 |
PDBsum entry 2obt
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Viral protein
|
PDB id
|
|
|
|
2obt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
J Virol
81:5949-5957
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for the recognition of blood group trisaccharides by norovirus.
|
|
S.Cao,
Z.Lou,
M.Tan,
Y.Chen,
Y.Liu,
Z.Zhang,
X.C.Zhang,
X.Jiang,
X.Li,
Z.Rao.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Noroviruses are one of the major causes of nonbacterial gastroenteritis
epidemics in humans. Recent studies on norovirus receptors show that different
noroviruses recognize different human histo-blood group antigens (HBGAs), and
eight receptor binding patterns of noroviruses have been identified. The P
domain of the norovirus capsids is directly involved in this recognition. To
determine the precise locations and receptor binding modes of HBGA carbohydrates
on the viral capsids, a recombinant P protein of a GII-4 strain norovirus,
VA387, was cocrystallized with synthetic type A or B trisaccharides. Based on
complex crystal structures observed at a 2.0-A resolution, we demonstrated that
the receptor binding site lies at the outermost end of the P domain and forms an
extensive hydrogen-bonding network with the saccharide ligand. The A and B
trisaccharides display similar binding modes, and the common fucose ring plays a
key role in this interaction. The extensive interface between the two protomers
in a P dimer also plays a crucial role in the formation of the receptor binding
interface.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
K.Bok,
G.I.Parra,
T.Mitra,
E.Abente,
C.K.Shaver,
D.Boon,
R.Engle,
C.Yu,
A.Z.Kapikian,
S.V.Sosnovtsev,
R.H.Purcell,
and
K.Y.Green
(2011).
Chimpanzees as an animal model for human norovirus infection and vaccine development.
|
| |
Proc Natl Acad Sci U S A,
108,
325-330.
|
 |
|
|
|
|
 |
R.A.Bull,
and
P.A.White
(2011).
Mechanisms of GII.4 norovirus evolution.
|
| |
Trends Microbiol,
19,
233-240.
|
 |
|
|
|
|
 |
A.Porollo,
and
J.Meller
(2010).
POLYVIEW-MM: web-based platform for animation and analysis of molecular simulations.
|
| |
Nucleic Acids Res,
38,
W662-W666.
|
 |
|
|
|
|
 |
C.A.Koppisetty,
W.Nasir,
F.Strino,
G.E.Rydell,
G.Larson,
and
P.G.Nyholm
(2010).
Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data.
|
| |
J Comput Aided Mol Des,
24,
423-431.
|
 |
|
|
|
|
 |
E.F.Donaldson,
L.C.Lindesmith,
A.D.Lobue,
and
R.S.Baric
(2010).
Viral shape-shifting: norovirus evasion of the human immune system.
|
| |
Nat Rev Microbiol,
8,
231-241.
|
 |
|
|
|
|
 |
G.Belliot,
A.H.Kamel,
M.Estienney,
K.Ambert-Balay,
and
P.Pothier
(2010).
Evidence of emergence of new GGII.4 norovirus variants from gastroenteritis outbreak survey in France during the 2007-to-2008 and 2008-to-2009 winter seasons.
|
| |
J Clin Microbiol,
48,
994-998.
|
 |
|
|
|
|
 |
H.Sato
(2010).
[Survival strategies of human norovirus].
|
| |
Uirusu,
60,
21-32.
|
 |
|
|
|
|
 |
J.J.Siebenga,
P.Lemey,
S.L.Kosakovsky Pond,
A.Rambaut,
H.Vennema,
and
M.Koopmans
(2010).
Phylodynamic reconstruction reveals norovirus GII.4 epidemic expansions and their molecular determinants.
|
| |
PLoS Pathog,
6,
e1000884.
|
 |
|
|
|
|
 |
K.Motomura,
M.Yokoyama,
H.Ode,
H.Nakamura,
H.Mori,
T.Kanda,
T.Oka,
K.Katayama,
M.Noda,
T.Tanaka,
N.Takeda,
H.Sato,
S.Yoshizumi,
T.Mikami,
H.Saito,
Y.Ueki,
A.Takahashi,
T.Hebiguchi,
K.Shinozaki,
T.Yoshida,
T.Tamura,
T.Takizawa,
M.Toho,
S.Kobayashi,
K.Uchino,
N.Iritani,
S.Iizuka,
F.Itoh,
S.Fukuda,
R.Kondo,
Y.Yamashita,
S.Funatsumaru,
Y.Matsuoka,
and
A.Iwakiri
(2010).
Divergent evolution of norovirus GII/4 by genome recombination from May 2006 to February 2009 in Japan.
|
| |
J Virol,
84,
8085-8097.
|
 |
|
|
|
|
 |
M.Herbst-Kralovetz,
H.S.Mason,
and
Q.Chen
(2010).
Norwalk virus-like particles as vaccines.
|
| |
Expert Rev Vaccines,
9,
299-307.
|
 |
|
|
|
|
 |
M.Tan,
and
X.Jiang
(2010).
Norovirus gastroenteritis, carbohydrate receptors, and animal models.
|
| |
PLoS Pathog,
6,
0.
|
 |
|
|
|
|
 |
M.Zakhour,
H.Maalouf,
I.Di Bartolo,
L.Haugarreau,
F.S.Le Guyader,
N.Ruvoën-Clouet,
J.C.Le Saux,
F.M.Ruggeri,
M.Pommepuy,
and
J.Le Pendu
(2010).
Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters.
|
| |
Appl Environ Microbiol,
76,
6404-6411.
|
 |
|
|
|
|
 |
R.A.Bull,
J.S.Eden,
W.D.Rawlinson,
and
P.A.White
(2010).
Rapid evolution of pandemic noroviruses of the GII.4 lineage.
|
| |
PLoS Pathog,
6,
e1000831.
|
 |
|
|
|
|
 |
S.Taube,
J.R.Rubin,
U.Katpally,
T.J.Smith,
A.Kendall,
J.A.Stuckey,
and
C.E.Wobus
(2010).
High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain.
|
| |
J Virol,
84,
5695-5705.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Farkas,
R.W.Cross,
E.Hargitt,
N.W.Lerche,
A.L.Morrow,
and
K.Sestak
(2010).
Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses.
|
| |
J Virol,
84,
8617-8625.
|
 |
|
|
|
|
 |
Y.Yang,
M.Xia,
M.Tan,
P.Huang,
W.Zhong,
X.L.Pang,
B.E.Lee,
J.Meller,
T.Wang,
and
X.Jiang
(2010).
Genetic and phenotypic characterization of GII-4 noroviruses that circulated during 1987 to 2008.
|
| |
J Virol,
84,
9595-9607.
|
 |
|
|
|
|
 |
B.Carlsson,
A.M.Lindberg,
J.Rodriguez-Díaz,
K.O.Hedlund,
B.Persson,
and
L.Svensson
(2009).
Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection.
|
| |
J Gen Virol,
90,
432-441.
|
 |
|
|
|
|
 |
B.Carlsson,
E.Kindberg,
J.Buesa,
G.E.Rydell,
M.F.Lidón,
R.Montava,
R.A.Mallouh,
A.Grahn,
J.Rodríguez-Díaz,
J.Bellido,
A.Arnedo,
G.Larson,
and
L.Svensson
(2009).
The G428A Nonsense Mutation in FUT2 Provides Strong but Not Absolute Protection against Symptomatic GII.4 Norovirus Infection.
|
| |
PLoS ONE,
4,
e5593.
|
 |
|
|
|
|
 |
E.M.Grahn,
H.C.Winter,
H.Tateno,
I.J.Goldstein,
and
U.Krengel
(2009).
Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium.
|
| |
J Mol Biol,
390,
457-466.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Cannon,
L.C.Lindesmith,
E.F.Donaldson,
L.Saxe,
R.S.Baric,
and
J.Vinjé
(2009).
Herd immunity to GII.4 noroviruses is supported by outbreak patient sera.
|
| |
J Virol,
83,
5363-5374.
|
 |
|
|
|
|
 |
K.Bok,
E.J.Abente,
M.Realpe-Quintero,
T.Mitra,
S.V.Sosnovtsev,
A.Z.Kapikian,
and
K.Y.Green
(2009).
Evolutionary dynamics of GII.4 noroviruses over a 34-year period.
|
| |
J Virol,
83,
11890-11901.
|
 |
|
|
|
|
 |
M.A.Higgins,
D.W.Abbott,
M.J.Boulanger,
and
A.B.Boraston
(2009).
Blood group antigen recognition by a solute-binding protein from a serotype 3 strain of Streptococcus pneumoniae.
|
| |
J Mol Biol,
388,
299-309.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Tan,
M.Xia,
Y.Chen,
W.Bu,
R.S.Hegde,
J.Meller,
X.Li,
and
X.Jiang
(2009).
Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution.
|
| |
PLoS ONE,
4,
e5058.
|
 |
|
|
|
|
 |
M.Zakhour,
N.Ruvoën-Clouet,
A.Charpilienne,
B.Langpap,
D.Poncet,
T.Peters,
N.Bovin,
and
J.Le Pendu
(2009).
The alphaGal epitope of the histo-blood group antigen family is a ligand for bovine norovirus Newbury2 expected to prevent cross-species transmission.
|
| |
PLoS Pathog,
5,
e1000504.
|
 |
|
|
|
|
 |
T.S.Guu,
Z.Liu,
Q.Ye,
D.A.Mata,
K.Li,
C.Yin,
J.Zhang,
and
Y.J.Tao
(2009).
Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding.
|
| |
Proc Natl Acad Sci U S A,
106,
12992-12997.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Stehle,
and
J.M.Casasnovas
(2009).
Specificity switching in virus-receptor complexes.
|
| |
Curr Opin Struct Biol,
19,
181-188.
|
 |
|
|
|
|
 |
A.Imberty,
and
A.Varrot
(2008).
Microbial recognition of human cell surface glycoconjugates.
|
| |
Curr Opin Struct Biol,
18,
567-576.
|
 |
|
|
|
|
 |
D.Bhella,
D.Gatherer,
Y.Chaudhry,
R.Pink,
and
I.G.Goodfellow
(2008).
Structural insights into calicivirus attachment and uncoating.
|
| |
J Virol,
82,
8051-8058.
|
 |
|
|
|
|
 |
D.J.Allen,
J.J.Gray,
C.I.Gallimore,
J.Xerry,
and
M.Iturriza-Gómara
(2008).
Analysis of Amino Acid Variation in the P2 Domain of the GII-4 Norovirus VP1 Protein Reveals Putative Variant-Specific Epitopes.
|
| |
PLoS ONE,
3,
e1485.
|
 |
|
|
|
|
 |
H.Shirato,
S.Ogawa,
H.Ito,
T.Sato,
A.Kameyama,
H.Narimatsu,
Z.Xiaofan,
T.Miyamura,
T.Wakita,
K.Ishii,
and
N.Takeda
(2008).
Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding.
|
| |
J Virol,
82,
10756-10767.
|
 |
|
|
|
|
 |
J.M.Choi,
A.M.Hutson,
M.K.Estes,
and
B.V.Prasad
(2008).
Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus.
|
| |
Proc Natl Acad Sci U S A,
105,
9175-9180.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.J.Gregg,
R.Finn,
D.W.Abbott,
and
A.B.Boraston
(2008).
Divergent modes of glycan recognition by a new family of carbohydrate-binding modules.
|
| |
J Biol Chem,
283,
12604-12613.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Motomura,
T.Oka,
M.Yokoyama,
H.Nakamura,
H.Mori,
H.Ode,
G.S.Hansman,
K.Katayama,
T.Kanda,
T.Tanaka,
N.Takeda,
and
H.Sato
(2008).
Identification of monomorphic and divergent haplotypes in the 2006-2007 norovirus GII/4 epidemic population by genomewide tracing of evolutionary history.
|
| |
J Virol,
82,
11247-11262.
|
 |
|
|
|
|
 |
L.C.Lindesmith,
E.F.Donaldson,
A.D.Lobue,
J.L.Cannon,
D.P.Zheng,
J.Vinje,
and
R.S.Baric
(2008).
Mechanisms of GII.4 norovirus persistence in human populations.
|
| |
PLoS Med,
5,
e31.
|
 |
|
|
|
|
 |
M.Koopmans
(2008).
Progress in understanding norovirus epidemiology.
|
| |
Curr Opin Infect Dis,
21,
544-552.
|
 |
|
|
|
|
 |
N.Iritani,
H.Vennema,
J.J.Siebenga,
R.J.Siezen,
B.Renckens,
Y.Seto,
A.Kaida,
and
M.Koopmans
(2008).
Genetic analysis of the capsid gene of genotype GII.2 noroviruses.
|
| |
J Virol,
82,
7336-7345.
|
 |
|
|
|
|
 |
W.Bu,
A.Mamedova,
M.Tan,
M.Xia,
X.Jiang,
and
R.S.Hegde
(2008).
Structural basis for the receptor binding specificity of Norwalk virus.
|
| |
J Virol,
82,
5340-5347.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Someya,
N.Takeda,
and
T.Wakita
(2008).
Saturation Mutagenesis reveals that GLU54 of Norovirus 3C-like Protease is not Essential for the Proteolytic Activity.
|
| |
J Biochem,
144,
771-780.
|
 |
|
|
|
|
 |
H.Shirato-Horikoshi,
and
N.Takeda
(2007).
[Interaction between noroviruses and human histo-blood group antigens]
|
| |
Uirusu,
57,
181-189.
|
 |
|
|
|
|
 |
J.J.Siebenga,
H.Vennema,
B.Renckens,
E.de Bruin,
B.van der Veer,
R.J.Siezen,
and
M.Koopmans
(2007).
Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006.
|
| |
J Virol,
81,
9932-9941.
|
 |
|
|
|
|
 |
V.P.Lochridge,
and
M.E.Hardy
(2007).
A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization.
|
| |
J Virol,
81,
12316-12322.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |