spacer
spacer

PDBsum entry 2e9c

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transferase PDB id
2e9c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
208 a.a. *
Ligands
B75 ×4
Waters ×301
* Residue conservation analysis
PDB id:
2e9c
Name: Transferase
Title: E. Coli undecaprenyl pyrophosphate synthase in complex with bph-675
Structure: Undecaprenyl pyrophosphate synthetase. Chain: a, b. Synonym: upp synthetase, di-trans,poly-cis-decaprenylcistransferase, undecaprenyl diphosphate synthase, uds. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.05Å     R-factor:   0.209     R-free:   0.248
Authors: R.T.Guo,T.P.Ko,R.Cao,P.H.Liang,E.Oldfield,A.H.J.Wang
Key ref:
R.T.Guo et al. (2007). Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci U S A, 104, 10022-10027. PubMed id: 17535895 DOI: 10.1073/pnas.0702254104
Date:
24-Jan-07     Release date:   12-Jun-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
P60472  (UPPS_ECOLI) -  Ditrans,polycis-undecaprenyl-diphosphate synthase ((2E,6E)-farnesyl-diphosphate specific) from Escherichia coli (strain K12)
Seq:
Struc:
253 a.a.
208 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.5.1.31  - ditrans,polycis-undecaprenyl-diphosphate synthase [(2E,6E)-farnesyl-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Polyprenol biosynthesis
      Reaction: 8 isopentenyl diphosphate + (2E,6E)-farnesyl diphosphate = di-trans,octa- cis-undecaprenyl diphosphate + 8 diphosphate
8 × isopentenyl diphosphate
+ (2E,6E)-farnesyl diphosphate
= di-trans,octa- cis-undecaprenyl diphosphate
+ 8 × diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.0702254104 Proc Natl Acad Sci U S A 104:10022-10027 (2007)
PubMed id: 17535895  
 
 
Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases.
R.T.Guo, R.Cao, P.H.Liang, T.P.Ko, T.H.Chang, M.P.Hudock, W.Y.Jeng, C.K.Chen, Y.Zhang, Y.Song, C.J.Kuo, F.Yin, E.Oldfield, A.H.Wang.
 
  ABSTRACT  
 
Bisphosphonate drugs (e.g., Fosamax and Zometa) are thought to act primarily by inhibiting farnesyl diphosphate synthase (FPPS), resulting in decreased prenylation of small GTPases. Here, we show that some bisphosphonates can also inhibit geranylgeranyl diphosphate synthase (GGPPS), as well as undecaprenyl diphosphate synthase (UPPS), a cis-prenyltransferase of interest as a target for antibacterial therapy. Our results on GGPPS (10 structures) show that there are three bisphosphonate-binding sites, consisting of FPP or isopentenyl diphosphate substrate-binding sites together with a GGPP product- or inhibitor-binding site. In UPPS, there are a total of four binding sites (in five structures). These results are of general interest because they provide the first structures of GGPPS- and UPPS-inhibitor complexes, potentially important drug targets, in addition to revealing a remarkably broad spectrum of binding modes not seen in FPPS inhibition.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Bisphosphonates and GGPPS structures. (A) Structures of bisphosphonates investigated as GGPPS inhibitors. (B) GGPPS structure containing zoledronate (PDB ID code 2E91) showing dimer structure. (C) Stereoview of minodronate bound to GGPPS (PDB ID code 2E92). (D) Stereoview of zoledronate/GGPPS (PDB ID code 2E91) superimposed on zoledronate/IPP/FPPS structure (PDB ID code 2F8C).
Figure 3.
Fig. 3. Structures of hydrophobic bisphosphonates bound to GGPPS. (A) Stereoview of BPH-675 (PDB ID code 2E95). (B) Electron density (green contoured at 1 , red at 3 ) for the two BPH-629 conformers (PDB ID code 2E93). (C) Structure of BPH-629 bound to GGPPS (monomer A model is shown).
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21084289 J.D.Artz, A.K.Wernimont, J.E.Dunford, M.Schapira, A.Dong, Y.Zhao, J.Lew, R.G.Russell, F.H.Ebetino, U.Oppermann, and R.Hui (2011).
Molecular characterization of a novel geranylgeranyl pyrophosphate synthase from Plasmodium parasites.
  J Biol Chem, 286, 3315-3322.
PDB codes: 3ldw 3mav 3ph7
21098670 F.Y.Lin, C.I.Liu, Y.L.Liu, Y.Zhang, K.Wang, W.Y.Jeng, T.P.Ko, R.Cao, A.H.Wang, and E.Oldfield (2010).
Mechanism of action and inhibition of dehydrosqualene synthase.
  Proc Natl Acad Sci U S A, 107, 21337-21342.
PDB codes: 3lgz 3npr 3nri
20191015 H.J.Choi, J.Y.Choi, S.W.Cho, D.Kang, K.O.Han, S.W.Kim, S.Y.Kim, Y.S.Chung, and C.S.Shin (2010).
Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women.
  Yonsei Med J, 51, 231-238.  
20879838 J.Green, and A.Lipton (2010).
Anticancer properties of zoledronic acid.
  Cancer Invest, 28, 944-957.  
21152313 S.H.Lee, S.Raboune, J.M.Walker, and H.B.Bradshaw (2010).
Distribution of endogenous farnesyl pyrophosphate and four species of lysophosphatidic Acid in rodent brain.
  Int J Mol Sci, 11, 3965-3976.  
20139160 T.H.Chang, F.L.Hsieh, T.P.Ko, K.H.Teng, P.H.Liang, and A.H.Wang (2010).
Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation.
  Plant Cell, 22, 454-467.
PDB codes: 3kra 3krc 3krf 3kro 3krp
20173096 W.Wang, K.Wang, Y.L.Liu, J.H.No, J.Li, M.J.Nilges, and E.Oldfield (2010).
Bioorganometallic mechanism of action, and inhibition, of IspH.
  Proc Natl Acad Sci U S A, 107, 4522-4527.  
  20039246 Y.Zhang, R.Cao, F.Yin, F.Y.Lin, H.Wang, K.Krysiak, J.H.No, D.Mukkamala, K.Houlihan, J.Li, C.T.Morita, and E.Oldfield (2010).
Lipophilic pyridinium bisphosphonates: potent gammadelta T cell stimulators.
  Angew Chem Int Ed Engl, 49, 1136-1138.  
19776008 R.M.Garza, P.N.Tran, and R.Y.Hampton (2009).
Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in yeast.
  J Biol Chem, 284, 35368-35380.  
19505369 T.Nishiguchi, T.Akiyoshi, S.Anami, T.Nakabayashi, K.Matsuyama, and S.Matzno (2009).
Synergistic action of statins and nitrogen-containing bisphosphonates in the development of rhabdomyolysis in L6 rat skeletal myoblasts.
  J Pharm Pharmacol, 61, 781-788.  
19309137 Y.Zhang, R.Cao, F.Yin, M.P.Hudock, R.T.Guo, K.Krysiak, S.Mukherjee, Y.G.Gao, H.Robinson, Y.Song, J.H.No, K.Bergan, A.Leon, L.Cass, A.Goddard, T.K.Chang, F.Y.Lin, E.Van Beek, S.Papapoulos, A.H.Wang, T.Kubo, M.Ochi, D.Mukkamala, and E.Oldfield (2009).
Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation.
  J Am Chem Soc, 131, 5153-5162.
PDB codes: 2opm 2zeu 2zev 3dyf 3dyg 3dyh 3efq 3egt
18276850 C.I.Liu, G.Y.Liu, Y.Song, F.Yin, M.E.Hensler, W.Y.Jeng, V.Nizet, A.H.Wang, and E.Oldfield (2008).
A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence.
  Science, 319, 1391-1394.
PDB codes: 2zco 2zcp 2zcq 2zcr 2zcs
18382620 C.J.Kuo, R.T.Guo, I.L.Lu, H.G.Liu, S.Y.Wu, T.P.Ko, A.H.Wang, and P.H.Liang (2008).
Structure-based inhibitors exhibit differential activities against Helicobacter pylori and Escherichia coli undecaprenyl pyrophosphate synthases.
  J Biomed Biotechnol, 2008, 841312.
PDB code: 2d2r
18800762 C.K-M Chen, M.P.Hudock, Y.Zhang, R.T.Guo, R.Cao, J.H.No, P.H.Liang, T.P.Ko, T.H.Chang, S.C.Chang, Y.Song, J.Axelson, A.Kumar, A.H.Wang, and E.Oldfield (2008).
Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation.
  J Med Chem, 51, 5594-5607.
PDB codes: 2z4v 2z4w 2z4x 2z4y 2z4z 2z50 2z52 2z78 2z7i
19053772 D.Mukkamala, J.H.No, L.M.Cass, T.K.Chang, and E.Oldfield (2008).
Bisphosphonate inhibition of a Plasmodium farnesyl diphosphate synthase and a general method for predicting cell-based activity from enzyme data.
  J Med Chem, 51, 7827-7833.  
19101474 J.D.Artz, J.E.Dunford, M.J.Arrowood, A.Dong, M.Chruszcz, K.L.Kavanagh, W.Minor, R.G.Russell, F.H.Ebetino, U.Oppermann, and R.Hui (2008).
Targeting a uniquely nonspecific prenyl synthase with bisphosphonates to combat cryptosporidiosis.
  Chem Biol, 15, 1296-1306.
PDB codes: 2o1o 2q58
18282486 J.Weigelt, L.D.McBroom-Cerajewski, M.Schapira, Y.Zhao, C.H.Arrowsmith, and C.H.Arrowmsmith (2008).
Structural genomics and drug discovery: all in the family.
  Curr Opin Chem Biol, 12, 32-39.  
18616462 M.Noike, T.Katagiri, T.Nakayama, T.Koyama, T.Nishino, and H.Hemmi (2008).
The product chain length determination mechanism of type II geranylgeranyl diphosphate synthase requires subunit interaction.
  FEBS J, 275, 3921-3933.  
18442135 R.Cao, C.K.Chen, R.T.Guo, A.H.Wang, and E.Oldfield (2008).
Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases.
  Proteins, 73, 431-439.
PDB codes: 2p1c 2z7h
18473837 R.Docampo, and S.N.Moreno (2008).
The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites.
  Curr Pharm Des, 14, 882-888.  
18096393 S.H.Szajnman, G.E.García Liñares, Z.H.Li, C.Jiang, M.Galizzi, E.J.Bontempi, M.Ferella, S.N.Moreno, R.Docampo, and J.B.Rodriguez (2008).
Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase.
  Bioorg Med Chem, 16, 3283-3290.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer