spacer
spacer

PDBsum entry 2sec

Go to PDB code: 
protein metals Protein-protein interface(s) links
Complex(serine proteinase-inhibitor) PDB id
2sec

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
274 a.a. *
64 a.a. *
Metals
_CA ×3
Waters ×170
* Residue conservation analysis
PDB id:
2sec
Name: Complex(serine proteinase-inhibitor)
Title: Structural comparison of two serine proteinase-protein inhibitor complexes. Eglin-c-subtilisin carlsberg and ci-2-subtilisin novo
Structure: Subtilisin carlsberg. Chain: e. Engineered: yes. Eglin c. Chain: i. Engineered: yes
Source: Bacillus licheniformis. Organism_taxid: 1402. Hirudo medicinalis. Medicinal leech. Organism_taxid: 6421. Expressed in: unidentified. Expression_system_taxid: 32644
Biol. unit: Dimer (from PQS)
Resolution:
1.80Å     R-factor:   0.136    
Authors: C.A.Mcphalen,M.N.G.James
Key ref:
C.A.McPhalen and M.N.James (1988). Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry, 27, 6582-6598. PubMed id: 3064813 DOI: 10.1021/bi00417a058
Date:
05-Sep-88     Release date:   07-Sep-88    
Supersedes: 1sec
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00780  (SUBC_BACLI) -  Subtilisin Carlsberg from Bacillus licheniformis
Seq:
Struc:
379 a.a.
274 a.a.*
Protein chain
Pfam   ArchSchema ?
P01051  (ICIC_HIRME) -  Eglin C from Hirudo medicinalis
Seq:
Struc:
70 a.a.
64 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: Chain E: E.C.3.4.21.62  - subtilisin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of proteins with broad specificity for peptide bonds, and a preference for a large uncharged residue in P1. Hydrolyzes peptide amides.
   Enzyme class 3: Chain I: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1021/bi00417a058 Biochemistry 27:6582-6598 (1988)
PubMed id: 3064813  
 
 
Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
C.A.McPhalen, M.N.James.
 
  ABSTRACT  
 
The crystal structures of the molecular complexes between two serine proteinases and two of their protein inhibitors have been determined: subtilisin Carlsberg with the recombinant form of eglin-c from the leech Hirudo medicinalis and subtilisin Novo with chymotrypsin inhibitor 2 from barley seeds. The structures have been fully refined by restrained-parameter least-squares methods to crystallographic R factors (sigma[[Fo[ - [Fc[[/sigma[Fo[) of 0.136 at 1.8-A resolution and 0.154 at 2.1-A resolution, respectively. The 274 equivalent alpha-carbon atoms of the enzymes superpose with an rms deviation of 0.53 A. Sequence changes between the enzymes result in localized structural adjustments. Functional groups in the active sites superpose with an rms deviation of 0.19 A for 161 equivalent atoms; this close similarity in the conformation of active-site residues provides no obvious reason for known differences in catalytic activity between Carlsberg and Novo. Conformational changes in the active-site region indicate a small induced fit of enzyme and inhibitor. Some conformational differences are observed between equivalent active-site residues of subtilisin Carlsberg and alpha-chymotrypsin. Despite differences in tertiary architecture, most enzyme-substrate (inhibitor) interactions are maintained. Subtilisin Carlsberg has a rare cis-peptide bond preceding Thr211 (Gly211 in Novo). Both enzymes contain tightly bound Ca2+ ions. Site 1 is heptacoordinate with the oxygen atoms at the vertices of a pentagonal bipyramid. Site 2 in Carlsberg is probably occupied by a K+ ion in Novo. Conserved water molecules appear to play important structural roles in the enzyme interior, in the inhibitor beta-sheet, and at the enzyme-inhibitor interface. The 62 equivalent alpha-carbon atoms of the inhibitors superpose with an rms deviation of 1.68 A. Sequence changes result in somewhat different packing of the alpha-helix, beta-sheet, and reactive-site loop relative to each other. Hydrogen bonds and electrostatic interactions supporting the conformation of the reactive-site loop are conserved. The 24 main-chain plus C beta atoms of P4 to P1' overlap with an rms deviation of 0.19 A. Features contributing to the inhibitory nature of eglin-c and CI-2 are discussed.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21287622 M.J.Whitley, and A.L.Lee (2011).
