
| |
PLoS One,
5,
e15588.
|
 |
|
|
|
|
 |
P.I.Poulikakos,
C.Zhang,
G.Bollag,
K.M.Shokat,
and
N.Rosen
(2010).
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.
|
| |
Nature,
464,
427-430.
|
 |
|
|
|
|
 |
R.Dutt,
and
A.K.Madan
(2010).
Models for prediction of (V)⁶⁰⁰(E)BRAF and melanoma cells growth inhibitory activities of pyridoimidazolones.
|
| |
Arch Pharm (Weinheim),
343,
664-679.
|
 |
|
|
|
|
 |
R.Halaban,
W.Zhang,
A.Bacchiocchi,
E.Cheng,
F.Parisi,
S.Ariyan,
M.Krauthammer,
J.P.McCusker,
Y.Kluger,
and
M.Sznol
(2010).
PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells.
|
| |
Pigment Cell Melanoma Res,
23,
190-200.
|
 |
|
|
|
|
 |
R.Nazarian,
H.Shi,
Q.Wang,
X.Kong,
R.C.Koya,
H.Lee,
Z.Chen,
M.K.Lee,
N.Attar,
H.Sazegar,
T.Chodon,
S.F.Nelson,
G.McArthur,
J.A.Sosman,
A.Ribas,
and
R.S.Lo
(2010).
Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.
|
| |
Nature,
468,
973-977.
|
 |
|
|
|
|
 |
S.J.Heidorn,
C.Milagre,
S.Whittaker,
A.Nourry,
I.Niculescu-Duvas,
N.Dhomen,
J.Hussain,
J.S.Reis-Filho,
C.J.Springer,
C.Pritchard,
and
R.Marais
(2010).
Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF.
|
| |
Cell,
140,
209-221.
|
 |
|
|
|
|
 |
S.Mizuarai,
and
H.Kotani
(2010).
Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements.
|
| |
Hum Genet,
128,
567-575.
|
 |
|
|
|
|
 |
S.Ramaswamy,
I.Yen,
S.Sideris,
S.Malek,
and
C.E.Heise
(2010).
A plate-based assay to measure cellular ERK substrate phosphorylation: utility for drug discovery of the MAPK-signaling cascade.
|
| |
Assay Drug Dev Technol,
8,
497-503.
|
 |
|
|
|
|
 |
S.Whittaker,
D.Ménard,
R.Kirk,
L.Ogilvie,
D.Hedley,
A.Zambon,
F.Lopes,
N.Preece,
H.Manne,
S.Rana,
M.Lambros,
J.S.Reis-Filho,
R.Marais,
and
C.J.Springer
(2010).
A novel, selective, and efficacious nanomolar pyridopyrazinone inhibitor of V600EBRAF.
|
| |
Cancer Res,
70,
8036-8044.
|
 |
|
|
|
|
 |
S.Whittaker,
R.Kirk,
R.Hayward,
A.Zambon,
A.Viros,
N.Cantarino,
A.Affolter,
A.Nourry,
D.Niculescu-Duvaz,
C.Springer,
and
R.Marais
(2010).
Gatekeeper mutations mediate resistance to BRAF-targeted therapies.
|
| |
Sci Transl Med,
2,
35ra41.
|
 |
|
|
|
|
 |
T.J.Harris,
and
F.McCormick
(2010).
The molecular pathology of cancer.
|
| |
Nat Rev Clin Oncol,
7,
251-265.
|
 |
|
|
|
|
 |
T.S.Niault,
and
M.Baccarini
(2010).
Targets of Raf in tumorigenesis.
|
| |
Carcinogenesis,
31,
1165-1174.
|
 |
|
|
|
|
 |
V.González-Pérez,
D.J.Reiner,
J.K.Alan,
C.Mitchell,
L.J.Edwards,
V.Khazak,
C.J.Der,
and
A.D.Cox
(2010).
Genetic and functional characterization of putative Ras/Raf interaction inhibitors in C. elegans and mammalian cells.
|
| |
J Mol Signal,
5,
2.
|
 |
|
|
|
|
 |
Z.Ji,
K.T.Flaherty,
and
H.Tsao
(2010).
Molecular therapeutic approaches to melanoma.
|
| |
Mol Aspects Med,
31,
194-204.
|
 |
|
|
|
|
 |
A.G.Villaseñor,
R.Kondru,
H.Ho,
S.Wang,
E.Papp,
D.Shaw,
J.W.Barnett,
M.F.Browner,
and
A.Kuglstatter
(2009).
Structural insights for design of potent spleen tyrosine kinase inhibitors from crystallographic analysis of three inhibitor complexes.
|
| |
Chem Biol Drug Des,
73,
466-470.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Sharma,
A.K.Sharma,
S.V.Madhunapantula,
D.Desai,
S.J.Huh,
P.Mosca,
S.Amin,
and
G.P.Robertson
(2009).
Targeting Akt3 signaling in malignant melanoma using isoselenocyanates.
|
| |
Clin Cancer Res,
15,
1674-1685.
|
 |
|
|
|
|
 |
C.M.Emery,
K.G.Vijayendran,
M.C.Zipser,
A.M.Sawyer,
L.Niu,
J.J.Kim,
C.Hatton,
R.Chopra,
P.A.Oberholzer,
M.B.Karpova,
L.E.MacConaill,
J.Zhang,
N.S.Gray,
W.R.Sellers,
R.Dummer,
and
L.A.Garraway
(2009).
MEK1 mutations confer resistance to MEK and B-RAF inhibition.
|
| |
Proc Natl Acad Sci U S A,
106,
20411-20416.
|
 |
|
|
|
|
 |
C.Nucera,
M.Goldfarb,
R.Hodin,
and
S.Parangi
(2009).
Role of B-Raf(V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf(V600E).
|
| |
Biochim Biophys Acta,
1795,
152-161.
|
 |
|
|
|
|
 |
D.Dankort,
D.P.Curley,
R.A.Cartlidge,
B.Nelson,
A.N.Karnezis,
W.E.Damsky,
M.J.You,
R.A.DePinho,
M.McMahon,
and
M.Bosenberg
(2009).
Braf(V600E) cooperates with Pten loss to induce metastatic melanoma.
|
| |
Nat Genet,
41,
544-552.
|
 |
|
|
|
|
 |
D.R.Artis,
J.J.Lin,
C.Zhang,
W.Wang,
U.Mehra,
M.Perreault,
D.Erbe,
H.I.Krupka,
B.P.England,
J.Arnold,
A.N.Plotnikov,
A.Marimuthu,
H.Nguyen,
S.Will,
M.Signaevsky,
J.Kral,
J.Cantwell,
C.Settachatgull,
D.S.Yan,
D.Fong,
A.Oh,
S.Shi,
P.Womack,
B.Powell,
G.Habets,
B.L.West,
K.Y.Zhang,
M.V.Milburn,
G.P.Vlasuk,
K.P.Hirth,
K.Nolop,
G.Bollag,
P.N.Ibrahim,
and
J.F.Tobin
(2009).
Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent.
|
| |
Proc Natl Acad Sci U S A,
106,
262-267.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.F.Fratev,
and
S.O.Jónsdóttir
(2009).
An in silico study of the molecular basis of B-RAF activation and conformational stability.
|
| |
BMC Struct Biol,
9,
47.
|
 |
|
|
|
|
 |
G.E.de Kloe,
D.Bailey,
R.Leurs,
and
I.J.de Esch
(2009).
Transforming fragments into candidates: small becomes big in medicinal chemistry.
|
| |
Drug Discov Today,
14,
630-646.
|
 |
|
|
|
|
 |
H.Song,
I.Hur,
H.J.Park,
J.Nam,
G.B.Park,
K.H.Kong,
Y.M.Hwang,
Y.S.Kim,
D.H.Cho,
W.J.Lee,
and
D.Y.Hur
(2009).
Selenium Inhibits Metastasis of Murine Melanoma Cells through the Induction of Cell Cycle Arrest and Cell Death.
|
| |
Immune Netw,
9,
236-242.
|
 |
|
|
|
|
 |
H.Y.Lee,
N.Yerkes,
and
S.E.O'Connor
(2009).
Aza-tryptamine substrates in monoterpene indole alkaloid biosynthesis.
|
| |
Chem Biol,
16,
1225-1229.
|
 |
|
|
|
|
 |
J.M.Kirkwood,
and
A.Eggermont
(2009).
Highlights from the perspectives in melanoma XII conference.
|
| |
Pigment Cell Melanoma Res,
22,
156-165.
|
 |
|
|
|
|
 |
K.Balmanno,
and
S.J.Cook
(2009).
Tumour cell survival signalling by the ERK1/2 pathway.
|
| |
Cell Death Differ,
16,
368-377.
|
 |
|
|
|
|
 |
K.S.Smalley,
and
K.T.Flaherty
(2009).
Development of a novel chemical class of BRAF inhibitors offers new hope for melanoma treatment.
|
| |
Future Oncol,
5,
775-778.
|
 |
|
|
|
|
 |
L.M.Packer,
P.East,
J.S.Reis-Filho,
and
R.Marais
(2009).
Identification of direct transcriptional targets of BRAF/MEK signalling in melanoma.
|
| |
Pigment Cell Melanoma Res,
22,
785-798.
|
 |
|
|
|
|
 |
M.Pichler,
M.Balic,
E.Stadelmeyer,
C.Ausch,
M.Wild,
C.Guelly,
T.Bauernhofer,
H.Samonigg,
G.Hoefler,
and
N.Dandachi
(2009).
Evaluation of high-resolution melting analysis as a diagnostic tool to detect the BRAF V600E mutation in colorectal tumors.
|
| |
J Mol Diagn,
11,
140-147.
|
 |
|
|
|
|
 |
M.Xing
(2009).
Genetic-targeted therapy of thyroid cancer: a real promise.
|
| |
Thyroid,
19,
805-809.
|
 |
|
|
|
|
 |
N.T.Ihle,
and
G.Powis
(2009).
Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy.
|
| |
Mol Cancer Ther,
8,
1-9.
|
 |
|
|
|
|
 |
P.A.Jänne,
N.Gray,
and
J.Settleman
(2009).
Factors underlying sensitivity of cancers to small-molecule kinase inhibitors.
|
| |
Nat Rev Drug Discov,
8,
709-723.
|
 |
|
|
|
|
 |
P.Dent,
D.T.Curiel,
P.B.Fisher,
and
S.Grant
(2009).
Synergistic combinations of signaling pathway inhibitors: mechanisms for improved cancer therapy.
|
| |
Drug Resist Updat,
12,
65-73.
|
 |
|
|
|
|
 |
P.Hersey,
L.Bastholt,
V.Chiarion-Sileni,
G.Cinat,
R.Dummer,
A.M.Eggermont,
E.Espinosa,
A.Hauschild,
I.Quirt,
C.Robert,
and
D.Schadendorf
(2009).
Small molecules and targeted therapies in distant metastatic disease.
|
| |
Ann Oncol,
20,
vi35-vi40.
|
 |
|
|
|
|
 |
P.Hersey,
and
X.D.Zhang
(2009).
Treatment combinations targeting apoptosis to improve immunotherapy of melanoma.
|
| |
Cancer Immunol Immunother,
58,
1749-1759.
|
 |
|
|
|
|
 |
P.Xie,
C.Streu,
J.Qin,
H.Bregman,
N.Pagano,
E.Meggers,
and
R.Marmorstein
(2009).
The crystal structure of BRAF in complex with an organoruthenium inhibitor reveals a mechanism for inhibition of an active form of BRAF kinase.
|
| |
Biochemistry,
48,
5187-5198.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.Sullivan,
and
M.B.Atkins
(2009).
Molecular-targeted therapy in malignant melanoma.
|
| |
Expert Rev Anticancer Ther,
9,
567-581.
|
 |
|
|
|
|
 |
R.M.Klein,
and
A.E.Aplin
(2009).
Rnd3 regulation of the actin cytoskeleton promotes melanoma migration and invasive outgrowth in three dimensions.
|
| |
Cancer Res,
69,
2224-2233.
|
 |
|
|
|
|
 |
T.Rajakulendran,
M.Sahmi,
M.Lefrançois,
F.Sicheri,
and
M.Therrien
(2009).
A dimerization-dependent mechanism drives RAF catalytic activation.
|
| |
Nature,
461,
542-545.
|
 |
|
|
|
|
 |
W.Zhou,
D.Ercan,
L.Chen,
C.H.Yun,
D.Li,
M.Capelletti,
A.B.Cortot,
L.Chirieac,
R.E.Iacob,
R.Padera,
J.R.Engen,
K.K.Wong,
M.J.Eck,
N.S.Gray,
and
P.A.Jänne
(2009).
Novel mutant-selective EGFR kinase inhibitors against EGFR T790M.
|
| |
Nature,
462,
1070-1074.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Salvatore,
F.Carlomagno,
and
M.Santoro
(2008).
Pros and cons of cellular studies in developing new drugs for thyroid cancers.
|
| |
Thyroid,
18,
819-822.
|
 |
|
|
|
|
 |
L.A.Fecher,
R.Amaravadi,
and
L.M.Schuchter
(2008).
Effectively targeting BRAF in melanoma: a formidable challenge.
|
| |
Pigment Cell Melanoma Res,
21,
410-411.
|
 |
|
|
|
|
 |
R.A.Cartlidge,
G.R.Thomas,
S.Cagnol,
K.A.Jong,
S.A.Molton,
A.J.Finch,
and
M.McMahon
(2008).
Oncogenic BRAF(V600E) inhibits BIM expression to promote melanoma cell survival.
|
| |
Pigment Cell Melanoma Res,
21,
534-544.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |