spacer
spacer

PDBsum entry 2d4h

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Signaling protein PDB id
2d4h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
299 a.a. *
284 a.a. *
Ligands
5GP ×2
Waters ×119
* Residue conservation analysis
PDB id:
2d4h
Name: Signaling protein
Title: Crystal-structure of the n-terminal large gtpase domain of human guanylate binding protein 1 (hgbp1) in complex with gmp
Structure: Interferon-induced guanylate-binding protein 1. Chain: a, b. Fragment: n-terminal large gtpase domain. Synonym: gtp-binding protein 1, guanine nucleotide-binding protein 1, hugbp-1. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: gbp1. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
2.90Å     R-factor:   0.235     R-free:   0.275
Authors: A.Ghosh,G.J.K.Praefcke,L.Renault,A.Wittinghofer,C.Herrmann
Key ref:
A.Ghosh et al. (2006). How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature, 440, 101-104. PubMed id: 16511497 DOI: 10.1038/nature04510
Date:
19-Oct-05     Release date:   07-Mar-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P32455  (GBP1_HUMAN) -  Guanylate-binding protein 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
592 a.a.
299 a.a.
Protein chain
Pfam   ArchSchema ?
P32455  (GBP1_HUMAN) -  Guanylate-binding protein 1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
592 a.a.
284 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chains A, B: E.C.3.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: Chains A, B: E.C.3.6.5.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1038/nature04510 Nature 440:101-104 (2006)
PubMed id: 16511497  
 
 
How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
A.Ghosh, G.J.Praefcke, L.Renault, A.Wittinghofer, C.Herrmann.
 
  ABSTRACT  
 
Interferons are immunomodulatory cytokines that mediate anti-pathogenic and anti-proliferative effects in cells. Interferon-gamma-inducible human guanylate binding protein 1 (hGBP1) belongs to the family of dynamin-related large GTP-binding proteins, which share biochemical properties not found in other families of GTP-binding proteins such as nucleotide-dependent oligomerization and fast cooperative GTPase activity. hGBP1 has an additional property by which it hydrolyses GTP to GMP in two consecutive cleavage reactions. Here we show that the isolated amino-terminal G domain of hGBP1 retains the main enzymatic properties of the full-length protein and can cleave GDP directly. Crystal structures of the N-terminal G domain trapped at successive steps along the reaction pathway and biochemical data reveal the molecular basis for nucleotide-dependent homodimerization and cleavage of GTP. Similar to effector binding in other GTP-binding proteins, homodimerization is regulated by structural changes in the switch regions. Homodimerization generates a conformation in which an arginine finger and a serine are oriented for efficient catalysis. Positioning of the substrate for the second hydrolysis step is achieved by a change in nucleotide conformation at the ribose that keeps the guanine base interactions intact and positions the beta-phosphates in the gamma-phosphate-binding site.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: Structural analysis of the GTPase reaction. a, Comparison of the GppNHp circle Mg^2+- binding pockets of hGBP1^LG (blue) and hGBP1^FL (yellow) highlights the dimerization-induced reorientation of the catalytic Arg 48 and Ser 73 side chains on their corresponding loops. The grey van der Waals surface of monomer B (black) from the hGBP1^LG circle GppNHp dimer is shown to indicate how Arg 48 of monomer A would clash with Thr 133 from monomer B. b, GDP circle AlF[3] from the Ras circle RasGAP complex^16 (orange) is superimposed on GDP circle AlF[3] from hGBP1^LG (green), indicating that the cis 'arginine finger' of hGBP1 (R48) has a similar orientation to that of the trans arginine from RasGAP (R789).
Figure 4.
Figure 4: Structural analysis of the GDPase reaction. a, Superimposition of the active sites of hGBP1^LG circle GMP circle AlF[4]^- (blue) and hGBP1^LG circle GDP circle AlF[3] (green) structures, respectively, showing the shift of GMP for the second hydrolysis step. Black broken lines show stabilizing polar interactions and red broken lines indicate unfavourable vicinities between the nucleotide in the GDP circle AlF[3] structure and the guanine cap residues as found in the GMP circle AlF[4]^- structure. b, Superimposition of nucleotide-binding sites of hGBP1^LG circle GMP (yellow, gold) and Ras circle GDP (green; Protein Data Bank accession code 4Q21) structures with the -phosphate of GMP occupying a similar position to that of the -phosphate of Ras circle GDP. Arg 48 is pointing away from the active site. Red star indicates possible steric hindrance between Lys 117 of the (N/T)KxD motif from Ras and the GMP base conformation found in hGBP1^LG.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2006, 440, 101-104) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22233676 S.M.Ferguson, and P.De Camilli (2012).
Dynamin, a membrane-remodelling GTPase.
  Nat Rev Mol Cell Biol, 13, 75-88.  
21142871 D.J.Vestal, and J.A.Jeyaratnam (2011).
The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase.
  J Interferon Cytokine Res, 31, 89-97.  
21220294 L.J.Byrnes, and H.Sondermann (2011).
Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A.
  Proc Natl Acad Sci U S A, 108, 2216-2221.
PDB codes: 3q5d 3q5e
21276251 N.Pawlowski, A.Khaminets, J.P.Hunn, N.Papic, A.Schmidt, R.C.Uthaiah, R.Lange, G.Vopper, S.Martens, E.Wolf, and J.C.Howard (2011).
The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii.
  BMC Biol, 9, 7.  
21278333 O.Daumke, and G.J.Praefcke (2011).
Structural insights into membrane fusion at the endoplasmic reticulum.
  Proc Natl Acad Sci U S A, 108, 2175-2176.  
21368113 X.Bian, R.W.Klemm, T.Y.Liu, M.Zhang, S.Sun, X.Sui, X.Liu, T.A.Rapoport, and J.Hu (2011).
Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes.
  Proc Natl Acad Sci U S A, 108, 3976-3981.
PDB codes: 3qnu 3qof
20505078 A.F.Messmer-Blust, S.Balasubramanian, V.Y.Gorbacheva, J.A.Jeyaratnam, and D.J.Vestal (2010).
The interferon-gamma-induced murine guanylate-binding protein-2 inhibits rac activation during cell spreading on fibronectin and after platelet-derived growth factor treatment: role for phosphatidylinositol 3-kinase.
  Mol Biol Cell, 21, 2514-2528.  
21219034 A.Kerstan, T.Ladnorg, C.Grunwald, T.Vöpel, D.Zacher, C.Herrmann, and C.Wöll (2010).
Human guanylate-binding protein 1 as a model system investigated by several surface techniques.
  Biointerphases, 5, 131-138.  
20348589 J.M.Fres, S.Müller, and G.J.Praefcke (2010).
Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase.
  J Lipid Res, 51, 2454-2459.  
20428113 J.S.Chappie, S.Acharya, M.Leonard, S.L.Schmid, and F.Dyda (2010).
G domain dimerization controls dynamin's assembly-stimulated GTPase activity.
  Nature, 465, 435-440.
PDB codes: 2x2e 2x2f
21151871 N.Britzen-Laurent, M.Bauer, V.Berton, N.Fischer, A.Syguda, S.Reipschläger, E.Naschberger, C.Herrmann, and M.Stürzl (2010).
Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hierarchical manner.
  PLoS One, 5, e14246.  
20957720 N.Pawlowski (2010).
Dynamin self-assembly and the vesicle scission mechanism: how dynamin oligomers cleave the membrane neck of clathrin-coated pits during endocytosis.
  Bioessays, 32, 1033-1039.  
20428112 S.Gao, A.von der Malsburg, S.Paeschke, J.Behlke, O.Haller, G.Kochs, and O.Daumke (2010).
Structural basis of oligomerization in the stalk region of dynamin-like MxA.
  Nature, 465, 502-506.
PDB code: 3ljb
19505947 A.F.Neuwald (2009).
Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.
  Bioinformatics, 25, 1869-1875.  
20064379 H.H.Low, C.Sachse, L.A.Amos, and J.Löwe (2009).
Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving.
  Cell, 139, 1342-1352.
PDB code: 2w6d
19652711 I.Tietzel, C.El-Haibi, and R.A.Carabeo (2009).
Human guanylate binding proteins potentiate the anti-chlamydia effects of interferon-gamma.
  PLoS One, 4, e6499.  
19759282 J.A.Heymann, and J.E.Hinshaw (2009).
Dynamins at a glance.
  J Cell Sci, 122, 3427-3431.  
19805342 M.Sirajuddin, M.Farkasovsky, E.Zent, and A.Wittinghofer (2009).
GTP-induced conformational changes in septins and implications for function.
  Proc Natl Acad Sci U S A, 106, 16592-16597.
PDB code: 3ftq
19424291 R.Gasper, S.Meyer, K.Gotthardt, M.Sirajuddin, and A.Wittinghofer (2009).
It takes two to tango: regulation of G proteins by dimerization.
  Nat Rev Mol Cell Biol, 10, 423-429.  
19806182 S.Meyer, S.Böhme, A.Krüger, H.J.Steinhoff, J.P.Klare, and A.Wittinghofer (2009).
Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.
  PLoS Biol, 7, e1000212.
PDB codes: 3gee 3geh 3gei
19821486 Y.Itsui, N.Sakamoto, S.Kakinuma, M.Nakagawa, Y.Sekine-Osajima, M.Tasaka-Fujita, Y.Nishimura-Sakurai, G.Suda, Y.Karakama, K.Mishima, M.Yamamoto, T.Watanabe, M.Ueyama, Y.Funaoka, S.Azuma, and M.Watanabe (2009).
Antiviral effects of the interferon-induced protein guanylate binding protein 1 and its interaction with the hepatitis C virus NS5B protein.
  Hepatology, 50, 1727-1737.  
18309292 A.Scrima, C.Thomas, D.Deaconescu, and A.Wittinghofer (2008).
The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues.
  EMBO J, 27, 1145-1153.
PDB code: 3brw
18697200 E.Naschberger, R.S.Croner, S.Merkel, A.Dimmler, P.Tripal, K.U.Amann, E.Kremmer, W.M.Brueckl, T.Papadopoulos, C.Hohenadl, W.Hohenberger, and M.Stürzl (2008).
Angiostatic immune reaction in colorectal carcinoma: Impact on survival and perspectives for antiangiogenic therapy.
  Int J Cancer, 123, 2120-2129.  
18772884 J.P.Hunn, S.Koenen-Waisman, N.Papic, N.Schroeder, N.Pawlowski, R.Lange, F.Kaiser, J.Zerrahn, S.Martens, and J.C.Howard (2008).
Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii.
  EMBO J, 27, 2495-2509.  
18650931 K.Gotthardt, M.Weyand, A.Kortholt, P.J.Van Haastert, and A.Wittinghofer (2008).
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.
  EMBO J, 27, 2239-2249.
PDB codes: 3dpt 3dpu
18713003 L.Gremer, B.Gilsbach, M.R.Ahmadian, and A.Wittinghofer (2008).
Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction.
  Biol Chem, 389, 1163-1171.  
18082766 N.Joly, M.Rappas, M.Buck, and X.Zhang (2008).
Trapping of a transcription complex using a new nucleotide analogue: AMP aluminium fluoride.
  J Mol Biol, 375, 1206-1211.
PDB code: 2vii
18086378 A.R.Shenoy, B.H.Kim, H.P.Choi, T.Matsuzawa, S.Tiwari, and J.D.MacMicking (2007).
Emerging themes in IFN-gamma-induced macrophage immunity by the p47 and p65 GTPase families.
  Immunobiology, 212, 771-784.  
17853449 G.Terashi, M.Takeda-Shitaka, K.Kanou, M.Iwadate, D.Takaya, and H.Umeyama (2007).
The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation.
  Proteins, 69, 866-872.  
17671980 J.Janin (2007).
The targets of CAPRI rounds 6-12.
  Proteins, 69, 699-703.  
17803211 M.Bueno, and C.J.Camacho (2007).
Acidic groups docked to well defined wetted pockets at the core of the binding interface: a tale of scoring and missing protein interactions in CAPRI.
  Proteins, 69, 786-792.  
17671977 M.Król, R.A.Chaleil, A.L.Tournier, and P.A.Bates (2007).
Implicit flexibility in protein docking: cross-docking and local refinement.
  Proteins, 69, 750-757.  
17803216 N.Li, Z.Sun, and F.Jiang (2007).
SOFTDOCK application to protein-protein interaction benchmark and CAPRI.
  Proteins, 69, 801-808.  
17914359 O.Daumke, R.Lundmark, Y.Vallis, S.Martens, P.J.Butler, and H.T.McMahon (2007).
Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling.
  Nature, 449, 923-927.
PDB code: 2qpt
17266443 P.Tripal, M.Bauer, E.Naschberger, T.Mörtinger, C.Hohenadl, E.Cornali, M.Thurau, and M.Stürzl (2007).
Unique features of different members of the human guanylate-binding protein family.
  J Interferon Cytokine Res, 27, 44-52.  
17803234 S.J.de Vries, A.D.van Dijk, M.Krzeminski, M.van Dijk, A.Thureau, V.Hsu, T.Wassenaar, and A.M.Bonvin (2007).
HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets.
  Proteins, 69, 726-733.  
17876812 S.R.Comeau, D.Kozakov, R.Brenke, Y.Shen, D.Beglov, and S.Vajda (2007).
ClusPro: performance in CAPRI rounds 6-11 and the new server.
  Proteins, 69, 781-785.  
16763562 A.Scrima, and A.Wittinghofer (2006).
Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element.
  EMBO J, 25, 2940-2951.
PDB codes: 2gj8 2gj9 2gja
17122778 H.H.Low, and J.Löwe (2006).
A bacterial dynamin-like protein.
  Nature, 444, 766-769.
PDB codes: 2j68 2j69
16873363 S.Kunzelmann, G.J.Praefcke, and C.Herrmann (2006).
Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
  J Biol Chem, 281, 28627-28635.  
16824009 S.Martens, and J.Howard (2006).
The interferon-inducible GTPases.
  Annu Rev Cell Dev Biol, 22, 559-589.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer