spacer
spacer

PDBsum entry 2qa5

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Cell cycle, structural protein PDB id
2qa5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
233 a.a. *
234 a.a. *
Ligands
GDP ×2
* Residue conservation analysis
PDB id:
2qa5
Name: Cell cycle, structural protein
Title: Crystal structure of sept2 g-domain
Structure: Septin-2. Chain: a, b. Synonym: protein nedd5. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Strain: bl21. Gene: sept2, diff6, kiaa0158, nedd5. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
3.40Å     R-factor:   0.281     R-free:   0.314
Authors: M.Sirajuddin,A.Wittinghofer
Key ref:
M.Sirajuddin et al. (2007). Structural insight into filament formation by mammalian septins. Nature, 449, 311-315. PubMed id: 17637674 DOI: 10.1038/nature06052
Date:
14-Jun-07     Release date:   07-Aug-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q15019  (SEPT2_HUMAN) -  Septin-2 from Homo sapiens
Seq:
Struc:
361 a.a.
233 a.a.
Protein chain
Pfam   ArchSchema ?
Q15019  (SEPT2_HUMAN) -  Septin-2 from Homo sapiens
Seq:
Struc:
361 a.a.
234 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/nature06052 Nature 449:311-315 (2007)
PubMed id: 17637674  
 
 
Structural insight into filament formation by mammalian septins.
M.Sirajuddin, M.Farkasovsky, F.Hauer, D.Kühlmann, I.G.Macara, M.Weyand, H.Stark, A.Wittinghofer.
 
  ABSTRACT  
 
Septins are GTP-binding proteins that assemble into homo- and hetero-oligomers and filaments. Although they have key roles in various cellular processes, little is known concerning the structure of septin subunits or the organization and polarity of septin complexes. Here we present the structures of the human SEPT2 G domain and the heterotrimeric human SEPT2-SEPT6-SEPT7 complex. The structures reveal a universal bipolar polymer building block, composed of an extended G domain, which forms oligomers and filaments by conserved interactions between adjacent nucleotide-binding sites and/or the amino- and carboxy-terminal extensions. Unexpectedly, X-ray crystallography and electron microscopy showed that the predicted coiled coils are not involved in or required for complex and/or filament formation. The asymmetrical heterotrimers associate head-to-head to form a hexameric unit that is nonpolarized along the filament axis but is rotationally asymmetrical. The architecture of septin filaments differs fundamentally from that of other cytoskeletal structures.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: Structural analysis of the human septin complex. a, Superimposition of the molecular replacement solution using the SEPT2 G domain onto the selenomethionine anomalous map contoured at 5 to assign the location of the SEPT2, SEPT6 and SEPT7 subunits in the asymmetrical unit. b, Ribbon model of the trimeric SEPT2–SEPT26–SEPT27 complex, with SEPT7 in cyan, SEPT6 in pink and SEPT2 in blue, with nucleotides in ball and stick representation. c, Positive F[o] - F[c] electron density map, contoured at 3 , around the nucleotide-binding sites of the respective septins, and the resulting nucleotide models, as indicated.
Figure 4.
Figure 4: The septin filament. Surface representation of the basic hexameric unit (in colour). The neighbouring hexamer makes longitudinal contact using SEPT7 (in grey), thereby forming septin filaments. The nature of the nucleotide in the subunits is indicated. The presumed orientations of the C-terminal ends predicted to form coiled coils are shown schematically.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2007, 449, 311-315) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22314400 S.Mostowy, and P.Cossart (2012).
Septins: the fourth component of the cytoskeleton.
  Nat Rev Mol Cell Biol, 13, 183-194.  
21497764 M.A.McMurray, A.Bertin, G.Garcia, L.Lam, E.Nogales, and J.Thorner (2011).
Septin filament formation is essential in budding yeast.
  Dev Cell, 20, 540-549.  
21276251 N.Pawlowski, A.Khaminets, J.P.Hunn, N.Papic, A.Schmidt, R.C.Uthaiah, R.Lange, G.Vopper, S.Martens, E.Wolf, and J.C.Howard (2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
  BMC Biol, 9, 7.  
21504731 S.Mostowy, S.Janel, C.Forestier, C.Roduit, S.Kasas, J.Pizarro-Cerdá, P.Cossart, and F.Lafont (2011).
A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor.
  Biophys J, 100, 1949-1959.  
21177106 Y.Oh, and E.Bi (2011).
Septin structure and function in yeast and beyond.
  Trends Cell Biol, 21, 141-148.  
20934902 A.S.Gladfelter (2010).
Guides to the final frontier of the cytoskeleton: septins in filamentous fungi.
  Curr Opin Microbiol, 13, 720-726.  
21059949 D.Schwefel, C.Fröhlich, J.Eichhorst, B.Wiesner, J.Behlke, L.Aravind, and O.Daumke (2010).
Structural basis of oligomerization in septin-like GTPase of immunity-associated protein 2 (GIMAP2).
  Proc Natl Acad Sci U S A, 107, 20299-20304.
PDB codes: 2xtm 2xtn 2xto 2xtp
21059902 E.Nogales (2010).
When cytoskeletal worlds collide.
  Proc Natl Acad Sci U S A, 107, 19609-19610.  
20739711 J.Q.Wu, Y.Ye, N.Wang, T.D.Pollard, and J.R.Pringle (2010).
Cooperation between the septins and the actomyosin ring and role of a cell-integrity pathway during cell division in fission yeast.
  Genetics, 186, 897-915.  
21082023 M.Nakahira, J.N.Macedo, T.V.Seraphim, N.Cavalcante, T.A.Souza, J.C.Damalio, L.F.Reyes, E.M.Assmann, M.R.Alborghetti, R.C.Garratt, A.P.Araujo, N.I.Zanchin, J.A.Barbosa, and J.Kobarg (2010).
A draft of the human septin interactome.
  PLoS One, 5, e13799.  
20123972 M.Onishi, T.Koga, A.Hirata, T.Nakamura, H.Asakawa, C.Shimoda, J.Bähler, J.Q.Wu, K.Takegawa, H.Tachikawa, J.R.Pringle, and Y.Fukui (2010).
Role of septins in the orientation of forespore membrane extension during sporulation in fission yeast.
  Mol Cell Biol, 30, 2057-2074.  
21059847 M.P.Estey, C.Di Ciano-Oliveira, C.D.Froese, M.T.Bejide, and W.S.Trimble (2010).
Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission.
  J Cell Biol, 191, 741-749.  
21075354 S.Mostowy, M.Bonazzi, M.A.Hamon, T.N.Tham, A.Mallet, M.Lelek, E.Gouin, C.Demangel, R.Brosch, C.Zimmer, A.Sartori, M.Kinoshita, M.Lecuit, and P.Cossart (2010).
Entrapment of intracytosolic bacteria by septin cage-like structures.
  Cell Host Microbe, 8, 433-444.  
19878436 S.N.Fewou, A.Fernandes, K.Stockdale, V.P.Francone, J.L.Dupree, J.Rosenbluth, S.E.Pfeiffer, and R.Bansal (2010).
Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids.
  J Neurochem, 112, 599-610.  
19916744 S.Xu, Z.F.Jia, C.Kang, Q.Huang, G.Wang, X.Liu, X.Zhou, P.Xu, and P.Pu (2010).
Upregulation of SEPT7 gene inhibits invasion of human glioma cells.
  Cancer Invest, 28, 248-258.  
20544379 T.A.Souza, and J.A.Barbosa (2010).
Cloning, overexpression, purification and preliminary characterization of human septin 8.
  Protein J, 29, 328-335.  
20181826 T.Shinoda, H.Ito, K.Sudo, I.Iwamoto, R.Morishita, and K.Nagata (2010).
Septin 14 is involved in cortical neuronal migration via interaction with Septin 4.
  Mol Biol Cell, 21, 1324-1334.  
19043408 A.J.Tooley, J.Gilden, J.Jacobelli, P.Beemiller, W.S.Trimble, M.Kinoshita, and M.F.Krummel (2009).
Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility.
  Nat Cell Biol, 11, 17-26.  
19225152 B.S.DeMay, R.A.Meseroll, P.Occhipinti, and A.S.Gladfelter (2009).
Regulation of distinct septin rings in a single cell by elm1p and gin4p kinases.
  Mol Biol Cell, 20, 2311-2326.  
18768164 J.Löwe, and L.A.Amos (2009).
Evolution of cytomotive filaments: the cytoskeleton from prokaryotes to eukaryotes.
  Int J Biochem Cell Biol, 41, 323-329.  
19709431 M.A.McMurray, and J.Thorner (2009).
Septins: molecular partitioning and the generation of cellular asymmetry.
  Cell Div, 4, 18.  
19805342 M.Sirajuddin, M.Farkasovsky, E.Zent, and A.Wittinghofer (2009).
GTP-induced conformational changes in septins and implications for function.
  Proc Natl Acad Sci U S A, 106, 16592-16597.
PDB code: 3ftq
19424291 R.Gasper, S.Meyer, K.Gotthardt, M.Sirajuddin, and A.Wittinghofer (2009).
It takes two to tango: regulation of G proteins by dimerization.
  Nat Rev Mol Cell Biol, 10, 423-429.  
18987337 R.P.Huijbregts, A.Svitin, M.W.Stinnett, M.B.Renfrow, and I.Chesnokov (2009).
Drosophila Orc6 facilitates GTPase activity and filament formation of the septin complex.
  Mol Biol Cell, 20, 270-281.  
19806182 S.Meyer, S.Böhme, A.Krüger, H.J.Steinhoff, J.P.Klare, and A.Wittinghofer (2009).
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
  PLoS Biol, 7, e1000212.
PDB codes: 3gee 3geh 3gei
19234302 S.Mostowy, A.Danckaert, T.N.Tham, C.Machu, S.Guadagnini, J.Pizarro-Cerdá, and P.Cossart (2009).
Septin 11 Restricts InlB-mediated Invasion by Listeria.
  J Biol Chem, 284, 11613-11621.  
19296488 S.Mostowy, and P.Cossart (2009).
Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game.
  Cell Motil Cytoskeleton, 66, 816-823.  
19145258 S.Mostowy, T.Nam Tham, A.Danckaert, S.Guadagnini, S.Boisson-Dupuis, J.Pizarro-Cerdá, and P.Cossart (2009).
Septins regulate bacterial entry into host cells.
  PLoS ONE, 4, e4196.  
19851509 T.Salehzada, L.Cambier, N.Vu Thi, L.Manchon, L.Regnier, and C.Bisbal (2009).
Endoribonuclease L (RNase L) regulates the myogenic and adipogenic potential of myogenic cells.
  PLoS One, 4, e7563.  
19380581 X.Li, D.R.Serwanski, C.P.Miralles, K.Nagata, and A.L.De Blas (2009).
Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity.
  J Biol Chem, 284, 17253-17265.  
19167227 Y.Tanaka-Takiguchi, M.Kinoshita, and K.Takiguchi (2009).
Septin-mediated uniform bracing of phospholipid membranes.
  Curr Biol, 19, 140-145.  
18550837 A.Bertin, M.A.McMurray, P.Grob, S.S.Park, G.Garcia, I.Patanwala, H.L.Ng, T.Alber, J.Thorner, and E.Nogales (2008).
Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly.
  Proc Natl Acad Sci U S A, 105, 8274-8279.  
18234840 A.González-Novo, J.Correa-Bordes, L.Labrador, M.Sánchez, C.R.Vázquez de Aldana, and J.Jiménez (2008).
Sep7 Is Essential to Modify Septin Ring Dynamics and Inhibit Cell Separation during Candida albicans Hyphal Growth.
  Mol Biol Cell, 19, 1509-1518.  
18478031 C.S.Weirich, J.P.Erzberger, and Y.Barral (2008).
The septin family of GTPases: architecture and dynamics.
  Nat Rev Mol Cell Biol, 9, 478-489.  
18809578 C.W.Tsang, M.Fedchyshyn, J.Harrison, H.Xie, J.Xue, P.J.Robinson, L.Y.Wang, and W.S.Trimble (2008).
Superfluous role of mammalian septins 3 and 5 in neuronal development and synaptic transmission.
  Mol Cell Biol, 28, 7012-7029.  
18586950 D.Wloga, I.Strzyzewska-Jówko, J.Gaertig, and M.Jerka-Dziadosz (2008).
Septins stabilize mitochondria in Tetrahymena thermophila.
  Eukaryot Cell, 7, 1373-1386.  
18650931 K.Gotthardt, M.Weyand, A.Kortholt, P.J.Van Haastert, and A.Wittinghofer (2008).
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
  EMBO J, 27, 2239-2249.
PDB codes: 3dpt 3dpu
18826657 M.E.Pablo-Hernando, Y.Arnaiz-Pita, H.Tachikawa, F.del Rey, A.M.Neiman, and C.R.Vázquez de Aldana (2008).
Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae.
  BMC Cell Biol, 9, 55.  
18460473 M.Zhu, F.Wang, F.Yan, P.Y.Yao, J.Du, X.Gao, X.Wang, Q.Wu, T.Ward, J.Li, S.Kioko, R.Hu, W.Xie, X.Ding, and X.Yao (2008).
Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization.
  J Biol Chem, 283, 18916-18925.  
18713753 Q.Hu, W.J.Nelson, and E.T.Spiliotis (2008).
Forchlorfenuron alters mammalian septin assembly, organization, and dynamics.
  J Biol Chem, 283, 29563-29571.  
18541672 S.Nagaraj, A.Rajendran, C.E.Jackson, and M.S.Longtine (2008).
Role of nucleotide binding in septin-septin interactions and septin localization in Saccharomyces cerevisiae.
  Mol Cell Biol, 28, 5120-5137.  
18791237 W.Qiu, S.P.Neo, X.Yu, and M.Cai (2008).
A novel septin-associated protein, Syp1p, is required for normal cell cycle-dependent septin cytoskeleton dynamics in yeast.
  Genetics, 180, 1445-1457.  
18242072 Y.Barral, and M.Kinoshita (2008).
Structural insights shed light onto septin assemblies and function.
  Curr Opin Cell Biol, 20, 12-18.  
17975554 A.S.Gladfelter, and C.Montagna (2007).
Seeking truth on Monte Verita. Workshop on the molecular biology and biochemistry of septins and septin function.
  EMBO Rep, 8, 1120-1126.  
17922164 E.A.Peterson, L.M.Kalikin, J.D.Steels, M.P.Estey, W.S.Trimble, and E.M.Petty (2007).
Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin.
  Mamm Genome, 18, 796-807.  
18029249 Y.Barral, and I.M.Mansuy (2007).
Septins: cellular and functional barriers of neuronal activity.
  Curr Biol, 17, R961-R963.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer