spacer
spacer

PDBsum entry 2n4x

Go to PDB code: 
protein links
Membrane protein PDB id
2n4x

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
192 a.a.
PDB id:
2n4x
Name: Membrane protein
Title: Structure of the transmembrane electron transporter ccda
Structure: CytochromE C-type biogenesis protein (ccda). Chain: a. Engineered: yes. Mutation: yes
Source: Archaeoglobus fulgidus dsm 4304. Organism_taxid: 224325. Strain: atcc 49558 / vc-16 / dsm 4304 / jcm 9628 / nbrc 100126. Gene: af_1057. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 15 models
Authors: J.J.Chou,J.A.Williamson
Key ref: J.A.Williamson et al. (2015). Structure and multistate function of the transmembrane electron transporter CcdA. Nat Struct Biol, 22, 809-814. PubMed id: 26389738 DOI: 10.1038/nsmb.3099
Date:
01-Jul-15     Release date:   18-May-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O29205  (O29205_ARCFU) -  Cytochrome C-type biogenesis protein (CcdA) from Archaeoglobus fulgidus (strain ATCC 49558 / DSM 4304 / JCM 9628 / NBRC 100126 / VC-16)
Seq:
Struc:
190 a.a.
192 a.a.*
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nsmb.3099 Nat Struct Biol 22:809-814 (2015)
PubMed id: 26389738  
 
 
Structure and multistate function of the transmembrane electron transporter CcdA.
J.A.Williamson, S.H.Cho, J.Ye, J.F.Collet, J.R.Beckwith, J.J.Chou.
 
  ABSTRACT  
 
The mechanism by which transmembrane reductases use a single pair of cysteine residues to relay electrons between protein substrates across biological membranes is a long-standing mystery in thiol-redox biochemistry. Here we show the NMR structure of a reduced-state mimic of archaeal CcdA, a protein that transfers electrons across the inner membrane, by using a redox-active NMR sample. The two cysteine positions in CcdA are separated by 20 Å. Whereas one is accessible to the cytoplasm, the other resides in the protein core, thus implying that conformational exchange is required for periplasmic accessibility. In vivo mixed disulfide-trapping experiments validated the functional positioning of the cysteines, and in vitro accessibility results confirmed conformational exchange. Our NMR and functional data together show the existence of multiple conformational states and suggest a four-state model for relaying electrons from cytosolic to periplasmic redox substrates.
 

 

spacer

spacer