spacer
spacer

PDBsum entry 2es5

Go to PDB code: 
dna_rna links
RNA PDB id
2es5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
DNA/RNA
PDB id:
2es5
Name: RNA
Title: Structure of the sre RNA
Structure: 5'-r( Gp Gp Ap Gp Ap Gp Gp Cp Up Cp Up Gp Gp Cp Ap Gp Cp Up Up Up Up Cp C)-3'. Chain: a. Engineered: yes. Other_details: sre RNA
Source: Synthetic: yes. Other_details: RNA was prepared by in vitro transcription
NMR struc: 20 models
Authors: F.H.T.Allain
Key ref:
F.C.Oberstrass et al. (2006). Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol, 13, 160-167. PubMed id: 16429156 DOI: 10.1038/nsmb1038
Date:
25-Oct-05     Release date:   24-Jan-06    
 Headers
 References

DNA/RNA chain
  G-G-A-G-A-G-G-C-U-C-U-G-G-C-A-G-C-U-U-U-U-C-C 23 bases

 

 
DOI no: 10.1038/nsmb1038 Nat Struct Mol Biol 13:160-167 (2006)
PubMed id: 16429156  
 
 
Shape-specific recognition in the structure of the Vts1p SAM domain with RNA.
F.C.Oberstrass, A.Lee, R.Stefl, M.Janis, G.Chanfreau, F.H.Allain.
 
  ABSTRACT  
 
Although the abundant sterile alpha motif (SAM) domain was originally classified as a protein-protein interaction domain, it has recently been shown that certain SAM domains have the ability to bind RNA, defining a new type of post-transcriptional gene regulator. To further understand the function of SAM-RNA recognition, we determined the solution structures of the SAM domain of the Saccharomyces cerevisiae Vts1p (Vts1p-SAM) and the Smaug response element (SRE) stem-loop RNA as a complex and in isolation. The structures show that Vts1p-SAM recognizes predominantly the shape of the SRE rather than its sequence, with the exception of a G located at the tip of the pentaloop. Using microarray gene profiling, we identified several genes in S. cerevisiae that seem to be regulated by Vts1p and contain one or more copies of the SRE.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Solution structure of Vts1p-SAM domain bound to SRE RNA and molecular basis of the recognition. (a) Vts1p-SAM–SRE complex. Green, side chains important for recognition; magenta dashed lines, possible hydrogen bonds. (b) Stereo view of the most representative structure showing all the interactions important for recognition, colored as in a. (c) Schematic representation of the intermolecular interactions, colored as in a. (d) Surface representation of the protein in complex. Vts1p-SAM is colored by electrostatic potential (blue, positive; red, negative) and the SRE RNA is shown in stick representation.
Figure 5.
Figure 5. Comparison of the Vts1p-SAM–SRE complex with the structures of other SAM domain–containing proteins. (a) Crystal structure of the RuvA SAM-like domain in complex DNA^45 (PDB entry 1C7Y); red and yellow helices correspond to those in Vts1p-SAM shown in d. (b) Crystal structure of the heterodimer formed by the Yan and Mae SAM domains^17 (1SV0), colored light and dark gray, respectively. (c) Crystal structure of the homodimer formed by the EphB2 SAM domain^18 (1B4F). (d) Overlay of the Vts1p-SAM–SRE complex (blue, red and yellow) and the crystal structure of Smaug (light green; 1OXJ) solved in its free state^7.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Mol Biol (2006, 13, 160-167) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241883 C.Dominguez, M.Schubert, O.Duss, S.Ravindranathan, and F.H.Allain (2011).
Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy.
  Prog Nucl Magn Reson Spectrosc, 58, 1.  
21382373 C.W.Lee, L.Li, and D.P.Giedroc (2011).
The solution structure of coronaviral stem-loop 2 (SL2) reveals a canonical CUYG tetraloop fold.
  FEBS Lett, 585, 1049-1053.
PDB code: 2l6i
21081899 M.Jeske, B.Moritz, A.Anders, and E.Wahle (2011).
Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels.
  EMBO J, 30, 90.  
20007605 C.H.Lee, Y.K.Shin, T.T.Phung, J.S.Bae, Y.H.Kang, T.A.Nguyen, J.H.Kim, D.H.Kim, M.J.Kang, S.H.Bae, and Y.S.Seo (2010).
Involvement of Vts1, a structure-specific RNA-binding protein, in Okazaki fragment processing in yeast.
  Nucleic Acids Res, 38, 1583-1595.  
20946981 R.Stefl, F.C.Oberstrass, J.L.Hood, M.Jourdan, M.Zimmermann, L.Skrisovska, C.Maris, L.Peng, C.Hofr, R.B.Emeson, and F.H.Allain (2010).
The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove.
  Cell, 143, 225-237.
PDB codes: 2l2j 2l2k 2l3c 2l3j
18831011 A.D.Meruelo, and J.U.Bowie (2009).
Identifying polymer-forming SAM domains.
  Proteins, 74, 1-5.  
19401680 B.C.Foat, and G.D.Stormo (2009).
Discovering structural cis-regulatory elements by modeling the behaviors of mRNAs.
  Mol Syst Biol, 5, 268.  
19525956 G.I.Rice, J.Bond, A.Asipu, R.L.Brunette, I.W.Manfield, I.M.Carr, J.C.Fuller, R.M.Jackson, T.Lamb, T.A.Briggs, M.Ali, H.Gornall, L.R.Couthard, A.Aeby, S.P.Attard-Montalto, E.Bertini, C.Bodemer, K.Brockmann, L.A.Brueton, P.C.Corry, I.Desguerre, E.Fazzi, A.G.Cazorla, B.Gener, B.C.Hamel, A.Heiberg, M.Hunter, M.S.van der Knaap, R.Kumar, L.Lagae, P.G.Landrieu, C.M.Lourenco, D.Marom, M.F.McDermott, W.van der Merwe, S.Orcesi, J.S.Prendiville, M.Rasmussen, S.A.Shalev, D.M.Soler, M.Shinawi, R.Spiegel, T.Y.Tan, A.Vanderver, E.L.Wakeling, E.Wassmer, E.Whittaker, P.Lebon, D.B.Stetson, D.T.Bonthron, and Y.J.Crow (2009).
Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response.
  Nat Genet, 41, 829-832.  
19759148 P.Liu, L.Li, S.C.Keane, D.Yang, J.L.Leibowitz, and D.P.Giedroc (2009).
Mouse hepatitis virus stem-loop 2 adopts a uYNMG(U)a-like tetraloop structure that is highly functionally tolerant of base substitutions.
  J Virol, 83, 12084-12093.  
19828617 P.Serrano, M.A.Johnson, A.Chatterjee, B.W.Neuman, J.S.Joseph, M.J.Buchmeier, P.Kuhn, and K.Wüthrich (2009).
Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.
  J Virol, 83, 12998-13008.
PDB code: 2k87
19808788 Y.J.Crow, and J.Rehwinkel (2009).
Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity.
  Hum Mol Genet, 18, R130-R136.  
18255277 A.Serganov, and D.J.Patel (2008).
Towards deciphering the principles underlying an mRNA recognition code.
  Curr Opin Struct Biol, 18, 120-129.  
18583365 E.Horvilleur, M.Bauer, D.Goldschneider, X.Mergui, A.de la Motte, J.Bénard, S.Douc-Rasy, and D.Cappellen (2008).
p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells.
  Nucleic Acids Res, 36, 4222-4232.  
18991394 M.Leone, J.Cellitti, and M.Pellecchia (2008).
NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor.
  Biochemistry, 47, 12721-12728.
PDB code: 2k4p
18263618 M.Schwalbe, O.Ohlenschläger, A.Marchanka, R.Ramachandran, S.Häfner, T.Heise, and M.Görlach (2008).
Solution structure of stem-loop alpha of the hepatitis B virus post-transcriptional regulatory element.
  Nucleic Acids Res, 36, 1681-1689.
PDB code: 2jym
18160411 N.J.Reiter, L.J.Maher, and S.E.Butcher (2008).
DNA mimicry by a high-affinity anti-NF-kappaB RNA aptamer.
  Nucleic Acids Res, 36, 1227-1236.
PDB code: 2jwv
18287031 T.Rajakulendran, M.Sahmi, I.Kurinov, M.Tyers, M.Therrien, and F.Sicheri (2008).
CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling.
  Proc Natl Acad Sci U S A, 105, 2836-2841.
PDB codes: 3bs5 3bs7
17401565 X.Wang, G.Kapral, L.Murray, D.Richardson, J.Richardson, and J.Snoeyink (2008).
RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone.
  J Math Biol, 56, 253-278.  
17380510 H.Li, K.L.Fung, D.Y.Jin, S.S.Chung, Y.P.Ching, I.O.Ng, K.H.Sze, B.C.Ko, and H.Sun (2007).
Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2.
  Proteins, 67, 1154-1166.
PDB code: 2h80
17509066 J.L.Semotok, and H.D.Lipshitz (2007).
Regulation and function of maternal mRNA destabilization during early Drosophila development.
  Differentiation, 75, 482-506.  
17318228 L.Skrisovska, C.F.Bourgeois, R.Stefl, S.N.Grellscheid, L.Kister, P.Wenter, D.J.Elliott, J.Stevenin, and F.H.Allain (2007).
The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction.
  EMBO Rep, 8, 372-379.
PDB code: 2fy1
17600833 T.Ju, M.J.Ragusa, J.Hudak, A.C.Nairn, and W.Peti (2007).
Structural characterization of the neurabin sterile alpha motif domain.
  Proteins, 69, 192-198.
PDB code: 2gle
16793273 E.D.Gundelfinger, T.M.Boeckers, M.K.Baron, and J.U.Bowie (2006).
A role for zinc in postsynaptic density asSAMbly and plasticity?
  Trends Biochem Sci, 31, 366-373.  
17098193 K.Kuwasako, F.He, M.Inoue, A.Tanaka, S.Sugano, P.Güntert, Y.Muto, and S.Yokoyama (2006).
Solution structures of the SURP domains and the subunit-assembly mechanism within the splicing factor SF3a complex in 17S U2 snRNP.
  Structure, 14, 1677-1689.
PDB codes: 2dt6 2dt7
16982642 S.D.Auweter, F.C.Oberstrass, and F.H.Allain (2006).
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
  Nucleic Acids Res, 34, 4943-4959.  
17036044 Y.Hargous, G.M.Hautbergue, A.M.Tintaru, L.Skrisovska, A.P.Golovanov, J.Stevenin, L.Y.Lian, S.A.Wilson, and F.H.Allain (2006).
Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8.
  EMBO J, 25, 5126-5137.
PDB codes: 2hvz 2i2y 2i38
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer