spacer
spacer

PDBsum entry 2ngr

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
2ngr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
191 a.a. *
196 a.a. *
Ligands
GDP-AF3
Metals
_MG
Waters ×101
* Residue conservation analysis
PDB id:
2ngr
Name: Hydrolase
Title: Transition state complex for gtp hydrolysis by cdc42: comparisons of the high resolution structures for cdc42 bound to the active and catalytically compromised forms of the cdc42-gap.
Structure: Protein (gtp binding protein (g25k)). Chain: a. Fragment: full-length cdc42 in complex with a c-terminal active domain of cdc42gap(r305a) mutant.. Synonym: cdc42/cdc42gap. Engineered: yes. Protein (gtpase activating protein (rhg)). Chain: b. Fragment: full-length cdc42 in complex with a c-terminal active
Source: Homo sapiens. Human. Organism_taxid: 9606. Cellular_location: cytoplasm. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: his-tag fusion protein. Other_details: his-tag fusion protein
Biol. unit: Dimer (from PQS)
Resolution:
1.90Å     R-factor:   0.253     R-free:   0.293
Authors: N.Nassar,G.Hoffman,J.Clardy,R.Cerione
Key ref:
N.Nassar et al. (1998). Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat Struct Biol, 5, 1047-1052. PubMed id: 9846874 DOI: 10.1038/4156
Date:
31-Jul-98     Release date:   06-Jan-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P60953  (CDC42_HUMAN) -  Cell division control protein 42 homolog from Homo sapiens
Seq:
Struc:
191 a.a.
191 a.a.
Protein chain
Pfam   ArchSchema ?
Q07960  (RHG01_HUMAN) -  Rho GTPase-activating protein 1 from Homo sapiens
Seq:
Struc:
439 a.a.
196 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chain A: E.C.3.6.5.2  - small monomeric GTPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: GTP + H2O = GDP + phosphate + H+
GTP
+ H2O
=
GDP
Bound ligand (Het Group name = GDP)
corresponds exactly
+ phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/4156 Nat Struct Biol 5:1047-1052 (1998)
PubMed id: 9846874  
 
 
Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
N.Nassar, G.R.Hoffman, D.Manor, J.C.Clardy, R.A.Cerione.
 
  ABSTRACT  
 
The Rho-related small GTP-binding protein Cdc42 has a low intrinsic GTPase activity that is significantly enhanced by its specific GTPase-activating protein, Cdc42GAP. In this report, we present the tertiary structure for the aluminum fluoride-promoted complex between Cdc42 and a catalytically active domain of Cdc42GAP as well as the complex between Cdc42 and the catalytically compromised Cdc42GAP(R305A) mutant. These structures, which mimic the transition state for the GTP hydrolytic reaction, show the presence of an AIF3 molecule, as was seen for the corresponding Ras-p120RasGAP complex, but in contrast to what has been reported for the Rho-Cdc42GAP complex or for heterotrimeric G protein alpha subunits, where AIF4- was observed. The Cdc42GAP stabilizes both the switch I and switch II domains of Cdc42 and contributes a highly conserved arginine (Arg 305) to the active site. Comparison of the structures for the wild type and mutant Cdc42GAP complexes provides important insights into the GAP-catalyzed GTP hydrolytic reaction.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Views of the complex between Cdc42 and the wild type Cdc42GAP. a, A ribbon diagram of the overall complex; Cdc42 is in yellow, Cdc42GAP is in blue. The disulfide bridge is in green. GDP, the Mg^ 2+ ion, the nucleophilic attacking water and the AlF[3] molecule are shown in ball-and-stick representation. The switch I and II loops of Cdc42 are highlighted. The catalytic arginine (Arg 305) from Cdc42GAP and the highly conserved Gln 61 from Cdc42 are also shown. b, Ribbon diagram of the C-terminal domain of Cdc42 in complex with Cdc42GAP. This domain is stabilized by the disulfide bridge between Cys 105 and Cys 188 and by the hydrogen-bond interactions between the side chains of Arg 187 and Asp 76 (represented by two dotted lines). Figures were prepared using MOLSCRIPT^30 and Raster3D^31.
Figure 4.
Figure 4. Stereo superposition of the Cdc42-AIF-Cdc42GAP structure and the Gi 1-AIF[ 4]^−-RGS4 complex^19. Proteins are shown in a wire representation. Cdc42 is in yellow, Cdc42GAP is in light blue, Gi 1 in green and RGS in gold. The GDP is shown in red (in a ball-and-stick representation). The figure is generated by MOLSCRIPT^30 by aligning the G domains of the two GTP-binding proteins. RGS4 and Cdc42GAP do not have the same fold but they contact their respective G protein targets in a similar manner.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (1998, 5, 1047-1052) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21666675 M.Pirruccello, L.E.Swan, E.Folta-Stogniew, and P.De Camilli (2011).
Recognition of the F&H motif by the Lowe syndrome protein OCRL.
  Nat Struct Mol Biol, 18, 789-795.
PDB code: 3qis
21033699 X.Wu, S.Ramachandran, M.C.Lin, R.A.Cerione, and J.W.Erickson (2011).
A minimal Rac activation domain in the unconventional guanine nucleotide exchange factor Dock180.
  Biochemistry, 50, 1070-1080.  
20504277 F.Tatin, F.Grise, E.Reuzeau, E.Genot, and V.Moreau (2010).
Sodium fluoride induces podosome formation in endothelial cells.
  Biol Cell, 102, 489-498.  
20660160 Y.T.Zhou, L.L.Chew, S.C.Lin, and B.C.Low (2010).
The BNIP-2 and Cdc42GAP homology (BCH) domain of p50RhoGAP/Cdc42GAP sequesters RhoA from inactivation by the adjacent GTPase-activating protein domain.
  Mol Biol Cell, 21, 3232-3246.  
19196981 A.V.Gribenko, M.M.Patel, J.Liu, S.A.McCallum, C.Wang, and G.I.Makhatadze (2009).
Rational stabilization of enzymes by computational redesign of surface charge-charge interactions.
  Proc Natl Acad Sci U S A, 106, 2601-2606.
PDB codes: 2k7j 2k7k
18929667 F.Jelen, P.Lachowicz, W.Apostoluk, A.Mateja, Z.S.Derewenda, and J.Otlewski (2009).
Dissecting the thermodynamics of GAP-RhoA interactions.
  J Struct Biol, 165, 10-18.  
19581296 J.L.Johnson, J.W.Erickson, and R.A.Cerione (2009).
New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes.
  J Biol Chem, 284, 23860-23871.  
19745154 J.Yang, Z.Zhang, S.M.Roe, C.J.Marshall, and D.Barford (2009).
Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor.
  Science, 325, 1398-1402.
PDB codes: 2wm9 2wmn 2wmo
19033377 K.H.Nielsen, H.Chamieh, C.B.Andersen, F.Fredslund, K.Hamborg, H.Le Hir, and G.R.Andersen (2009).
Mechanism of ATP turnover inhibition in the EJC.
  RNA, 15, 67-75.
PDB code: 3ex7
18309292 A.Scrima, C.Thomas, D.Deaconescu, and A.Wittinghofer (2008).
The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.
  EMBO J, 27, 1145-1153.
PDB code: 3brw
17984089 D.Owen, L.J.Campbell, K.Littlefield, K.A.Evetts, Z.Li, D.B.Sacks, P.N.Lowe, and H.R.Mott (2008).
The IQGAP1-Rac1 and IQGAP1-Cdc42 interactions: interfaces differ between the complexes.
  J Biol Chem, 283, 1692-1704.  
18713003 L.Gremer, B.Gilsbach, M.R.Ahmadian, and A.Wittinghofer (2008).
Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction.
  Biol Chem, 389, 1163-1171.  
18348980 M.J.Phillips, G.Calero, B.Chan, S.Ramachandran, and R.A.Cerione (2008).
Effector proteins exert an important influence on the signaling-active state of the small GTPase Cdc42.
  J Biol Chem, 283, 14153-14164.
PDB code: 2qrz
18376416 S.Veltel, R.Gasper, E.Eisenacher, and A.Wittinghofer (2008).
The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3.
  Nat Struct Mol Biol, 15, 373-380.
PDB codes: 3bh6 3bh7
18166080 D.Colinet, A.Schmitz, D.Depoix, D.Crochard, and M.Poirié (2007).
Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.
  PLoS Pathog, 3, e203.  
17804252 D.L.Vogt, C.D.Gray, W.S.Young, S.A.Orellana, and A.T.Malouf (2007).
ARHGAP4 is a novel RhoGAP that mediates inhibition of cell motility and axon outgrowth.
  Mol Cell Neurosci, 36, 332-342.  
17261588 L.E.Reddick, M.D.Vaughn, S.J.Wright, I.M.Campbell, and B.D.Bruce (2007).
In vitro comparative kinetic analysis of the chloroplast Toc GTPases.
  J Biol Chem, 282, 11410-11426.  
16782791 P.J.Kundrotas, and E.Alexov (2006).
Electrostatic properties of protein-protein complexes.
  Biophys J, 91, 1724-1736.  
16571678 S.Barale, D.McCusker, and R.A.Arkowitz (2006).
Cdc42p GDP/GTP cycling is necessary for efficient cell fusion during yeast mating.
  Mol Biol Cell, 17, 2824-2838.  
16469737 S.Majumdar, S.Ramachandran, and R.A.Cerione (2006).
New insights into the role of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of large G proteins.
  J Biol Chem, 281, 9219-9226.  
16702216 T.Jank, U.Pack, T.Giesemann, G.Schmidt, and K.Aktories (2006).
Exchange of a single amino acid switches the substrate properties of RhoA and RhoD toward glucosylating and transglutaminating toxins.
  J Biol Chem, 281, 19527-19535.  
16855591 X.Pan, S.Eathiraj, M.Munson, and D.G.Lambright (2006).
TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
  Nature, 442, 303-306.
PDB code: 2g77
16307476 A.Eberth, R.Dvorsky, C.F.Becker, A.Beste, R.S.Goody, and M.R.Ahmadian (2005).
Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins.
  Biol Chem, 386, 1105-1114.  
16157885 L.Wang, L.Yang, K.Burns, C.Y.Kuan, and Y.Zheng (2005).
Cdc42GAP regulates c-Jun N-terminal kinase (JNK)-mediated apoptosis and cell number during mammalian perinatal growth.
  Proc Natl Acad Sci U S A, 102, 13484-13489.  
15726588 R.Mishra, S.K.Gara, S.Mishra, and B.Prakash (2005).
Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.
  Proteins, 59, 332-338.  
15507211 B.Canagarajah, F.C.Leskow, J.Y.Ho, H.Mischak, L.F.Saidi, M.G.Kazanietz, and J.H.Hurley (2004).
Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin.
  Cell, 119, 407-418.
PDB code: 1xa6
14597635 B.Debreceni, Y.Gao, F.Guo, K.Zhu, B.Jia, and Y.Zheng (2004).
Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant.
  J Biol Chem, 279, 3777-3786.  
15653425 E.J.Helmreich (2004).
Structural flexibility of small GTPases. Can it explain their functional versatility?
  Biol Chem, 385, 1121-1136.  
15141215 O.Daumke, M.Weyand, P.P.Chakrabarti, I.R.Vetter, and A.Wittinghofer (2004).
The GTPase-activating protein Rap1GAP uses a catalytic asparagine.
  Nature, 429, 197-201.
PDB code: 1srq
15577926 R.Dvorsky, and M.R.Ahmadian (2004).
Always look on the bright site of Rho: structural implications for a conserved intermolecular interface.
  EMBO Rep, 5, 1130-1136.  
15210950 T.Hishida, Y.W.Han, S.Fujimoto, H.Iwasaki, and H.Shinagawa (2004).
Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer.
  Proc Natl Acad Sci U S A, 101, 9573-9577.  
12618308 A.Bernards (2003).
GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila.
  Biochim Biophys Acta, 1603, 47-82.  
14517228 C.Chaudhry, G.W.Farr, M.J.Todd, H.S.Rye, A.T.Brunger, P.D.Adams, A.L.Horwich, and P.B.Sigler (2003).
Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
  EMBO J, 22, 4877-4887.
PDB codes: 1pcq 1pf9
12819203 C.Zhao, H.Ma, E.Bossy-Wetzel, S.A.Lipton, Z.Zhang, and G.S.Feng (2003).
GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2.
  J Biol Chem, 278, 34641-34653.  
14514689 D.Owen, P.N.Lowe, D.Nietlispach, C.E.Brosnan, D.Y.Chirgadze, P.J.Parker, T.L.Blundell, and H.R.Mott (2003).
Molecular dissection of the interaction between the small G proteins Rac1 and RhoA and protein kinase C-related kinase 1 (PRK1).
  J Biol Chem, 278, 50578-50587.
PDB code: 1urf
12906808 M.Mishima, and M.Glotzer (2003).
Cytokinesis: a logical GAP.
  Curr Biol, 13, R589-R591.  
12956948 Q.Lin, R.N.Fuji, W.Yang, and R.A.Cerione (2003).
RhoGDI is required for Cdc42-mediated cellular transformation.
  Curr Biol, 13, 1469-1479.  
12606577 S.M.Garrard, C.T.Capaldo, L.Gao, M.K.Rosen, I.G.Macara, and D.R.Tomchick (2003).
Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6.
  EMBO J, 22, 1125-1133.
PDB code: 1nf3
12642594 T.L.Baker, H.Zheng, J.Walker, J.L.Coloff, and J.E.Buss (2003).
Distinct rates of palmitate turnover on membrane-bound cellular and oncogenic H-ras.
  J Biol Chem, 278, 19292-19300.  
12531901 T.Okabe, T.Nakamura, Y.N.Nishimura, K.Kohu, S.Ohwada, Y.Morishita, and T.Akiyama (2003).
RICS, a novel GTPase-activating protein for Cdc42 and Rac1, is involved in the beta-catenin-N-cadherin and N-methyl-D-aspartate receptor signaling.
  J Biol Chem, 278, 9920-9927.  
12944407 X.Shang, Y.T.Zhou, and B.C.Low (2003).
Concerted regulation of cell dynamics by BNIP-2 and Cdc42GAP homology/Sec14p-like, proline-rich, and GTPase-activating protein domains of a novel Rho GTPase-activating protein, BPGAP1.
  J Biol Chem, 278, 45903-45914.  
12082117 D.L.Ippolito, P.A.Temkin, S.L.Rogalski, and C.Chavkin (2002).
N-terminal tyrosine residues within the potassium channel Kir3 modulate GTPase activity of Galphai.
  J Biol Chem, 277, 32692-32696.  
12009891 H.Garavini, K.Riento, J.P.Phelan, M.S.McAlister, A.J.Ridley, and N.H.Keep (2002).
Crystal structure of the core domain of RhoE/Rnd3: a constitutively activated small G protein.
  Biochemistry, 41, 6303-6310.
PDB code: 1gwn
11948177 J.M.Swart-Mataraza, Z.Li, and D.B.Sacks (2002).
IQGAP1 is a component of Cdc42 signaling to the cytoskeleton.
  J Biol Chem, 277, 24753-24763.  
11960693 S.Donovan, K.M.Shannon, and G.Bollag (2002).
GTPase activating proteins: critical regulators of intracellular signaling.
  Biochim Biophys Acta, 1602, 23-45.  
11812780 T.Brinkmann, O.Daumke, U.Herbrand, D.Kühlmann, P.Stege, M.R.Ahmadian, and A.Wittinghofer (2002).
Rap-specific GTPase activating protein follows an alternative mechanism.
  J Biol Chem, 277, 12525-12531.  
11294626 A.P.Loh, N.Pawley, L.K.Nicholson, and R.E.Oswald (2001).
An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics in Cdc42Hs.
  Biochemistry, 40, 4590-4600.  
11438727 C.Allin, M.R.Ahmadian, A.Wittinghofer, and K.Gerwert (2001).
Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time.
  Proc Natl Acad Sci U S A, 98, 7754-7759.  
11113198 H.U.Mösch, T.Köhler, and G.H.Braus (2001).
Different domains of the essential GTPase Cdc42p required for growth and development of Saccharomyces cerevisiae.
  Mol Cell Biol, 21, 235-248.  
11701921 I.R.Vetter, and A.Wittinghofer (2001).
The guanine nucleotide-binding switch in three dimensions.
  Science, 294, 1299-1304.  
11738594 K.D.Corbett, and T.Alber (2001).
The many faces of Ras: recognition of small GTP-binding proteins.
  Trends Biochem Sci, 26, 710-716.  
11246021 M.Kosloff, and Z.Selinger (2001).
Substrate assisted catalysis -- application to G proteins.
  Trends Biochem Sci, 26, 161-166.  
11013213 A.Rak, R.Fedorov, K.Alexandrov, S.Albert, R.S.Goody, D.Gallwitz, and A.J.Scheidig (2000).
Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins.
  EMBO J, 19, 5105-5113.
PDB code: 1fkm
10799524 B.C.Low, K.T.Seow, and G.R.Guy (2000).
Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2.
  J Biol Chem, 275, 14415-14422.  
10970849 B.Prakash, L.Renault, G.J.Praefcke, C.Herrmann, and A.Wittinghofer (2000).
Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism.
  EMBO J, 19, 4555-4564.
PDB code: 1f5n
11163217 C.E.Stebbins, and J.E.Galán (2000).
Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1.
  Mol Cell, 6, 1449-1460.
PDB codes: 1g4u 1g4w
11188692 C.T.Farrar, J.Ma, D.J.Singel, and C.J.Halkides (2000).
Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation.
  Structure, 8, 1279-1287.  
10747784 D.Gizachew, W.Guo, K.K.Chohan, M.J.Sutcliffe, and R.E.Oswald (2000).
Structure of the complex of Cdc42Hs with a peptide derived from P-21 activated kinase.
  Biochemistry, 39, 3963-3971.
PDB code: 1ees
10676816 G.R.Hoffman, N.Nassar, and R.A.Cerione (2000).
Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI.
  Cell, 100, 345-356.
PDB code: 1doa
  10637312 K.G.Kozminski, A.J.Chen, A.A.Rodal, and D.G.Drubin (2000).
Functions and functional domains of the GTPase Cdc42p.
  Mol Biol Cell, 11, 339-354.  
10836135 L.De Vries, B.Zheng, T.Fischer, E.Elenko, and M.G.Farquhar (2000).
The regulator of G protein signaling family.
  Annu Rev Pharmacol Toxicol, 40, 235-271.  
11046150 T.J.Richman, and D.I.Johnson (2000).
Saccharomyces cerevisiae cdc42p GTPase is involved in preventing the recurrence of bud emergence during the cell cycle.
  Mol Cell Biol, 20, 8548-8559.  
10574788 A.J.Scheidig, C.Burmester, and R.S.Goody (1999).
The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins.
  Structure, 7, 1311-1324.
PDB codes: 1ctq 1qra
10358003 D.E.Coleman, and S.R.Sprang (1999).
Structure of Gialpha1.GppNHp, autoinhibition in a galpha protein-substrate complex.
  J Biol Chem, 274, 16669-16672.
PDB code: 1cip
10555980 D.L.Graham, J.F.Eccleston, C.W.Chung, and P.N.Lowe (1999).
Magnesium fluoride-dependent binding of small G proteins to their GTPase-activating proteins.
  Biochemistry, 38, 14981-14987.  
10367892 I.R.Vetter, A.Arndt, U.Kutay, D.Görlich, and A.Wittinghofer (1999).
Structural view of the Ran-Importin beta interaction at 2.3 A resolution.
  Cell, 97, 635-646.
PDB code: 1ibr
10102276 J.Goldberg (1999).
Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis.
  Cell, 96, 893-902.  
10591105 J.Ménétrey, and J.Cherfils (1999).
Structure of the small G protein Rap2 in a non-catalytic complex with GTP.
  Proteins, 37, 465-473.
PDB code: 3rap
10102263 L.Gonzalez, and R.H.Scheller (1999).
Regulation of membrane trafficking: structural insights from a Rab/effector complex.
  Cell, 96, 755-758.  
10394366 R.C.Hillig, L.Renault, I.R.Vetter, T.Drell, A.Wittinghofer, and J.Becker (1999).
The crystal structure of rna1p: a new fold for a GTPase-activating protein.
  Mol Cell, 3, 781-791.
PDB code: 1yrg
10200157 S.J.Admiraal, B.Schneider, P.Meyer, J.Janin, M.Véron, D.Deville-Bonne, and D.Herschlag (1999).
Nucleophilic activation by positioning in phosphoryl transfer catalyzed by nucleoside diphosphate kinase.
  Biochemistry, 38, 4701-4711.
PDB code: 1b4s
10625453 T.Nomanbhoy, and R.A.Cerione (1999).
Fluorescence assays of Cdc42 interactions with target/effector proteins.
  Biochemistry, 38, 15878-15884.  
10601011 V.Mandiyan, J.Andreev, J.Schlessinger, and S.R.Hubbard (1999).
Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta.
  EMBO J, 18, 6890-6898.
PDB code: 1dcq
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer