spacer
spacer

PDBsum entry 2fld

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Hydrolase/DNA PDB id
2fld

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
161 a.a. *
DNA/RNA
Metals
_NA
_CA ×2
Waters ×97
* Residue conservation analysis
PDB id:
2fld
Name: Hydrolase/DNA
Title: I-msoi re-designed for altered DNA cleavage specificity
Structure: 5'-d( Gp Cp Ap Gp Ap Ap Gp Gp Tp Cp Gp Tp Gp Ap Gp Ap Cp Cp Gp Tp Tp Cp Cp G)-3'. Chain: c. Engineered: yes. Mutation: yes. 5'-d( Cp Gp Gp Ap Ap Cp Gp Gp Tp Cp Tp Cp Ap Cp Gp Ap Cp Cp Tp Tp Cp Tp Gp C)-3'. Chain: d. Engineered: yes.
Source: Synthetic: yes. Monomastix sp.. Organism_taxid: 141716. Strain: oke-1. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Tetramer (from PQS)
Resolution:
2.00Å     R-factor:   0.229     R-free:   0.271
Authors: J.Ashworth,C.M.Duarte,J.J.Havranek,D.Sussman,R.J.Monnat,B.L.Stoddard, D.Baker
Key ref:
J.Ashworth et al. (2006). Computational redesign of endonuclease DNA binding and cleavage specificity. Nature, 441, 656-659. PubMed id: 16738662 DOI: 10.1038/nature04818
Date:
05-Jan-06     Release date:   06-Jun-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
C0JWR6  (C0JWR6_MONSK) -  Site-specific DNA endonuclease I-MsoI from Monomastix sp. (strain OKE-1)
Seq:
Struc:
170 a.a.
161 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

DNA/RNA chains
  G-C-A-G-A-A-G-G-T-C-G-T-G-A-G-A-C-C-G-T-T-C-C-G 24 bases
  C-G-G-A-A-C-G-G-T-C-T-C-A-C-G-A-C-C-T-T-C-T-G-C 24 bases

 

 
DOI no: 10.1038/nature04818 Nature 441:656-659 (2006)
PubMed id: 16738662  
 
 
Computational redesign of endonuclease DNA binding and cleavage specificity.
J.Ashworth, J.J.Havranek, C.M.Duarte, D.Sussman, R.J.Monnat, B.L.Stoddard, D.Baker.
 
  ABSTRACT  
 
The reprogramming of DNA-binding specificity is an important challenge for computational protein design that tests current understanding of protein-DNA recognition, and has considerable practical relevance for biotechnology and medicine. Here we describe the computational redesign of the cleavage specificity of the intron-encoded homing endonuclease I-MsoI using a physically realistic atomic-level forcefield. Using an in silico screen, we identified single base-pair substitutions predicted to disrupt binding by the wild-type enzyme, and then optimized the identities and conformations of clusters of amino acids around each of these unfavourable substitutions using Monte Carlo sampling. A redesigned enzyme that was predicted to display altered target site specificity, while maintaining wild-type binding affinity, was experimentally characterized. The redesigned enzyme binds and cleaves the redesigned recognition site approximately 10,000 times more effectively than does the wild-type enzyme, with a level of target discrimination comparable to the original endonuclease. Determination of the structure of the redesigned nuclease-recognition site complex by X-ray crystallography confirms the accuracy of the computationally predicted interface. These results suggest that computational protein design methods can have an important role in the creation of novel highly specific endonucleases for gene therapy and other applications.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Comparison of the predicted interactions in cognate and non-cognate binding complexes, illustrating the designed specificity switch. a, Wild-type I-MsoI, -6C G (wild type). A water molecule present in the original structure^16 is shown. b, Wild-type I-MsoI, -6G C. c, I-MsoI-K28L/T83R, -6C G. d, I-MsoI-K28L/T83R, -6G C. In parts c and d, the van der Waals surfaces of Leu 28 and +6C are shown in grey. Figures were generated using the molecular graphics program PyMOL (Delano Scientific). WT, wild type; DES, designed; blue strands, protein backbone; beige spheres and sticks, DNA backbone; other spheres, constant nucleotides; dashed lines, hydrogen bonds.
Figure 3.
Figure 3: Crystal structure of the designed enzyme–DNA complex. Left, F[o]–F[c] electron-density map of the redesigned region calculated from a refinement model lacking the redesigned side chains and bases (cyan). The computational design model (grey) fits well into the unassigned density (blue mesh, +2.2 ). Right, superposition of the design model (salmon) and the refined crystal structure (cyan) confirms the accuracy of the design. A new coordinated water molecule (red sphere) is also apparent.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2006, 441, 656-659) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21220111 B.L.Stoddard (2011).
Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification.
  Structure, 19, 7.  
20846960 I.G.Muñoz, J.Prieto, S.Subramanian, J.Coloma, P.Redondo, M.Villate, N.Merino, M.Marenchino, M.D'Abramo, F.L.Gervasio, S.Grizot, F.Daboussi, J.Smith, I.Chion-Sotinel, F.Pâques, P.Duchateau, A.Alibés, F.Stricher, L.Serrano, F.J.Blanco, and G.Montoya (2011).
Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus.
  Nucleic Acids Res, 39, 729-743.
PDB codes: 2xe0 3mx9 3mxa 3mxb
21128762 I.Samish, C.M.MacDermaid, J.M.Perez-Aguilar, and J.G.Saven (2011).
Theoretical and computational protein design.
  Annu Rev Phys Chem, 62, 129-149.  
21399673 M.Aubert, B.Y.Ryu, L.Banks, D.J.Rawlings, A.M.Scharenberg, and K.R.Jerome (2011).
Successful targeting and disruption of an integrated reporter lentivirus using the engineered homing endonuclease Y2 I-AniI.
  PLoS One, 6, e16825.  
21508956 N.Windbichler, M.Menichelli, P.A.Papathanos, S.B.Thyme, H.Li, U.Y.Ulge, B.T.Hovde, D.Baker, R.J.Monnat, A.Burt, and A.Crisanti (2011).
A synthetic homing endonuclease-based gene drive system in the human malaria mosquito.
  Nature, 473, 212-215.  
21047873 S.Arnould, C.Delenda, S.Grizot, C.Desseaux, F.Pâques, G.H.Silva, and J.Smith (2011).
The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy.
  Protein Eng Des Sel, 24, 27-31.  
21224832 S.Grosse, N.Huot, C.Mahiet, S.Arnould, S.Barradeau, D.L.Clerre, I.Chion-Sotinel, C.Jacqmarcq, B.Chapellier, A.Ergani, C.Desseaux, F.Cédrone, E.Conseiller, F.Pâques, M.Labetoulle, and J.Smith (2011).
Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells.
  Mol Ther, 19, 694-702.  
20061372 B.P.Kleinstiver, A.D.Fernandes, G.B.Gloor, and D.R.Edgell (2010).
A unified genetic, computational and experimental framework identifies functionally relevant residues of the homing endonuclease I-BmoI.
  Nucleic Acids Res, 38, 2411-2427.  
20085704 C.Kiel, E.Yus, and L.Serrano (2010).
Engineering signal transduction pathways.
  Cell, 140, 33-47.  
20462859 F.Lauck, C.A.Smith, G.F.Friedland, E.L.Humphris, and T.Kortemme (2010).
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
  Nucleic Acids Res, 38, W569-W575.  
19811621 H.Gao, J.Smith, M.Yang, S.Jones, V.Djukanovic, M.G.Nicholson, A.West, D.Bidney, S.C.Falco, D.Jantz, and L.A.Lyznik (2010).
Heritable targeted mutagenesis in maize using a designed endonuclease.
  Plant J, 61, 176-187.  
20435674 J.Ashworth, G.K.Taylor, J.J.Havranek, S.A.Quadri, B.L.Stoddard, and D.Baker (2010).
Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs.
  Nucleic Acids Res, 38, 5601-5608.
PDB codes: 3ko2 3mip 3mis
20670934 J.J.Havranek (2010).
Specificity in computational protein design.
  J Biol Chem, 285, 31095-31099.  
20389291 J.P.Connelly, J.C.Barker, S.Pruett-Miller, and M.H.Porteus (2010).
Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease.
  Mol Ther, 18, 1103-1110.  
20593236 J.T.Trevors, and L.Masson (2010).
DNA technologies: what's next applied to microbiology research?
  Antonie Van Leeuwenhoek, 98, 249-262.  
20631682 J.Zhan, B.Ding, R.Ma, X.Ma, X.Su, Y.Zhao, Z.Liu, J.Wu, and H.Liu (2010).
Develop reusable and combinable designs for transcriptional logic gates.
  Mol Syst Biol, 6, 388.  
  20359340 K.Yoshitake, H.Aoyagi, and H.Fujiwara (2010).
Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-long terminal repeat retrotransposon, TRAS1.
  Mob DNA, 1, 13.  
20544969 L.Dai, Y.Yang, H.R.Kim, and Y.Zhou (2010).
Improving computational protein design by using structure-derived sequence profile.
  Proteins, 78, 2338-2348.  
19915993 M.J.Marcaida, I.G.Muñoz, F.J.Blanco, J.Prieto, and G.Montoya (2010).
Homing endonucleases: from basics to therapeutic applications.
  Cell Mol Life Sci, 67, 727-748.  
20393509 P.Chapdelaine, C.Pichavant, J.Rousseau, F.Pâques, and J.P.Tremblay (2010).
Meganucleases can restore the reading frame of a mutated dystrophin.
  Gene Ther, 17, 846-858.  
20026587 S.Grizot, J.C.Epinat, S.Thomas, A.Duclert, S.Rolland, F.Pâques, and P.Duchateau (2010).
Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds.
  Nucleic Acids Res, 38, 2006-2018.  
19821047 S.Rémy, L.Tesson, S.Ménoret, C.Usal, A.M.Scharenberg, and I.Anegon (2010).
Zinc-finger nucleases: a powerful tool for genetic engineering of animals.
  Transgenic Res, 19, 363-371.  
20525730 Y.D.Yang, P.Spratt, H.Chen, C.Park, and D.Kihara (2010).
Sub-AQUA: real-value quality assessment of protein structure models.
  Protein Eng Des Sel, 23, 617-632.  
19574296 A.M.Van der Sloot, C.Kiel, L.Serrano, and F.Stricher (2009).
Protein design in biological networks: from manipulating the input to modifying the output.
  Protein Eng Des Sel, 22, 537-542.  
18776913 D.Bouard, D.Alazard-Dany, and F.L.Cosset (2009).
Viral vectors: from virology to transgene expression.
  Br J Pharmacol, 157, 153-165.  
19841629 D.J.Mandell, and T.Kortemme (2009).
Computer-aided design of functional protein interactions.
  Nat Chem Biol, 5, 797-807.  
19863810 E.C.Ordinario, M.Yabuki, P.Handa, W.J.Cummings, and N.Maizels (2009).
RAD51 paralogs promote homology-directed repair at diversifying immunoglobulin V regions.
  BMC Mol Biol, 10, 98.  
19693930 G.A.Khoury, H.Fazelinia, J.W.Chin, R.J.Pantazes, P.C.Cirino, and C.D.Maranas (2009).
Computational design of Candida boidinii xylose reductase for altered cofactor specificity.
  Protein Sci, 18, 2125-2138.  
18767152 G.R.Bowman, and V.S.Pande (2009).
Simulated tempering yields insight into the low-resolution Rosetta scoring functions.
  Proteins, 74, 777-788.  
19177362 H.Fazelinia, P.C.Cirino, and C.D.Maranas (2009).
OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold.
  Protein Sci, 18, 180-195.  
19396851 H.Katada, and M.Komiyama (2009).
Artificial restriction DNA cutters as new tools for gene manipulation.
  Chembiochem, 10, 1279-1288.  
19153140 H.Li, S.Pellenz, U.Ulge, B.L.Stoddard, and R.J.Monnat (2009).
Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins.
  Nucleic Acids Res, 37, 1650-1662.
PDB code: 3fd2
19389725 J.Ashworth, and D.Baker (2009).
Assessment of the optimization of affinity and specificity at protein-DNA interfaces.
  Nucleic Acids Res, 37, e73.  
19740766 J.Jarjour, H.West-Foyle, M.T.Certo, C.G.Hubert, L.Doyle, M.M.Getz, B.L.Stoddard, and A.M.Scharenberg (2009).
High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display.
  Nucleic Acids Res, 37, 6871-6880.  
19502357 J.Paramesvaran, E.G.Hibbert, A.J.Russell, and P.A.Dalby (2009).
Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
  Protein Eng Des Sel, 22, 401-411.  
19422060 M.Schneider, X.Fu, and A.E.Keating (2009).
X-ray vs. NMR structures as templates for computational protein design.
  Proteins, 77, 97.  
19324680 M.Suárez, and A.Jaramillo (2009).
Challenges in the computational design of proteins.
  J R Soc Interface, 6, S477-S491.  
19573226 P.A.Papathanos, N.Windbichler, M.Menichelli, A.Burt, and A.Crisanti (2009).
The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies.
  BMC Mol Biol, 10, 65.  
19470646 P.M.Murphy, J.M.Bolduc, J.L.Gallaher, B.L.Stoddard, and D.Baker (2009).
Alteration of enzyme specificity by computational loop remodeling and design.
  Proc Natl Acad Sci U S A, 106, 9215-9220.
PDB code: 3e0l
19567736 R.D.Morgan, and Y.A.Luyten (2009).
Rational engineering of type II restriction endonuclease DNA binding and cleavage specificity.
  Nucleic Acids Res, 37, 5222-5233.  
19362815 R.Rohs, S.M.West, P.Liu, and B.Honig (2009).
Nuance in the double-helix and its role in protein-DNA recognition.
  Curr Opin Struct Biol, 19, 171-177.  
19865174 S.B.Thyme, J.Jarjour, R.Takeuchi, J.J.Havranek, J.Ashworth, A.M.Scharenberg, B.L.Stoddard, and D.Baker (2009).
Exploitation of binding energy for catalysis and design.
  Nature, 461, 1300-1304.  
19584299 S.Grizot, J.Smith, F.Daboussi, J.Prieto, P.Redondo, N.Merino, M.Villate, S.Thomas, L.Lemaire, G.Montoya, F.J.Blanco, F.Pâques, and P.Duchateau (2009).
Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease.
  Nucleic Acids Res, 37, 5405-5419.  
19304757 S.M.Lippow, P.M.Aha, M.H.Parker, W.J.Blake, B.M.Baynes, and D.Lipovsek (2009).
Creation of a type IIS restriction endonuclease with a long recognition sequence.
  Nucleic Acids Res, 37, 3061-3073.  
18615422 X.Zhu, and L.Lai (2009).
A novel method for enzyme design.
  J Comput Chem, 30, 256-267.  
18660532 A.Deredec, A.Burt, and H.C.Godfray (2008).
The population genetics of using homing endonuclease genes in vector and pest management.
  Genetics, 179, 2013-2026.  
18513497 B.Burke, S.An, and K.Musier-Forsyth (2008).
Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
  Biochim Biophys Acta, 1784, 1222-1225.  
18547585 C.A.Smith, and T.Kortemme (2008).
Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction.
  J Mol Biol, 380, 742-756.  
18599454 F.Cannata, E.Brunet, L.Perrouault, V.Roig, S.Ait-Si-Ali, U.Asseline, J.P.Concordet, and C.Giovannangeli (2008).
Triplex-forming oligonucleotide-orthophenanthroline conjugates for efficient targeted genome modification.
  Proc Natl Acad Sci U S A, 105, 9576-9581.  
18514737 F.E.Boas, and P.B.Harbury (2008).
Design of protein-ligand binding based on the molecular-mechanics energy model.
  J Mol Biol, 380, 415-424.  
18041762 H.Chen, and D.Kihara (2008).
Estimating quality of template-based protein models by alignment stability.
  Proteins, 71, 1255-1274.  
18495940 H.D.Cho, V.D.Sood, D.Baker, and A.M.Weiner (2008).
On the role of a conserved, potentially helix-breaking residue in the tRNA-binding alpha-helix of archaeal CCA-adding enzymes.
  RNA, 14, 1284-1289.  
18613761 J.C.Chaput, N.W.Woodbury, L.A.Stearns, and B.A.Williams (2008).
Creating protein biocatalysts as tools for future industrial applications.
  Expert Opin Biol Ther, 8, 1087-1098.  
17999959 J.Prieto, J.C.Epinat, P.Redondo, E.Ramos, D.Padró, F.Cédrone, G.Montoya, F.Pâques, and F.J.Blanco (2008).
Generation and analysis of mesophilic variants of the thermostable archaeal I-DmoI homing endonuclease.
  J Biol Chem, 283, 4364-4374.  
18628239 M.M.Balamurali, D.Sharma, A.Chang, D.Khor, R.Chu, and H.Li (2008).
Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties.
  Protein Sci, 17, 1815-1826.  
18835397 M.Yang, and D.B.Teplow (2008).
Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences.
  J Mol Biol, 384, 450-464.  
18987743 P.Redondo, J.Prieto, I.G.Muñoz, A.Alibés, F.Stricher, L.Serrano, J.P.Cabaniols, F.Daboussi, S.Arnould, C.Perez, P.Duchateau, F.Pâques, F.J.Blanco, and G.Montoya (2008).
Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases.
  Nature, 456, 107-111.
PDB codes: 2vbj 2vbl 2vbn 2vbo
18410248 R.Das, and D.Baker (2008).
Macromolecular modeling with rosetta.
  Annu Rev Biochem, 77, 363-382.  
  18422304 R.Moretti, L.J.Donato, M.L.Brezinski, R.L.Stafford, H.Hoff, J.S.Thorson, P.B.Dervan, and A.Z.Ansari (2008).
Targeted chemical wedges reveal the role of allosteric DNA modulation in protein-DNA assembly.
  ACS Chem Biol, 3, 220-229.  
17476389 B.T.Kelly, J.C.Baret, V.Taly, and A.D.Griffiths (2007).
Miniaturizing chemistry and biology in microdroplets.
  Chem Commun (Camb), (), 1773-1788.  
17900341 E.Moroni, M.Caselle, and F.Fogolari (2007).
Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.
  BMC Struct Biol, 7, 61.  
17387014 F.E.Boas, and P.B.Harbury (2007).
Potential energy functions for protein design.
  Curr Opin Struct Biol, 17, 199-204.  
17554777 G.Grigoryan, A.Ochoa, and A.E.Keating (2007).
Computing van der Waals energies in the context of the rotamer approximation.
  Proteins, 68, 863-878.  
17603475 J.C.Miller, M.C.Holmes, J.Wang, D.Y.Guschin, Y.L.Lee, I.Rupniewski, C.M.Beausejour, A.J.Waite, N.S.Wang, K.A.Kim, P.D.Gregory, C.O.Pabo, and E.J.Rebar (2007).
An improved zinc-finger nuclease architecture for highly specific genome editing.
  Nat Biotechnol, 25, 778-785.  
17710146 J.C.Shieh, Y.C.Cheng, M.C.Su, M.Moore, Y.Choo, and A.Klug (2007).
Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae.
  PLoS ONE, 2, e746.  
17947319 J.H.Eastberg, A.McConnell Smith, L.Zhao, J.Ashworth, B.W.Shen, and B.L.Stoddard (2007).
Thermodynamics of DNA target site recognition by homing endonucleases.
  Nucleic Acids Res, 35, 7209-7221.  
17720708 J.L.Eklund, U.Y.Ulge, J.Eastberg, and R.J.Monnat (2007).
Altered target site specificity variants of the I-PpoI His-Cys box homing endonuclease.
  Nucleic Acids Res, 35, 5839-5850.  
17452357 J.Prieto, P.Redondo, D.Padró, S.Arnould, J.C.Epinat, F.Pâques, F.J.Blanco, and G.Montoya (2007).
The C-terminal loop of the homing endonuclease I-CreI is essential for site recognition, DNA binding and cleavage.
  Nucleic Acids Res, 35, 3262-3271.
PDB code: 2o7m
17196220 M.Allert, M.A.Dwyer, and H.W.Hellinga (2007).
Local encoding of computationally designed enzyme activity.
  J Mol Biol, 366, 945-953.  
17726053 N.Windbichler, P.A.Papathanos, F.Catteruccia, H.Ranson, A.Burt, and A.Crisanti (2007).
Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos.
  Nucleic Acids Res, 35, 5922-5933.  
17251159 P.Marguet, F.Balagadde, C.Tan, and L.You (2007).
Biology by design: reduction and synthesis of cellular components and behaviour.
  J R Soc Interface, 4, 607-623.  
17426121 P.Volná, J.Jarjour, S.Baxter, S.R.Roffler, R.J.Monnat, B.L.Stoddard, and A.M.Scharenberg (2007).
Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases.
  Nucleic Acids Res, 35, 2748-2758.  
17951612 P.Zhang, Y.Bao, L.Higgins, and S.Y.Xu (2007).
Rational design of a chimeric endonuclease targeted to NotI recognition site.
  Protein Eng Des Sel, 20, 497-504.  
17524729 S.G.Kang, and J.G.Saven (2007).
Computational protein design: structure, function and combinatorial diversity.
  Curr Opin Chem Biol, 11, 329-334.  
17855396 S.H.Chan, Y.Bao, E.Ciszak, S.Laget, and S.Y.Xu (2007).
Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities.
  Nucleic Acids Res, 35, 6238-6248.  
17644370 S.M.Lippow, and B.Tidor (2007).
Progress in computational protein design.
  Curr Opin Biotechnol, 18, 305-311.  
17891135 S.M.Lippow, K.D.Wittrup, and B.Tidor (2007).
Computational design of antibody-affinity improvement beyond in vivo maturation.
  Nat Biotechnol, 25, 1171-1176.  
17587055 T.Fukuda, Y.Ohya, and K.Ohta (2007).
Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.
  Mol Genet Genomics, 278, 467-478.  
17537811 X.Meng, S.Thibodeau-Beganny, T.Jiang, J.K.Joung, and S.A.Wolfe (2007).
Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method.
  Nucleic Acids Res, 35, e81.  
16900141 C.O.Pabo (2006).
Specificity by design.
  Nat Biotechnol, 24, 954-955.  
17130168 J.Smith, S.Grizot, S.Arnould, A.Duclert, J.C.Epinat, P.Chames, J.Prieto, P.Redondo, F.J.Blanco, J.Bravo, G.Montoya, F.Pâques, and P.Duchateau (2006).
A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences.
  Nucleic Acids Res, 34, e149.  
16971456 L.E.Rosen, H.A.Morrison, S.Masri, M.J.Brown, B.Springstubb, D.Sussman, B.L.Stoddard, and L.M.Seligman (2006).
Homing endonuclease I-CreI derivatives with novel DNA target specificities.
  Nucleic Acids Res, 34, 4791-4800.
PDB codes: 2i3p 2i3q
17038333 N.B.Becker, L.Wolff, and R.Everaers (2006).
Indirect readout: detection of optimized subsequences and calculation of relative binding affinities using different DNA elastic potentials.
  Nucleic Acids Res, 34, 5638-5649.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer