 |
PDBsum entry 2v9h
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Protein binding
|
PDB id
|
|
|
|
2v9h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Protein binding
|
 |
|
Title:
|
 |
Solution structure of an escherichia coli yaet tandem potra domain
|
|
Structure:
|
 |
Outer membrane protein assembly factor yaet. Chain: a. Fragment: potra domains 1 and 2, residues 21-174. Synonym: yaet, omp85. Engineered: yes
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Strain: mc4100. Expressed in: escherichia coli. Expression_system_taxid: 562.
|
|
NMR struc:
|
 |
20 models
|
 |
|
Authors:
|
 |
T.J.Knowles,M.Jeeves,S.Bobat,F.Dancea,D.M.Mcclelland,T.Palmer, M.Overduin,I.R.Henderson
|
|
Key ref:
|
 |
T.J.Knowles
et al.
(2008).
Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes.
Mol Microbiol,
68,
1216-1227.
PubMed id:
|
 |
|
Date:
|
 |
|
23-Aug-07
|
Release date:
|
06-May-08
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P0A940
(BAMA_ECOLI) -
Outer membrane protein assembly factor BamA from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
810 a.a.
154 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Mol Microbiol
68:1216-1227
(2008)
|
|
PubMed id:
|
|
|
|
|
| |
|
Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes.
|
|
T.J.Knowles,
M.Jeeves,
S.Bobat,
F.Dancea,
D.McClelland,
T.Palmer,
M.Overduin,
I.R.Henderson.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Membranes of Gram-negative bacteria, mitochondria and chloroplasts receive and
fold beta-barrel transmembrane proteins through the action of polypeptide
transport-associated (POTRA) domains. In Escherichia coli, folding substrates
are inserted into the outer membrane by the essential protein YaeT, a prototypic
Omp85 protein. Here, the articulation between tandem POTRA domains in solution
is defined by nuclear magnetic resonance (NMR) spectroscopy, indicating an
unprecedented juxtaposition. The novel solution orientations of all five POTRA
domains are revealed by small-angle X-ray scattering of the entire 46 kDa
periplasmic region. NMR titration studies show that strands from YaeT's
canonical folding substrate, PhoE, bind non-specifically along alternating sides
of its mixed beta sheets, thus providing an ideal platform for helping to fold
nascent outer-membrane proteins. Together, this provides the first structural
model of how multiple POTRA domains recruit substrates from the periplasmic
solution into the outer membrane.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
D.L.Leyton,
A.E.Rossiter,
and
I.R.Henderson
(2012).
From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis.
|
| |
Nat Rev Microbiol,
10,
213-225.
|
 |
|
|
|
|
 |
J.Selkrig,
K.Mosbahi,
C.T.Webb,
M.J.Belousoff,
A.J.Perry,
T.J.Wells,
F.Morris,
D.L.Leyton,
M.Totsika,
M.D.Phan,
N.Celik,
M.Kelly,
C.Oates,
E.L.Hartland,
R.M.Robins-Browne,
S.H.Ramarathinam,
A.W.Purcell,
M.A.Schembri,
R.A.Strugnell,
I.R.Henderson,
D.Walker,
and
T.Lithgow
(2012).
Discovery of an archetypal protein transport system in bacterial outer membranes.
|
| |
Nat Struct Mol Biol,
19,
506.
|
 |
|
|
|
|
 |
E.Schleiff,
U.G.Maier,
and
T.Becker
(2011).
Omp85 in eukaryotic systems: one protein family with distinct functions.
|
| |
Biol Chem,
392,
21-27.
|
 |
|
|
|
|
 |
T.J.Knowles,
D.F.Browning,
M.Jeeves,
R.Maderbocus,
S.Rajesh,
P.Sridhar,
E.Manoli,
D.Emery,
U.Sommer,
A.Spencer,
D.L.Leyton,
D.Squire,
R.R.Chaudhuri,
M.R.Viant,
A.F.Cunningham,
I.R.Henderson,
and
M.Overduin
(2011).
Structure and function of BamE within the outer membrane and the β-barrel assembly machine.
|
| |
EMBO Rep,
12,
123-128.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Karuppiah,
J.L.Berry,
and
J.P.Derrick
(2011).
Outer membrane translocons: structural insights into channel formation.
|
| |
Trends Microbiol,
19,
40-48.
|
 |
|
|
|
|
 |
D.Bennion,
E.S.Charlson,
E.Coon,
and
R.Misra
(2010).
Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli.
|
| |
Mol Microbiol,
77,
1153-1171.
|
 |
|
|
|
|
 |
G.H.Huysmans,
S.A.Baldwin,
D.J.Brockwell,
and
S.E.Radford
(2010).
The transition state for folding of an outer membrane protein.
|
| |
Proc Natl Acad Sci U S A,
107,
4099-4104.
|
 |
|
|
|
|
 |
J.Tommassen
(2010).
Assembly of outer-membrane proteins in bacteria and mitochondria.
|
| |
Microbiology,
156,
2587-2596.
|
 |
|
|
|
|
 |
K.Anwari,
S.Poggio,
A.Perry,
X.Gatsos,
S.H.Ramarathinam,
N.A.Williamson,
N.Noinaj,
S.Buchanan,
K.Gabriel,
A.W.Purcell,
C.Jacobs-Wagner,
and
T.Lithgow
(2010).
A modular BAM complex in the outer membrane of the alpha-proteobacterium Caulobacter crescentus.
|
| |
PLoS One,
5,
e8619.
|
 |
|
|
|
|
 |
K.R.Ryan,
J.A.Taylor,
and
L.M.Bowers
(2010).
The BAM complex subunit BamE (SmpA) is required for membrane integrity, stalk growth and normal levels of outer membrane {beta}-barrel proteins in Caulobacter crescentus.
|
| |
Microbiology,
156,
742-756.
|
 |
|
|
|
|
 |
P.Z.Gatzeva-Topalova,
L.R.Warner,
A.Pardi,
and
M.C.Sousa
(2010).
Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane.
|
| |
Structure,
18,
1492-1501.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.R.Chaudhuri,
M.Sebaihia,
J.L.Hobman,
M.A.Webber,
D.L.Leyton,
M.D.Goldberg,
A.F.Cunningham,
A.Scott-Tucker,
P.R.Ferguson,
C.M.Thomas,
G.Frankel,
C.M.Tang,
E.G.Dudley,
I.S.Roberts,
D.A.Rasko,
M.J.Pallen,
J.Parkhill,
J.P.Nataro,
N.R.Thomson,
and
I.R.Henderson
(2010).
Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042.
|
| |
PLoS One,
5,
e8801.
|
 |
|
|
|
|
 |
T.Arnold,
K.Zeth,
and
D.Linke
(2010).
Omp85 from the thermophilic cyanobacterium Thermosynechococcus elongatus differs from proteobacterial Omp85 in structure and domain composition.
|
| |
J Biol Chem,
285,
18003-18015.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.R.Lenhart,
and
D.R.Akins
(2010).
Borrelia burgdorferi locus BB0795 encodes a BamA orthologue required for growth and efficient localization of outer membrane proteins.
|
| |
Mol Microbiol,
75,
692-709.
|
 |
|
|
|
|
 |
U.Lehr,
M.Schütz,
P.Oberhettinger,
F.Ruiz-Perez,
J.W.Donald,
T.Palmer,
D.Linke,
I.R.Henderson,
and
I.B.Autenrieth
(2010).
C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA.
|
| |
Mol Microbiol,
78,
932-946.
|
 |
|
|
|
|
 |
A.C.Meli,
M.Kondratova,
V.Molle,
L.Coquet,
A.V.Kajava,
and
N.Saint
(2009).
EtpB is a pore-forming outer membrane protein showing TpsB protein features involved in the two-partner secretion system.
|
| |
J Membr Biol,
230,
143-154.
|
 |
|
|
|
|
 |
D.M.Walther,
D.Rapaport,
and
J.Tommassen
(2009).
Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence.
|
| |
Cell Mol Life Sci,
66,
2789-2804.
|
 |
|
|
|
|
 |
F.Jacob-Dubuisson,
V.Villeret,
B.Clantin,
A.S.Delattre,
and
N.Saint
(2009).
First structural insights into the TpsB/Omp85 superfamily.
|
| |
Biol Chem,
390,
675-684.
|
 |
|
|
|
|
 |
T.A.Walton,
C.M.Sandoval,
C.A.Fowler,
A.Pardi,
and
M.C.Sousa
(2009).
The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains.
|
| |
Proc Natl Acad Sci U S A,
106,
1772-1777.
|
 |
|
|
|
|
 |
T.J.Knowles,
A.Scott-Tucker,
M.Overduin,
and
I.R.Henderson
(2009).
Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.
|
| |
Nat Rev Microbiol,
7,
206-214.
|
 |
|
|
|
|
 |
P.Z.Gatzeva-Topalova,
T.A.Walton,
and
M.C.Sousa
(2008).
Crystal structure of YaeT: conformational flexibility and substrate recognition.
|
| |
Structure,
16,
1873-1881.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |