spacer
spacer

PDBsum entry 2kvq

Go to PDB code: 
protein Protein-protein interface(s) links
Transcription PDB id
2kvq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
80 a.a. *
59 a.a. *
* Residue conservation analysis
PDB id:
2kvq
Name: Transcription
Title: Solution structure of nuse:nusg-ctd complex
Structure: Nuse. Chain: e. Fragment: unp residues 1-45,68-103. Engineered: yes. Transcription antitermination protein nusg. Chain: g. Fragment: unp residues 123-181, kow domain. Engineered: yes
Source: Escherichia coli. Organism_taxid: 83333. Strain: k12. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: nusg, b3982, jw3945.
NMR struc: 18 models
Authors: B.M.Burmann,K.Schweimer,P.Roesch
Key ref: B.M.Burmann et al. (2010). A NusE:NusG complex links transcription and translation. Science, 328, 501-504. PubMed id: 20413501
Date:
25-Mar-10     Release date:   05-May-10    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0A7R5  (RS10_ECOLI) -  Small ribosomal subunit protein uS10 from Escherichia coli (strain K12)
Seq:
Struc:
103 a.a.
80 a.a.*
Protein chain
Pfam   ArchSchema ?
P0AFG0  (NUSG_ECOLI) -  Transcription termination/antitermination protein NusG from Escherichia coli (strain K12)
Seq:
Struc:
181 a.a.
59 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains E, G: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
Science 328:501-504 (2010)
PubMed id: 20413501  
 
 
A NusE:NusG complex links transcription and translation.
B.M.Burmann, K.Schweimer, X.Luo, M.C.Wahl, B.L.Stitt, M.E.Gottesman, P.Rösch.
 
  ABSTRACT  
 
Bacterial NusG is a highly conserved transcription factor that is required for most Rho activity in vivo. We show by nuclear magnetic resonance spectroscopy that Escherichia coli NusG carboxyl-terminal domain forms a complex alternatively with Rho or with transcription factor NusE, a protein identical to 30S ribosomal protein S10. Because NusG amino-terminal domain contacts RNA polymerase and the NusG carboxy-terminal domain interaction site of NusE is accessible in the ribosomal 30S subunit, NusG may act as a link between transcription and translation. Uncoupling of transcription and translation at the ends of bacterial operons enables transcription termination by Rho factor, and competition between ribosomal NusE and Rho for NusG helps to explain why Rho cannot terminate translated transcripts.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22456704 G.W.Li, E.Oh, and J.S.Weissman (2012).
The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria.
  Nature, 484, 538-541.  
22669220 H.Merrikh, Y.Zhang, A.D.Grossman, and J.D.Wang (2012).
Replication-transcription conflicts in bacteria.
  Nat Rev Microbiol, 10, 449-458.  
21187417 B.J.Klein, D.Bose, K.J.Baker, Z.M.Yusoff, X.Zhang, and K.S.Murakami (2011).
RNA polymerase and transcription elongation factor Spt4/5 complex structure.
  Proc Natl Acad Sci U S A, 108, 546-550.
PDB code: 3p8b
21345171 B.M.Burmann, U.Scheckenhofer, K.Schweimer, and P.Rösch (2011).
Domain interactions of the transcription-translation coupling factor Escherichia coli NusG are intermolecular and transient.
  Biochem J, 435, 783-789.  
21386817 F.W.Martinez-Rucobo, S.Sainsbury, A.C.Cheung, and P.Cramer (2011).
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
  EMBO J, 30, 1302-1310.
PDB code: 3qqc
21233849 F.Werner, and D.Grohmann (2011).
Evolution of multisubunit RNA polymerases in the three domains of life.
  Nat Rev Microbiol, 9, 85-98.  
21283784 J.F.Lemay, G.Desnoyers, S.Blouin, B.Heppell, L.Bastet, P.St-Pierre, E.Massé, and D.A.Lafontaine (2011).
Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms.
  PLoS Genet, 7, e1001278.  
21297639 J.H.Chang, S.Xiang, K.Xiang, J.L.Manley, and L.Tong (2011).
Structural and biochemical studies of the 5'→3' exoribonuclease Xrn1.
  Nat Struct Mol Biol, 18, 270-276.
PDB codes: 3pie 3pif
21183718 R.S.Washburn, and M.E.Gottesman (2011).
Transcription termination maintains chromosome integrity.
  Proc Natl Acad Sci U S A, 108, 792-797.  
21478900 T.J.Santangelo, and I.Artsimovitch (2011).
Termination and antitermination: RNA polymerase runs a stop sign.
  Nat Rev Microbiol, 9, 319-329.  
21349650 V.Norris (2011).
Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis.
  Med Hypotheses, 76, 706-716.  
21468097 V.Svetlov, and E.Nudler (2011).
Clamping the clamp of RNA polymerase.
  EMBO J, 30, 1190-1191.  
20639538 A.Sevostyanova, and I.Artsimovitch (2010).
Functional analysis of Thermus thermophilus transcription factor NusG.
  Nucleic Acids Res, 38, 7432-7445.  
20413480 J.W.Roberts (2010).
Molecular biology. Syntheses that stay together.
  Science, 328, 436-437.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer