spacer
spacer

PDBsum entry 2nrf

Go to PDB code: 
protein Protein-protein interface(s) links
Membrane protein PDB id
2nrf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
182 a.a. *
173 a.a. *
Waters ×26
* Residue conservation analysis
PDB id:
2nrf
Name: Membrane protein
Title: Crystal structure of glpg, a rhomboid family intramembrane protease
Structure: Protein glpg. Chain: a, b. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: glpg. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.60Å     R-factor:   0.285     R-free:   0.295
Authors: Z.Wu,N.Yan,L.Feng,H.Yan,L.Gu,Y.Shi
Key ref:
Z.Wu et al. (2006). Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol, 13, 1084-1091. PubMed id: 17099694 DOI: 10.1038/nsmb1179
Date:
02-Nov-06     Release date:   14-Nov-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P09391  (GLPG_ECOLI) -  Rhomboid protease GlpG from Escherichia coli (strain K12)
Seq:
Struc:
276 a.a.
182 a.a.
Protein chain
Pfam   ArchSchema ?
P09391  (GLPG_ECOLI) -  Rhomboid protease GlpG from Escherichia coli (strain K12)
Seq:
Struc:
276 a.a.
173 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.3.4.21.105  - rhomboid protease.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsmb1179 Nat Struct Mol Biol 13:1084-1091 (2006)
PubMed id: 17099694  
 
 
Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.
Z.Wu, N.Yan, L.Feng, A.Oberstein, H.Yan, R.P.Baker, L.Gu, P.D.Jeffrey, S.Urban, Y.Shi.
 
  ABSTRACT  
 
Intramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Conformation of the active site and the L1 loop. (a) Ribbon diagram of GlpG (molecule A) showing the open cavity leading to the active site. All invariant residues among the eight rhomboid homologs in Figure 2 are shown. Red side chains, putative catalytic-dyad residues Ser201 and His254; gold side chains, all other invariant residues; red spheres, three water molecules in the cavity. Ser201 hydrogen-bonds to His254 as well as a water molecule. (b) Stereo view of interactions surrounding the conserved Trp-Arg motif in GlpG. Trp136 and Arg137 appear to stabilize the conformation of the L1 loop by participating in a network of hydrogen bonds as well as van der Waals interactions with surrounding residues of the L1 loop. (c) Stereo view of packing interactions between residues of the L1 loop and residues in helix 3 and the L3 loop. This interface is dominated by extensive van der Waals interactions. (d) Stereo comparison of packing interactions involving the L1 loop in our structure and in that reported recently^24. Coloring of our structure is as in a except that all side chains are colored yellow. The main chain and side chains of the published structure^24 are in gray. The structure and the packing interactions are nearly identical between these two structures.
Figure 6.
Figure 6. A proposed general mechanism for intramembrane proteases. In this model, presenilin, S2P and signal-peptide peptidase may each contain a water cavity that opens to the cytoplasm or extracellular region. As in rhomboid GlpG, this water-accessible cavity is probably protected from the hydrophobic lipid bilayer by -helices and embedded loops. Before catalysis, one or more of the surrounding helices undergoes a structural switch that opens a lateral gate to allow entry of substrate protein. Star denotes active site.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2006, 13, 1084-1091) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21295583 C.L.Brooks, C.Lazareno-Saez, J.S.Lamoureux, M.W.Mak, and M.J.Lemieux (2011).
Insights into substrate gating in H. influenzae rhomboid.
  J Mol Biol, 407, 687-697.
PDB code: 3odj
21455272 C.Lazareno-Saez, C.L.Brooks, and M.J.Lemieux (2011).
Structural comparison of substrate entry gate for rhomboid intramembrane peptidases.
  Biochem Cell Biol, 89, 216-223.  
  21413990 S.F.Lichtenthaler, C.Haass, and H.Steiner (2011).
Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing.
  J Neurochem, 117, 779-796.  
  20927381 C.Torres-Arancivia, C.M.Ross, J.Chavez, Z.Assur, G.Dolios, F.Mancia, and I.Ubarretxena-Belandia (2010).
Identification of an archaeal presenilin-like intramembrane protease.
  PLoS One, 5, 0.  
21029479 D.P.Kateete, M.Okee, F.A.Katabazi, A.Okeng, J.Asiimwe, H.W.Boom, K.D.Eisenach, and M.L.Joloba (2010).
Rhomboid homologs in mycobacteria: insights from phylogeny and genomic analysis.
  BMC Microbiol, 10, 272.  
19826804 K.McLuskey, A.W.Roszak, Y.Zhu, and N.W.Isaacs (2010).
Crystal structures of all-alpha type membrane proteins.
  Eur Biophys J, 39, 723-755.  
20890268 K.R.Vinothkumar, K.Strisovsky, A.Andreeva, Y.Christova, S.Verhelst, and M.Freeman (2010).
The structural basis for catalysis and substrate specificity of a rhomboid protease.
  EMBO J, 29, 3797-3809.
PDB codes: 2xov 2xow
20667175 K.R.Vinothkumar, and R.Henderson (2010).
Structures of membrane proteins.
  Q Rev Biophys, 43, 65.  
20482315 M.S.Wolfe (2010).
Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases.
  Biol Chem, 391, 839-847.  
20070259 S.Urban (2010).
Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis.
  Biochem J, 425, 501-512.  
  20957186 S.Yogev, E.D.Schejter, and B.Z.Shilo (2010).
Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery.
  PLoS Biol, 8, 0.  
19278654 A.N.Bondar, C.del Val, and S.H.White (2009).
Rhomboid protease dynamics and lipid interactions.
  Structure, 17, 395-405.  
19007897 A.Tolia, and B.De Strooper (2009).
Structure and function of gamma-secretase.
  Semin Cell Dev Biol, 20, 211-218.  
19013149 C.P.Blobel, G.Carpenter, and M.Freeman (2009).
The role of protease activity in ErbB biology.
  Exp Cell Res, 315, 671-682.  
19729449 D.R.Dries, S.Shah, Y.H.Han, C.Yu, S.Yu, M.S.Shearman, and G.Yu (2009).
Glu-333 of nicastrin directly participates in gamma-secretase activity.
  J Biol Chem, 284, 29714-29724.  
19458713 E.Erez, D.Fass, and E.Bibi (2009).
How intramembrane proteases bury hydrolytic reactions in the membrane.
  Nature, 459, 371-378.  
19278647 H.Li, M.S.Wolfe, and D.J.Selkoe (2009).
Toward structural elucidation of the gamma-secretase complex.
  Structure, 17, 326-334.  
19346249 J.Hu, M.Sharma, H.Qin, F.P.Gao, and T.A.Cross (2009).
Ligand binding in the conserved interhelical loop of CorA, a magnesium transporter from Mycobacterium tuberculosis.
  J Biol Chem, 284, 15619-15628.  
20064469 K.Strisovsky, H.J.Sharpe, and M.Freeman (2009).
Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates.
  Mol Cell, 36, 1048-1059.  
19022390 M.Freeman (2009).
Rhomboids: 7 years of a new protease family.
  Semin Cell Dev Biol, 20, 231-239.  
19189971 M.S.Wolfe (2009).
Intramembrane-cleaving Proteases.
  J Biol Chem, 284, 13969-13973.  
19226105 M.S.Wolfe (2009).
Intramembrane proteolysis.
  Chem Rev, 109, 1599-1612.  
19013469 P.Osenkowski, H.Li, W.Ye, D.Li, L.Aeschbach, P.C.Fraering, M.S.Wolfe, D.J.Selkoe, and H.Li (2009).
Cryoelectron microscopy structure of purified gamma-secretase at 12 A resolution.
  J Mol Biol, 385, 642-652.  
19458709 S.H.White (2009).
Biophysical dissection of membrane proteins.
  Nature, 459, 344-346.  
19421188 S.Urban (2009).
Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms.
  Nat Rev Microbiol, 7, 411-423.  
19059492 Y.Ha (2009).
Structure and mechanism of intramembrane protease.
  Semin Cell Dev Biol, 20, 240-250.  
18239854 A.J.Beel, and C.R.Sanders (2008).
Substrate specificity of gamma-secretase and other intramembrane proteases.
  Cell Mol Life Sci, 65, 1311-1334.  
18482978 A.Tolia, K.Horré, and B.De Strooper (2008).
Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of gamma-secretase.
  J Biol Chem, 283, 19793-19803.  
18543065 B.Kmiec-Wisniewska, K.Krumpe, A.Urantowka, W.Sakamoto, E.Pratje, and H.Janska (2008).
Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart.
  Plant Mol Biol, 68, 159-171.  
18559479 L.A.Baxt, R.P.Baker, U.Singh, and S.Urban (2008).
An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion.
  Genes Dev, 22, 1636-1646.  
17965014 L.Martin, R.Fluhrer, K.Reiss, E.Kremmer, P.Saftig, and C.Haass (2008).
Regulated intramembrane proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b.
  J Biol Chem, 283, 1644-1652.  
18605900 M.Freeman (2008).
Rhomboid proteases and their biological functions.
  Annu Rev Genet, 42, 191-210.  
18824507 O.D.Ekici, M.Paetzel, and R.E.Dalbey (2008).
Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration.
  Protein Sci, 17, 2023-2037.  
18979634 S.Urban, and R.P.Baker (2008).
In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells.
  Biol Chem, 389, 1107-1115.  
18440799 S.Urban, and Y.Shi (2008).
Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases.
  Curr Opin Struct Biol, 18, 432-441.  
18369317 S.Yogev, E.D.Schejter, and B.Z.Shilo (2008).
Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases.
  EMBO J, 27, 1219-1230.  
18937501 X.Lei, K.Ahn, L.Zhu, I.Ubarretxena-Belandia, and Y.M.Li (2008).
Soluble oligomers of the intramembrane serine protease YqgP are catalytically active in the absence of detergents.
  Biochemistry, 47, 11920-11929.  
17890078 I.Botos, and A.Wlodawer (2007).
The expanding diversity of serine hydrolases.
  Curr Opin Struct Biol, 17, 683-690.  
17179147 K.Koide, S.Maegawa, K.Ito, and Y.Akiyama (2007).
Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine alkylation.
  J Biol Chem, 282, 4553-4560.  
18063795 L.Feng, H.Yan, Z.Wu, N.Yan, Z.Wang, P.D.Jeffrey, and Y.Shi (2007).
Structure of a site-2 protease family intramembrane metalloprotease.
  Science, 318, 1608-1612.
PDB code: 3b4r
17938163 M.K.Lemberg, and M.Freeman (2007).
Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases.
  Genome Res, 17, 1634-1646.  
18158892 M.K.Lemberg, and M.Freeman (2007).
Cutting proteins within lipid bilayers: rhomboid structure and mechanism.
  Mol Cell, 28, 930-940.  
19415127 P.C.Fraering (2007).
Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease.
  Curr Genomics, 8, 531-549.  
17723294 R.K.Hite, S.Raunser, and T.Walz (2007).
Revival of electron crystallography.
  Curr Opin Struct Biol, 17, 389-395.  
17213330 R.L.Lieberman, and M.S.Wolfe (2007).
Membrane-embedded protease poses for photoshoot.
  Proc Natl Acad Sci U S A, 104, 401-402.  
17494772 R.L.Lieberman, and M.S.Wolfe (2007).
From rhomboid function to structure and back again.
  Proc Natl Acad Sci U S A, 104, 8199-8200.  
17463085 R.P.Baker, K.Young, L.Feng, Y.Shi, and S.Urban (2007).
Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.
  Proc Natl Acad Sci U S A, 104, 8257-8262.  
17304216 R.Tsruya, A.Wojtalla, S.Carmon, S.Yogev, A.Reich, E.Bibi, G.Merdes, E.Schejter, and B.Z.Shilo (2007).
Rhomboid cleaves Star to regulate the levels of secreted Spitz.
  EMBO J, 26, 1211-1220.  
17493126 S.Maegawa, K.Koide, K.Ito, and Y.Akiyama (2007).
The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates.
  Mol Microbiol, 64, 435-447.  
17517891 S.Narayanan, T.Sato, and M.S.Wolfe (2007).
A C-terminal region of signal peptide peptidase defines a functional domain for intramembrane aspartic protease catalysis.
  J Biol Chem, 282, 20172-20179.  
17501925 Y.Akiyama, and S.Maegawa (2007).
Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease.
  Mol Microbiol, 64, 1028-1037.  
17714936 Y.Ha (2007).
Structural principles of intramembrane proteases.
  Curr Opin Struct Biol, 17, 405-411.  
17976648 Y.Wang, S.Maegawa, Y.Akiyama, and Y.Ha (2007).
The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG.
  J Mol Biol, 374, 1104-1113.
PDB codes: 3b44 3b45
17277078 Y.Wang, and Y.Ha (2007).
Open-cap conformation of intramembrane protease GlpG.
  Proc Natl Acad Sci U S A, 104, 2098-2102.
PDB code: 2o7l
17146459 S.H.White (2006).
Rhomboid intramembrane protease structures galore!
  Nat Struct Mol Biol, 13, 1049-1051.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer