|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
222 a.a.
|
 |
|
|
|
|
|
|
|
119 a.a.
|
 |
|
|
|
|
|
|
|
227 a.a.
|
 |
|
|
|
|
|
|
|
209 a.a.
|
 |
|
|
|
|
|
|
|
198 a.a.
|
 |
|
|
|
|
|
|
|
177 a.a.
|
 |
|
|
|
|
|
|
|
167 a.a.
|
 |
|
|
|
|
|
|
|
149 a.a.
|
 |
|
|
|
|
|
|
|
139 a.a.
|
 |
|
|
|
|
|
|
|
142 a.a.
|
 |
|
|
|
|
|
|
|
122 a.a.
|
 |
|
|
|
|
|
|
|
140 a.a.
|
 |
|
|
|
|
|
|
|
131 a.a.
|
 |
|
|
|
|
|
|
|
114 a.a.
|
 |
|
|
|
|
|
|
|
113 a.a.
|
 |
|
|
|
|
|
|
|
114 a.a.
|
 |
|
|
|
|
|
|
|
115 a.a.
|
 |
|
|
|
|
|
|
|
106 a.a.
|
 |
|
|
|
|
|
|
|
92 a.a.
|
 |
|
|
|
|
|
|
|
99 a.a.
|
 |
|
|
|
|
|
|
|
94 a.a.
|
 |
|
|
|
|
|
|
|
84 a.a.
|
 |
|
|
|
|
|
|
|
60 a.a.
|
 |
|
|
|
|
|
|
|
56 a.a.
|
 |
|
|
|
|
|
|
|
29 a.a.
|
 |
|
|
|
|
|
|
|
52 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ribosome
|
 |
|
Title:
|
 |
Structure of the 50s subunit of a secm-stalled e. Coli ribosome complex obtained by fitting atomic models for RNA and protein components into cryo-em map emd-1143
|
|
Structure:
|
 |
23s ribosomal RNA. Chain: 0. 5s ribosomal RNA. Chain: 9. 50s ribosomal protein l1. Chain: 2. 50s ribosomal protein l7/l12. Chain: 3, 5. 50s ribosomal protein l2.
|
|
Source:
|
 |
Escherichia coli. Organism_taxid: 562. Organism_taxid: 562
|
|
Biol. unit:
|
 |
29mer (from
)
|
|
Authors:
|
 |
K.Mitra,J.Frank
|
Key ref:
|
 |
K.Mitra
et al.
(2006).
Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
Mol Cell,
22,
533-543.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
09-May-06
|
Release date:
|
26-Sep-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P0A7L0
(RL1_ECOLI) -
50S ribosomal protein L1 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
234 a.a.
222 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7K2
(RL7_ECOLI) -
50S ribosomal protein L7/L12 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
121 a.a.
119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60422
(RL2_ECOLI) -
50S ribosomal protein L2 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
273 a.a.
227 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60438
(RL3_ECOLI) -
50S ribosomal protein L3 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
209 a.a.
209 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60723
(RL4_ECOLI) -
50S ribosomal protein L4 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
201 a.a.
198 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P62399
(RL5_ECOLI) -
50S ribosomal protein L5 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
179 a.a.
177 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0AG55
(RL6_ECOLI) -
50S ribosomal protein L6 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
177 a.a.
167 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7R1
(RL9_ECOLI) -
50S ribosomal protein L9 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
149 a.a.
149 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7J7
(RL11_ECOLI) -
50S ribosomal protein L11 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
142 a.a.
139 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0AA10
(RL13_ECOLI) -
50S ribosomal protein L13 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
142 a.a.
142 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0ADY3
(RL14_ECOLI) -
50S ribosomal protein L14 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
123 a.a.
122 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P02413
(RL15_ECOLI) -
50S ribosomal protein L15 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
144 a.a.
140 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0ADY7
(RL16_ECOLI) -
50S ribosomal protein L16 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
136 a.a.
131 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0AG44
(RL17_ECOLI) -
50S ribosomal protein L17 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
127 a.a.
114 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0C018
(RL18_ECOLI) -
50S ribosomal protein L18 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
117 a.a.
113 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7K6
(RL19_ECOLI) -
50S ribosomal protein L19 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
115 a.a.
114 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7L3
(RL20_ECOLI) -
50S ribosomal protein L20 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
118 a.a.
115 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P61175
(RL22_ECOLI) -
50S ribosomal protein L22 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
110 a.a.
106 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0ADZ0
(RL23_ECOLI) -
50S ribosomal protein L23 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
100 a.a.
92 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60624
(RL24_ECOLI) -
50S ribosomal protein L24 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
104 a.a.
99 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P68919
(RL25_ECOLI) -
50S ribosomal protein L25 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
94 a.a.
94 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7L8
(RL27_ECOLI) -
50S ribosomal protein L27 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
85 a.a.
84 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0A7M6
(RL29_ECOLI) -
50S ribosomal protein L29 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
63 a.a.
60 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P0AG51
(RL30_ECOLI) -
50S ribosomal protein L30 from Escherichia coli (strain K12)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
59 a.a.
56 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
22:533-543
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements.
|
|
K.Mitra,
C.Schaffitzel,
F.Fabiola,
M.S.Chapman,
N.Ban,
J.Frank.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
In E. coli, the SecM nascent polypeptide causes elongation arrest, while
interacting with 23S RNA bases A2058 and A749-753 in the exit tunnel of the
large ribosomal subunit. We compared atomic models fitted by real-space
refinement into cryo-electron microscopy reconstructions of a pretranslocational
and SecM-stalled E. coli ribosome complex. A cascade of RNA rearrangements
propagates from the exit tunnel throughout the large subunit, affecting
intersubunit bridges and tRNA positions, which in turn reorient small subunit
RNA elements. Elongation arrest could result from the inhibition of mRNA.(tRNAs)
translocation, E site tRNA egress, and perhaps translation factor activation at
the GTPase-associated center. Our study suggests that the specific secondary and
tertiary arrangement of ribosomal RNA provides the basis for internal signal
transduction within the ribosome. Thus, the ribosome may itself have the ability
to regulate its progression through translation by modulating its structure and
consequently its receptivity to activation by cofactors.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Overview and Interconnectivity of rRNA Elements
in Relation to the Interaction Sites with the SecM Nascent
Polypeptide
|
 |
Figure 4.
Figure 4. Flowchart of SecM Nascent Polypeptide-Induced
rRNA Rearrangements in the Ribosome
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2006,
22,
533-543)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.R.Cruz-Vera,
M.S.Sachs,
C.L.Squires,
and
C.Yanofsky
(2011).
Nascent polypeptide sequences that influence ribosome function.
|
| |
Curr Opin Microbiol,
14,
160-166.
|
 |
|
|
|
|
 |
S.Bhushan,
T.Hoffmann,
B.Seidelt,
J.Frauenfeld,
T.Mielke,
O.Berninghausen,
D.N.Wilson,
and
R.Beckmann
(2011).
SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center.
|
| |
PLoS Biol,
9,
e1000581.
|
 |
|
|
|
|
 |
K.Ito,
S.Chiba,
and
K.Pogliano
(2010).
Divergent stalling sequences sense and control cellular physiology.
|
| |
Biochem Biophys Res Commun,
393,
1-5.
|
 |
|
|
|
|
 |
K.Réblová,
F.Rázga,
W.Li,
H.Gao,
J.Frank,
and
J.Sponer
(2010).
Dynamics of the base of ribosomal A-site finger revealed by molecular dynamics simulations and Cryo-EM.
|
| |
Nucleic Acids Res,
38,
1325-1340.
|
 |
|
|
|
|
 |
S.Bhushan,
H.Meyer,
A.L.Starosta,
T.Becker,
T.Mielke,
O.Berninghausen,
M.Sattler,
D.N.Wilson,
and
R.Beckmann
(2010).
Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
|
| |
Mol Cell,
40,
138-146.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Yonath
(2009).
Large facilities and the evolving ribosome, the cellular machine for genetic-code translation.
|
| |
J R Soc Interface,
6,
S575-S585.
|
 |
|
|
|
|
 |
B.Seidelt,
C.A.Innis,
D.N.Wilson,
M.Gartmann,
J.P.Armache,
E.Villa,
L.G.Trabuco,
T.Becker,
T.Mielke,
K.Schulten,
T.A.Steitz,
and
R.Beckmann
(2009).
Structural insight into nascent polypeptide chain-mediated translational stalling.
|
| |
Science,
326,
1412-1415.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.R.Tanner,
D.A.Cariello,
C.J.Woolstenhulme,
M.A.Broadbent,
and
A.R.Buskirk
(2009).
Genetic identification of nascent peptides that induce ribosome stalling.
|
| |
J Biol Chem,
284,
34809-34818.
|
 |
|
|
|
|
 |
H.Ramu,
A.Mankin,
and
N.Vazquez-Laslop
(2009).
Programmed drug-dependent ribosome stalling.
|
| |
Mol Microbiol,
71,
811-824.
|
 |
|
|
|
|
 |
M.N.Yap,
and
H.D.Bernstein
(2009).
The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel.
|
| |
Mol Cell,
34,
201-211.
|
 |
|
|
|
|
 |
L.G.Trabuco,
E.Villa,
K.Mitra,
J.Frank,
and
K.Schulten
(2008).
Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.
|
| |
Structure,
16,
673-683.
|
 |
|
|
|
|
 |
M.Beringer
(2008).
Modulating the activity of the peptidyl transferase center of the ribosome.
|
| |
RNA,
14,
795-801.
|
 |
|
|
|
|
 |
M.G.Lawrence,
L.Lindahl,
and
J.M.Zengel
(2008).
Effects on translation pausing of alterations in protein and RNA components of the ribosome exit tunnel.
|
| |
J Bacteriol,
190,
5862-5869.
|
 |
|
|
|
|
 |
N.Vazquez-Laslop,
C.Thum,
and
A.S.Mankin
(2008).
Molecular mechanism of drug-dependent ribosome stalling.
|
| |
Mol Cell,
30,
190-202.
|
 |
|
|
|
|
 |
S.L.Liu,
and
K.Adams
(2008).
Molecular adaptation and expression evolution following duplication of genes for organellar ribosomal protein S13 in rosids.
|
| |
BMC Evol Biol,
8,
25.
|
 |
|
|
|
|
 |
T.Bornemann,
J.Jöckel,
M.V.Rodnina,
and
W.Wintermeyer
(2008).
Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel.
|
| |
Nat Struct Mol Biol,
15,
494-499.
|
 |
|
|
|
|
 |
B.Felden
(2007).
RNA structure: experimental analysis.
|
| |
Curr Opin Microbiol,
10,
286-291.
|
 |
|
|
|
|
 |
J.F.Atkins,
N.M.Wills,
G.Loughran,
C.Y.Wu,
K.Parsawar,
M.D.Ryan,
C.H.Wang,
and
C.C.Nelson
(2007).
A case for "StopGo": reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go).
|
| |
RNA,
13,
803-810.
|
 |
|
|
|
|
 |
N.Gao,
A.V.Zavialov,
M.Ehrenberg,
and
J.Frank
(2007).
Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits.
|
| |
J Mol Biol,
374,
1345-1358.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Moore,
and
R.T.Sauer
(2007).
The tmRNA system for translational surveillance and ribosome rescue.
|
| |
Annu Rev Biochem,
76,
101-124.
|
 |
|
|
|
|
 |
S.J.Schroeder,
G.Blaha,
and
P.B.Moore
(2007).
Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit.
|
| |
Antimicrob Agents Chemother,
51,
4462-4465.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Zaman,
M.Fitzpatrick,
L.Lindahl,
and
J.Zengel
(2007).
Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli.
|
| |
Mol Microbiol,
66,
1039-1050.
|
 |
|
|
|
|
 |
T.A.Rapoport
(2007).
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes.
|
| |
Nature,
450,
663-669.
|
 |
|
|
|
|
 |
F.Garza-Sánchez,
B.D.Janssen,
and
C.S.Hayes
(2006).
Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA.
|
| |
J Biol Chem,
281,
34258-34268.
|
 |
|
|
|
|
 |
K.Mitra,
J.Frank,
and
A.Driessen
(2006).
Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work?
|
| |
Nat Struct Mol Biol,
13,
957-964.
|
 |
|
|
|
|
 |
R.Rakauskaite,
and
J.D.Dinman
(2006).
An arc of unpaired "hinge bases" facilitates information exchange among functional centers of the ribosome.
|
| |
Mol Cell Biol,
26,
8992-9002.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
| |