Exploring the role of structure and dynamics in the function of chymotrypsin inhibitor 2.
  Proteins, 79, 916-924.  
19585017 A.Szumna (2009).
Water co-encapsulation in an inverted molecular capsule.
  Chem Commun (Camb), (), 4191-4193.  
19696109 G.Cheng, P.Zhao, X.F.Tang, and B.Tang (2009).
Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF.
  Microbiology, 155, 3661-3672.  
18069884 A.Del Sol, and P.Carbonell (2007).
The Modular Organization of Domain Structures: Insights into Protein-Protein Binding.
  PLoS Comput Biol, 3, e239.  
17630120 K.Saeki, K.Ozaki, T.Kobayashi, and S.Ito (2007).
Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.
  J Biosci Bioeng, 103, 501-508.  
17360527 T.Liu, S.T.Whitten, and V.J.Hilser (2007).
Functional residues serve a dominant role in mediating the cooperativity of the protein ensemble.
  Proc Natl Acad Sci U S A, 104, 4347-4352.  
17266160 Z.Suo, and M.A.Abdullah (2007).
Unique Composite Active Site of the Hepatitis C Virus NS2-3 Protease: a New Opportunity for Antiviral Drug Design.
  ChemMedChem, 2, 283-284.  
16862121 I.C.Lorenz, J.Marcotrigiano, T.G.Dentzer, and C.M.Rice (2006).
Structure of the catalytic domain of the hepatitis C virus NS2-3 protease.
  Nature, 442, 831-835.
PDB code: 2hd0
16751527 M.Pulido, K.Saito, S.Tanaka, Y.Koga, M.Morikawa, K.Takano, and S.Kanaya (2006).
Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding.
  Appl Environ Microbiol, 72, 4154-4162.  
16367748 R.Helland, A.N.Larsen, A.O.Smalås, and N.P.Willassen (2006).
The 1.8 A crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species.
  FEBS J, 273, 61-71.
PDB code: 2b6n
  16511027 D.Dong, T.Ihara, H.Motoshima, and K.Watanabe (2005).
Crystallization and preliminary X-ray crystallographic studies of a psychrophilic subtilisin-like protease Apa1 from Antarctic Pseudoalteromonas sp. strain AS-11.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 308-311.  
15778956 D.Segal, and M.Eisenstein (2005).
The effect of resolution-dependent global shape modifications on rigid-body protein-protein docking.
  Proteins, 59, 580-591.  
15162493 A.Berchanski, B.Shapira, and M.Eisenstein (2004).
Hydrophobic complementarity in protein-protein docking.
  Proteins, 56, 130-142.  
15159396 L.Rozan, D.J.Krysan, N.C.Rockwell, and R.S.Fuller (2004).
Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin.
  J Biol Chem, 279, 35656-35663.  
12784363 E.Ben-Zeev, and M.Eisenstein (2003).
Weighted geometric docking: incorporating external information in the rotation-translation scan.
  Proteins, 52, 24-27.  
12684499 I.H.Barrette-Ng, K.K.Ng, M.M.Cherney, G.Pearce, C.A.Ryan, and M.N.James (2003).
Structural basis of inhibition revealed by a 1:2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg.
  J Biol Chem, 278, 24062-24071.
PDB code: 1oyv
12931008 J.R.Bradford, and D.R.Westhead (2003).
Asymmetric mutation rates at enzyme-inhibitor interfaces: implications for the protein-protein docking problem.
  Protein Sci, 12, 2099-2103.  
11847280 A.Heifetz, E.Katchalski-Katzir, and M.Eisenstein (2002).
Electrostatics in protein-protein docking.
  Protein Sci, 11, 571-587.  
12142461 E.S.Radisky, and D.E.Koshland (2002).
A clogged gutter mechanism for protease inhibitors.
  Proc Natl Acad Sci U S A, 99, 10316-10321.
PDB code: 1lw6
12354115 E.T.Anderson, M.G.Wetherell, L.A.Winter, S.B.Olmsted, P.P.Cleary, and Y.V.Matsuka (2002).
Processing, stability, and kinetic parameters of C5a peptidase from Streptococcus pyogenes.
  Eur J Biochem, 269, 4839-4851.  
11606307 S.Lee, and D.J.Jang (2001).
Progressive rearrangement of subtilisin Carlsberg into orderly and inflexible conformation with Ca(2+) binding.
  Biophys J, 81, 2972-2978.  
10737939 D.W.Ritchie, and G.J.Kemp (2000).
Protein docking using spherical polar Fourier correlations.
  Proteins, 39, 178-194.  
11150607 P.N.Bryan (2000).
Protein engineering of subtilisin.
  Biochim Biophys Acta, 1543, 203-222.  
11023921 S.Lee, and D.J.Jang (2000).
Cation-binding sites of subtilisin Carlsberg probed with Eu(III) luminescence.
  Biophys J, 79, 2171-2177.  
10736156 W.Y.Lu, M.A.Starovasnik, J.J.Dwyer, A.A.Kossiakoff, S.B.Kent, and W.Lu (2000).
Deciphering the role of the electrostatic interactions involving Gly70 in eglin C by total chemical protein synthesis.
  Biochemistry, 39, 3575-3584.  
10828942 Y.Li, H.Li, S.J.Smith-Gill, and R.A.Mariuzza (2000).
Three-dimensional structures of the free and antigen-bound Fab from monoclonal antilysozyme antibody HyHEL-63(,).
  Biochemistry, 39, 6296-6309.
PDB codes: 1dqj 1dqm 1dqq
10387104 B.Ruan, J.Hoskins, and P.N.Bryan (1999).
Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
  Biochemistry, 38, 8562-8571.  
9893983 G.Lipkind, and D.F.Steiner (1999).
Predicted structural alterations in proinsulin during its interactions with prohormone convertases.
  Biochemistry, 38, 890-896.  
10328272 G.Moont, H.A.Gabb, and M.J.Sternberg (1999).
Use of pair potentials across protein interfaces in screening predicted docked complexes.
  Proteins, 35, 364-373.  
10102985 H.Czapinska, and J.Otlewski (1999).
Structural and energetic determinants of the S1-site specificity in serine proteases.
  Eur J Biochem, 260, 571-595.  
10193194 J.C.Waldner, S.J.Lahr, M.H.Edgell, and G.J.Pielak (1999).
Nonideality and protein thermal denaturation.
  Biopolymers, 49, 471-479.  
10103004 M.M.Kristjánsson, O.T.Magnússon, H.M.Gudmundsson, G.A.Alfredsson, and H.Matsuzawa (1999).
Properties of a subtilisin-like proteinase from a psychrotrophic Vibrio species comparison with proteinase K and aqualysin I.
  Eur J Biochem, 260, 752-760.  
10381402 W.Lu, M.Randal, A.Kossiakoff, and S.B.Kent (1999).
Probing intermolecular backbone H-bonding in serine proteinase-protein inhibitor complexes.
  Chem Biol, 6, 419-427.  
10387007 W.T.Lowther, A.M.Orville, D.T.Madden, S.Lim, D.H.Rich, and B.W.Matthews (1999).
Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.
  Biochemistry, 38, 7678-7688.
PDB codes: 2mat 3mat 4mat
9708981 F.Martin, N.Dimasi, C.Volpari, C.Perrera, S.Di Marco, M.Brunetti, C.Steinkühler, R.De Francesco, and M.Sollazzo (1998).
Design of selective eglin inhibitors of HCV NS3 proteinase.
  Biochemistry, 37, 11459-11468.  
9636145 G.M.Lipkind, A.Zhou, and D.F.Steiner (1998).
A model for the structure of the P domains in the subtilisin-like prohormone convertases.
  Proc Natl Acad Sci U S A, 95, 7310-7315.  
9521659 N.C.Rockwell, and R.S.Fuller (1998).
Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain.
  Biochemistry, 37, 3386-3391.  
9860855 T.Tanaka, H.Matsuzawa, and T.Ohta (1998).
Engineering of S2 site of aqualysin I; alteration of P2 specificity by excluding P2 side chain.
  Biochemistry, 37, 17402-17407.  
9115441 J.R.Martin, F.A.Mulder, Y.Karimi-Nejad, J.van der Zwan, M.Mariani, D.Schipper, and R.Boelens (1997).
The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site.
  Structure, 5, 521-532.
PDB code: 1ah2
9048543 M.A.Qasim, P.J.Ganz, C.W.Saunders, K.S.Bateman, M.N.James, and M.Laskowski (1997).
Interscaffolding additivity. Association of P1 variants of eglin c and of turkey ovomucoid third domain with serine proteinases.
  Biochemistry, 36, 1598-1607.  
  9070434 R.J.Siezen, and J.A.Leunissen (1997).
Subtilases: the superfamily of subtilisin-like serine proteases.
  Protein Sci, 6, 501-523.  
8738345 A.Sättler, S.Kanka, K.H.Maurer, and D.Riesner (1996).
Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis.
  Electrophoresis, 17, 784-792.  
8952503 B.A.Fields, F.A.Goldbaum, W.Dall'Acqua, E.L.Malchiodi, A.Cauerhff, F.P.Schwarz, X.Ysern, R.J.Poljak, and R.A.Mariuzza (1996).
Hydrogen bonding and solvent structure in an antigen-antibody interface. Crystal structures and thermodynamic characterization of three Fv mutants complexed with lysozyme.
  Biochemistry, 35, 15494-15503.
PDB codes: 1kip 1kiq 1kir
8756522 I.A.Vakser (1996).
Low-resolution docking: prediction of complexes for underdetermined structures.
  Biopolymers, 39, 455-464.  
9162944 L.Zhang, and J.Hermans (1996).
Hydrophilicity of cavities in proteins.
  Proteins, 24, 433-438.  
8885837 M.D.Ballinger, J.Tom, and J.A.Wells (1996).
Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
  Biochemistry, 35, 13579-13585.  
8654411 M.L.Remerowski, H.A.Pepermans, C.W.Hilbers, and F.J.Van De Ven (1996).
Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements.
  Eur J Biochem, 235, 629-640.  
8688421 M.S.Warren, A.E.Marolewski, and S.J.Benkovic (1996).
A rapid screen of active site mutants in glycinamide ribonucleotide transformylase.
  Biochemistry, 35, 8855-8862.  
8861535 N.C.Singha, N.Surolia, and A.Surolia (1996).
On the relationship of thermodynamic parameters with the buried surface area in protein-ligand complex formation.
  Biosci Rep, 16, 1.  
8756517 R.Pachter, S.B.Fairchild, J.A.Lupo, and W.W.Adams (1996).
Biomolecular structure prediction at a low resolution using a neural network and the double-iterated Kalman filter technique.
  Biopolymers, 39, 377-386.  
7768927 G.Lipkind, Q.Gong, and D.F.Steiner (1995).
Molecular modeling of the substrate specificity of prohormone convertases SPC2 and SPC3.
  J Biol Chem, 270, 13277-13284.  
7540055 G.Siligardi, and A.F.Drake (1995).
The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides.
  Biopolymers, 37, 281-292.  
  7795518 J.J.Perona, and C.S.Craik (1995).
Structural basis of substrate specificity in the serine proteases.
  Protein Sci, 4, 337-360.
PDB code: 1amh
7716167 J.Janin (1995).
Elusive affinities.
  Proteins, 21, 30-39.  
18623235 J.O.Rich, B.A.Bedell, and J.S.Dordick (1995).
Controlling enzyme-catalyzed regioselectivity in sugar ester synthesis.
  Biotechnol Bioeng, 45, 426-434.  
8569452 P.Ascenzi, G.Amiconi, W.Bode, M.Bolognesi, M.Coletta, and E.Menegatti (1995).
Proteinase inhibitors from the European medicinal leech Hirudo medicinalis: structural, functional and biomedical aspects.
  Mol Aspects Med, 16, 215-313.  
9634803 S.L.Strausberg, P.A.Alexander, D.T.Gallagher, G.L.Gilliland, B.L.Barnett, and P.N.Bryan (1995).
Directed evolution of a subtilisin with calcium-independent stability.
  Biotechnology (N Y), 13, 669-673.  
7662108 S.T.Chen, S.Y.Chen, C.C.Tu, S.H.Chiou, and K.T.Wang (1995).
Physicochemical properties of alkaline serine proteases in alcohol.
  J Protein Chem, 14, 205-215.  
8535784 T.Gallagher, G.Gilliland, L.Wang, and P.Bryan (1995).
The prosegment-subtilisin BPN' complex: crystal structure of a specific 'foldase'.
  Structure, 3, 907-914.
PDB code: 1spb
7605625 Y.Yamagata, K.Isshiki, and E.Ichishima (1995).
Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS.
  Enzyme Microb Technol, 17, 653-663.  
8306976 A.Liljas, K.Håkansson, B.H.Jonsson, and Y.Xue (1994).
Inhibition and catalysis of carbonic anhydrase. Recent crystallographic analyses.
  Eur J Biochem, 219, 1.  
7523123 E.Fioretti, M.Angeletti, G.Lupidi, and M.Coletta (1994).
Heterotropic modulation of the protease-inhibitor-recognition process. Cations effect the binding properties of alpha-chymotrypsin.
  Eur J Biochem, 225, 459-465.  
7925366 G.Lange, C.Betzel, S.Branner, and K.S.Wilson (1994).
Crystallographic studies of Savinase, a subtilisin-like proteinase, at pH 10.5.
  Eur J Biochem, 224, 507-518.  
7765173 J.P.Leis, and C.E.Cameron (1994).
Engineering proteases with altered specificity.
  Curr Opin Biotechnol, 5, 403-408.  
7922044 K.Huang, N.C.Strynadka, V.D.Bernard, R.J.Peanasky, and M.N.James (1994).
The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase.
  Structure, 2, 679-689.
PDB code: 1eai
7972020 M.A.Miller, G.W.Han, and J.Kraut (1994).
A cation binding motif stabilizes the compound I radical of cytochrome c peroxidase.
  Proc Natl Acad Sci U S A, 91, 11118-11122.
PDB codes: 1cpd 1cpe 1cpf 1cpg
7922119 P.Seufer-Wasserthal, V.Martichonok, T.H.Keller, B.Chin, R.Martin, and J.B.Jones (1994).
Probing the specificity of the S1 binding site of subtilisin Carlsberg with boronic acids.
  Bioorg Med Chem, 2, 35-48.  
8020465 R.J.Siezen, J.W.Creemers, and W.J.Van de Ven (1994).
Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases.
  Eur J Biochem, 222, 255-266.  
7809074 T.K.Chang, D.Y.Jackson, J.P.Burnier, and J.A.Wells (1994).
Subtiligase: a tool for semisynthesis of proteins.
  Proc Natl Acad Sci U S A, 91, 12544-12548.  
8302837 T.N.Bhat, G.A.Bentley, G.Boulot, M.I.Greene, D.Tello, W.Dall'Acqua, H.Souchon, F.P.Schwarz, R.A.Mariuzza, and R.J.Poljak (1994).
Bound water molecules and conformational stabilization help mediate an antigen-antibody association.
  Proc Natl Acad Sci U S A, 91, 1089-1093.
PDB codes: 1vfa 1vfb
8378343 P.A.Fitzpatrick, A.C.Steinmetz, D.Ringe, and A.M.Klibanov (1993).
Enzyme crystal structure in a neat organic solvent.
  Proc Natl Acad Sci U S A, 90, 8653-8657.
PDB codes: 1sca 1scb
8497488 S.H.Bryant, and C.E.Lawrence (1993).
An empirical energy function for threading protein sequence through the folding motif.
  Proteins, 16, 92.  
1579569 A.L.Morris, M.W.MacArthur, E.G.Hutchinson, and J.M.Thornton (1992).
Stereochemical quality of protein structure coordinates.
  Proteins, 12, 345-364.  
1438183 A.P.Heiner, H.J.Berendsen, and W.F.van Gunsteren (1992).
MD simulation of subtilisin BPN' in a crystal environment.
  Proteins, 14, 451-464.  
1557349 J.S.Finer-Moore, A.A.Kossiakoff, J.H.Hurley, T.Earnest, and R.M.Stroud (1992).
Solvent structure in crystals of trypsin determined by X-ray and neutron diffraction.
  Proteins, 12, 203-222.
PDB code: 5ptp
1425695 L.M.Bech, S.B.Sørensen, and K.Breddam (1992).
Mutational replacements in subtilisin 309. Val104 has a modulating effect on the P4 substrate preference.
  Eur J Biochem, 209, 869-874.  
1438300 M.Gasset, M.A.Baldwin, D.H.Lloyd, J.M.Gabriel, D.M.Holtzman, F.Cohen, R.Fletterick, and S.B.Prusiner (1992).
Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid.
  Proc Natl Acad Sci U S A, 89, 10940-10944.  
1553381 P.Gros, A.V.Teplyakov, and W.G.Hol (1992).
Effects of eglin-c binding to thermitase: three-dimensional structure comparison of native thermitase and thermitase eglin-c complexes.
  Proteins, 12, 63-74.  
1476365 R.Bott, J.Dauberman, R.Caldwell, C.Mitchinson, L.Wilson, B.Schmidt, C.Simpson, S.Power, P.Lad, and I.H.Sagar (1992).
Using structural comparison as a guide in protein engineering.
  Ann N Y Acad Sci, 672, 10-19.  
1620696 R.R.Plaskon, C.M.Kam, E.M.Burgess, J.C.Powers, and F.L.Suddath (1992).
Michaelis complexes of porcine pancreatic elastase with 7-[(alkylcarbamoyl)amino]-4-chloro-3-ethoxyisocoumarins: translational sampling of inhibitor position and kinetic measurements.
  Proteins, 13, 141-151.  
  1304915 S.G.Hyberts, M.S.Goldberg, T.F.Havel, and G.Wagner (1992).
The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures.
  Protein Sci, 1, 736-751.
PDB code: 1egl
1476392 T.P.Graycar, R.R.Bott, R.M.Caldwell, J.L.Dauberman, P.J.Lad, S.D.Power, I.H.Sagar, R.A.Silva, G.L.Weiss, and L.R.Woodhouse (1992).
Altering the proteolytic activity of subtilisin through protein engineering.
  Ann N Y Acad Sci, 672, 71-79.  
1541261 W.Bode, and R.Huber (1992).
Natural protein proteinase inhibitors and their interaction with proteinases.
  Eur J Biochem, 204, 433-451.  
1799410 G.Forsberg, M.Brobjer, E.Holmgren, K.Bergdahl, P.Persson, K.M.Gautvik, and M.Hartmanis (1991).
Thrombin and H64A subtilisin cleavage of fusion proteins for preparation of human recombinant parathyroid hormone.
  J Protein Chem, 10, 517-526.  
1749775 O.Herzberg, and J.Moult (1991).
Analysis of the steric strain in the polypeptide backbone of protein molecules.
  Proteins, 11, 223-229.  
2269436 G.J.Wistow, and J.Piatigorsky (1990).
Gene conversion and splice-site slippage in the argininosuccinate lyases/delta-crystallins of the duck lens: members of an enzyme superfamily.
  Gene, 96, 263-270.  
2278733 M.Bolognesi, L.Pugliese, G.Gatti, F.Frigerio, A.Coda, L.Antolini, H.P.Schnebli, E.Menegatti, G.Amiconi, and P.Ascenzi (1990).
X-ray crystal structure of the bovine alpha-chymotrypsin/eglin c complex at 2.6 A resolution.
  J Mol Recognit, 3, 163-168.  
2199971 P.Carter, and J.A.Wells (1990).
Functional interaction among catalytic residues in subtilisin BPN'.
  Proteins, 7, 335-342.  
2094803 W.J.van de Ven, J.Voorberg, R.Fontijn, H.Pannekoek, A.M.van den Ouweland, H.L.van Duijnhoven, A.J.Roebroek, and R.J.Siezen (1990).
Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes.
  Mol Biol Rep, 14, 265-275.  
2678630 T.E.Creighton, and N.J.Darby (1989).
Functional evolutionary divergence of proteolytic enzymes and their inhibitors.
  Trends Biochem Sci, 14, 319-324.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer