 |
PDBsum entry 2cbh
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase (o-glycosyl)
|
PDB id
|
|
|
|
2cbh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.2.1.91
- cellulose 1,4-beta-cellobiosidase (non-reducing end).
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains.
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Biochemistry
28:7241-7257
(1989)
|
|
PubMed id:
|
|
|
|
|
| |
|
Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing.
|
|
J.Kraulis,
G.M.Clore,
M.Nilges,
T.A.Jones,
G.Pettersson,
J.Knowles,
A.M.Gronenborn.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The solution structure of a synthetic 36-residue polypeptide comprising the
C-terminal cellulose binding domain of cellobiohydrolase I (CT-CBH I) from
Trichoderma reesei was investigated by nuclear magnetic resonance (NMR)
spectroscopy. The 1H NMR spectrum was completely assigned in a sequential manner
by two-dimensional NMR techniques. A large number of stereospecific assignments
for beta-methylene protons, as well as ranges for the phi, psi, and chi 1
torsion angles, were obtained on the basis of sequential and intraresidue
nuclear Overhauser enhancement (NOE) and coupling constant data in combination
with a conformational data base search. The structure calculations were carried
out in an iterative manner by using the hybrid distance geometry-dynamical
simulated annealing method. This involved computing a series of initial
structures from a subset of the experimental data in order to resolve
ambiguities in the assignments of some NOE cross-peaks arising from chemical
shift degeneracy. Additionally, this permitted us to extend the stereospecific
assignments to the alpha-methylene protons of glycine using information on phi
torsion angles derived from the initial structure calculations. The final
experimental data set consisted of 554 interproton distance restraints, 24
restraints for 12 hydrogen bonds, and 33 phi, 24 psi, and 25 chi 1 torsion angle
restraints. CT-CBH I has two disulfide bridges whose pairing was previously
unknown. Analysis of structures calculated with all three possible combinations
of disulfide bonds, as well as without disulfide bonds, indicated that the
correct disulfide bridge pairing was 8-25 and 19-35. Forty-one structures were
computed with the 8-25 and 19-35 disulfide bridges, and the average atomic rms
difference between the individual structures and the mean structure obtained by
averaging their coordinates was 0.33 +/- 0.04 A for the backbone atoms and 0.52
+/- 0.06 A for all atoms. The protein has a wedgelike shape with an amphiphilic
character, one face being predominantly hydrophilic and the other mainly
hydrophobic. The principal element of secondary structure is made up of an
irregular triple-stranded antiparallel beta-sheet composed of residues 5-9 (beta
1), 24-28 (beta 2), and 33-36 (beta 3) in which strand beta 3 is hydrogen bonded
to the other two strands.(ABSTRACT TRUNCATED AT 400 WORDS)
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.Tavagnacco,
P.E.Mason,
U.Schnupf,
F.Pitici,
L.Zhong,
M.E.Himmel,
M.Crowley,
A.Cesàro,
and
J.W.Brady
(2011).
Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.
|
| |
Carbohydr Res,
346,
839-846.
|
 |
|
|
|
|
 |
D.Guillén,
S.Sánchez,
and
R.Rodríguez-Sanoja
(2010).
Carbohydrate-binding domains: multiplicity of biological roles.
|
| |
Appl Microbiol Biotechnol,
85,
1241-1249.
|
 |
|
|
|
|
 |
S.E.Lantz,
F.Goedegebuur,
R.Hommes,
T.Kaper,
B.R.Kelemen,
C.Mitchinson,
L.Wallace,
J.Ståhlberg,
and
E.A.Larenas
(2010).
Hypocrea jecorina CEL6A protein engineering.
|
| |
Biotechnol Biofuels,
3,
20.
|
 |
|
|
|
|
 |
S.P.Voutilainen,
H.Boer,
M.Alapuranen,
J.Jänis,
J.Vehmaanperä,
and
A.Koivula
(2009).
Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B.
|
| |
Appl Microbiol Biotechnol,
83,
261-272.
|
 |
|
|
|
|
 |
R.Das,
S.Loss,
J.Li,
D.S.Waugh,
S.Tarasov,
P.T.Wingfield,
R.A.Byrd,
and
A.S.Altieri
(2008).
Structural biophysics of the NusB:NusE antitermination complex.
|
| |
J Mol Biol,
376,
705-720.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Pinto,
A.L.Amaral,
E.C.Ferreira,
M.Mota,
M.Vilanova,
K.Ruel,
and
M.Gama
(2008).
Quantification of the CBD-FITC conjugates surface coating on cellulose fibres.
|
| |
BMC Biotechnol,
8,
1.
|
 |
|
|
|
|
 |
Y.Zheng,
Z.Pan,
R.Zhang,
D.Wang,
and
B.Jenkins
(2008).
Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated Creeping Wild Ryegrass.
|
| |
Appl Biochem Biotechnol,
146,
231-248.
|
 |
|
|
|
|
 |
K.Igarashi,
M.Wada,
and
M.Samejima
(2007).
Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
|
| |
FEBS J,
274,
1785-1792.
|
 |
|
|
|
|
 |
M.L.Rabinovich,
L.G.Vasil'chenko,
K.N.Karapetyan,
G.P.Shumakovich,
O.P.Yershevich,
R.Ludwig,
D.Haltrich,
Y.Hadar,
Y.P.Kozlov,
and
A.I.Yaropolov
(2007).
Application of cellulose-based self-assembled tri-enzyme system in a pseudo-reagent-less biosensor for biogenic catecholamine detection.
|
| |
Biotechnol J,
2,
546-558.
|
 |
|
|
|
|
 |
A.W.Blake,
L.McCartney,
J.E.Flint,
D.N.Bolam,
A.B.Boraston,
H.J.Gilbert,
and
J.P.Knox
(2006).
Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes.
|
| |
J Biol Chem,
281,
29321-29329.
|
 |
|
|
|
|
 |
H.Jia,
A.Bagherzadeh,
B.Hartzoulakis,
A.Jarvis,
M.Löhr,
S.Shaikh,
R.Aqil,
L.Cheng,
M.Tickner,
D.Esposito,
R.Harris,
P.C.Driscoll,
D.L.Selwood,
and
I.C.Zachary
(2006).
Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling.
|
| |
J Biol Chem,
281,
13493-13502.
|
 |
|
|
|
|
 |
L.Duo-Chuan
(2006).
Review of fungal chitinases.
|
| |
Mycopathologia,
161,
345-360.
|
 |
|
|
|
|
 |
M.S.Centeno,
A.Goyal,
J.A.Prates,
L.M.Ferreira,
H.J.Gilbert,
and
C.M.Fontes
(2006).
Novel modular enzymes encoded by a cellulase gene cluster in Cellvibrio mixtus.
|
| |
FEMS Microbiol Lett,
265,
26-34.
|
 |
|
|
|
|
 |
S.Najmudin,
C.I.Guerreiro,
A.L.Carvalho,
J.A.Prates,
M.A.Correia,
V.D.Alves,
L.M.Ferreira,
M.J.Romão,
H.J.Gilbert,
D.N.Bolam,
and
C.M.Fontes
(2006).
Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains.
|
| |
J Biol Chem,
281,
8815-8828.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Mulakala,
and
P.J.Reilly
(2005).
Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study.
|
| |
Proteins,
60,
598-605.
|
 |
|
|
|
|
 |
E.A.Ximenes,
H.Chen,
I.A.Kataeva,
M.A.Cotta,
C.R.Felix,
L.G.Ljungdahl,
and
X.L.Li
(2005).
A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules.
|
| |
Can J Microbiol,
51,
559-568.
|
 |
|
|
|
|
 |
J.Flint,
D.N.Bolam,
D.Nurizzo,
E.J.Taylor,
M.P.Williamson,
C.Walters,
G.J.Davies,
and
H.J.Gilbert
(2005).
Probing the mechanism of ligand recognition in family 29 carbohydrate-binding modules.
|
| |
J Biol Chem,
280,
23718-23726.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Seidl,
B.Huemer,
B.Seiboth,
and
C.P.Kubicek
(2005).
A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases.
|
| |
FEBS J,
272,
5923-5939.
|
 |
|
|
|
|
 |
A.L.Carvalho,
A.Goyal,
J.A.Prates,
D.N.Bolam,
H.J.Gilbert,
V.M.Pires,
L.M.Ferreira,
A.Planas,
M.J.Romão,
and
C.M.Fontes
(2004).
The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site.
|
| |
J Biol Chem,
279,
34785-34793.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.N.Bolam,
H.Xie,
G.Pell,
D.Hogg,
G.Galbraith,
B.Henrissat,
and
H.J.Gilbert
(2004).
X4 modules represent a new family of carbohydrate-binding modules that display novel properties.
|
| |
J Biol Chem,
279,
22953-22963.
|
 |
|
|
|
|
 |
J.L.Henshaw,
D.N.Bolam,
V.M.Pires,
M.Czjzek,
B.Henrissat,
L.M.Ferreira,
C.M.Fontes,
and
H.J.Gilbert
(2004).
The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities.
|
| |
J Biol Chem,
279,
21552-21559.
|
 |
|
|
|
|
 |
Y.H.Zhang,
and
L.R.Lynd
(2004).
Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems.
|
| |
Biotechnol Bioeng,
88,
797-824.
|
 |
|
|
|
|
 |
H.Boer,
and
A.Koivula
(2003).
The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A.
|
| |
Eur J Biochem,
270,
841-848.
|
 |
|
|
|
|
 |
J.Lehtiö,
J.Sugiyama,
M.Gustavsson,
L.Fransson,
M.Linder,
and
T.T.Teeri
(2003).
The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules.
|
| |
Proc Natl Acad Sci U S A,
100,
484-489.
|
 |
|
|
|
|
 |
M.Roberge,
R.N.Lewis,
F.Shareck,
R.Morosoli,
D.Kluepfel,
C.Dupont,
and
R.N.McElhaney
(2003).
Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans.
|
| |
Proteins,
50,
341-354.
|
 |
|
|
|
|
 |
M.Takeda,
H.Terasawa,
M.Sakakura,
Y.Yamaguchi,
M.Kajiwara,
H.Kawashima,
M.Miyasaka,
and
I.Shimada
(2003).
Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments.
|
| |
J Biol Chem,
278,
43550-43555.
|
 |
|
|
|
|
 |
T.Lauber,
P.Neudecker,
P.Rösch,
and
U.C.Marx
(2003).
Solution structure of human proguanylin: the role of a hormone prosequence.
|
| |
J Biol Chem,
278,
24118-24124.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Kwon,
K.Ekino,
T.Oka,
M.Goto,
and
K.Furukawa
(2002).
Effects of amino acid alterations on the transglycosylation reaction of endoglucanase I from Trichoderma viride HK-75.
|
| |
Biosci Biotechnol Biochem,
66,
110-116.
|
 |
|
|
|
|
 |
M.Saloheimo,
M.Paloheimo,
S.Hakola,
J.Pere,
B.Swanson,
E.Nyyssönen,
A.Bhatia,
M.Ward,
and
M.Penttilä
(2002).
Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials.
|
| |
Eur J Biochem,
269,
4202-4211.
|
 |
|
|
|
|
 |
V.Receveur,
M.Czjzek,
M.Schülein,
P.Panine,
and
B.Henrissat
(2002).
Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering.
|
| |
J Biol Chem,
277,
40887-40892.
|
 |
|
|
|
|
 |
Y.Itoh,
T.Kawase,
N.Nikaidou,
H.Fukada,
M.Mitsutomi,
T.Watanabe,
and
Y.Itoh
(2002).
Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function.
|
| |
Biosci Biotechnol Biochem,
66,
1084-1092.
|
 |
|
|
|
|
 |
A.C.Freelove,
D.N.Bolam,
P.White,
G.P.Hazlewood,
and
H.J.Gilbert
(2001).
A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi.
|
| |
J Biol Chem,
276,
43010-43017.
|
 |
|
|
|
|
 |
A.Engler,
T.Stangler,
and
D.Willbold
(2001).
Solution structure of human immunodeficiency virus type 1 Vpr(13-33) peptide in micelles.
|
| |
Eur J Biochem,
268,
389-395.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.N.Bolam,
H.Xie,
P.White,
P.J.Simpson,
S.M.Hancock,
M.P.Williamson,
and
H.J.Gilbert
(2001).
Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A.
|
| |
Biochemistry,
40,
2468-2477.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.A.Kataeva,
R.D.Seidel,
X.L.Li,
and
L.G.Ljungdahl
(2001).
Properties and mutation analysis of the CelK cellulose-binding domain from the Clostridium thermocellum cellulosome.
|
| |
J Bacteriol,
183,
1552-1559.
|
 |
|
|
|
|
 |
J.Karlsson,
M.Saloheimo,
M.Siika-Aho,
M.Tenkanen,
M.Penttilä,
and
F.Tjerneld
(2001).
Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei.
|
| |
Eur J Biochem,
268,
6498-6507.
|
 |
|
|
|
|
 |
M.K.Ali,
H.Hayashi,
S.Karita,
M.Goto,
T.Kimura,
K.Sakka,
and
K.Ohmiya
(2001).
Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis.
|
| |
Biosci Biotechnol Biochem,
65,
41-47.
|
 |
|
|
|
|
 |
M.L.Wu,
Y.C.Chuang,
J.P.Chen,
C.S.Chen,
and
M.C.Chang
(2001).
Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101.
|
| |
Appl Environ Microbiol,
67,
5100-5106.
|
 |
|
|
|
|
 |
S.J.Ding,
W.Ge,
and
J.A.Buswell
(2001).
Endoglucanase I from the edible straw mushroom, Volvariella volvacea. Purification, characterization, cloning and expression.
|
| |
Eur J Biochem,
268,
5687-5695.
|
 |
|
|
|
|
 |
S.Ludvigsen,
L.Thim,
A.M.Blom,
and
B.S.Wulff
(2001).
Solution structure of the satiety factor, CART, reveals new functionality of a well-known fold.
|
| |
Biochemistry,
40,
9082-9088.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Notenboom,
A.B.Boraston,
D.G.Kilburn,
and
D.R.Rose
(2001).
Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms.
|
| |
Biochemistry,
40,
6248-6256.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Wang,
M.B.Slade,
A.A.Gooley,
B.J.Atwell,
and
K.L.Williams
(2001).
Cellulose-binding modules from extracellular matrix proteins of Dictyostelium discoideum stalk and sheath.
|
| |
Eur J Biochem,
268,
4334-4345.
|
 |
|
|
|
|
 |
D.I.Svergun,
A.Bećirević,
H.Schrempf,
M.H.Koch,
and
G.Grüber
(2000).
Solution structure and conformational changes of the Streptomyces chitin-binding protein (CHB1).
|
| |
Biochemistry,
39,
10677-10683.
|
 |
|
|
|
|
 |
E.Brun,
P.E.Johnson,
A.L.Creagh,
P.Tomme,
P.Webster,
C.A.Haynes,
and
L.P.McIntosh
(2000).
Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C.
|
| |
Biochemistry,
39,
2445-2458.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.J.Moy,
P.K.Chanda,
M.I.Cockett,
W.Edris,
P.G.Jones,
K.Mason,
S.Semus,
and
R.Powers
(2000).
NMR structure of free RGS4 reveals an induced conformational change upon binding Galpha.
|
| |
Biochemistry,
39,
7063-7073.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Carrard,
A.Koivula,
H.Söderlund,
and
P.Béguin
(2000).
Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose.
|
| |
Proc Natl Acad Sci U S A,
97,
10342-10347.
|
 |
|
|
|
|
 |
J.Kormos,
P.E.Johnson,
E.Brun,
P.Tomme,
L.P.McIntosh,
C.A.Haynes,
and
D.G.Kilburn
(2000).
Binding site analysis of cellulose binding domain CBD(N1) from endoglucanse C of Cellulomonas fimi by site-directed mutagenesis.
|
| |
Biochemistry,
39,
8844-8852.
|
 |
|
|
|
|
 |
J.Lehtiö,
T.T.Teeri,
and
P.A.Nygren
(2000).
Alpha-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold.
|
| |
Proteins,
41,
316-322.
|
 |
|
|
|
|
 |
K.L.Mayer,
and
M.J.Stone
(2000).
NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2.
|
| |
Biochemistry,
39,
8382-8395.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.J.Shimon,
S.Pagès,
A.Belaich,
J.P.Belaich,
E.A.Bayer,
R.Lamed,
Y.Shoham,
and
F.Frolow
(2000).
Structure of a family IIIa scaffoldin CBD from the cellulosome of Clostridium cellulolyticum at 2.2 A resolution.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1560-1568.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Hashimoto,
T.Ikegami,
S.Seino,
N.Ohuchi,
H.Fukada,
J.Sugiyama,
M.Shirakawa,
and
T.Watanabe
(2000).
Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12.
|
| |
J Bacteriol,
182,
3045-3054.
|
 |
|
|
|
|
 |
P.A.Kroon,
G.Williamson,
N.M.Fish,
D.B.Archer,
and
N.J.Belshaw
(2000).
A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module.
|
| |
Eur J Biochem,
267,
6740-6752.
|
 |
|
|
|
|
 |
S.J.Charnock,
D.N.Bolam,
J.P.Turkenburg,
H.J.Gilbert,
L.M.Ferreira,
G.J.Davies,
and
C.M.Fontes
(2000).
The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain.
|
| |
Biochemistry,
39,
5013-5021.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Ponyi,
L.Szabó,
T.Nagy,
L.Orosz,
P.J.Simpson,
M.P.Williamson,
and
H.J.Gilbert
(2000).
Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands.
|
| |
Biochemistry,
39,
985-991.
|
 |
|
|
|
|
 |
A.Wentzel,
A.Christmann,
R.Krätzner,
and
H.Kolmar
(1999).
Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening.
|
| |
J Biol Chem,
274,
21037-21043.
|
 |
|
|
|
|
 |
D.E.Otzen,
L.Christiansen,
and
M.Schülein
(1999).
A comparative study of the unfolding of the endoglucanase Cel45 from Humicola insolens in denaturant and surfactant.
|
| |
Protein Sci,
8,
1878-1887.
|
 |
|
|
|
|
 |
G.Carrard,
and
M.Linder
(1999).
Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei.
|
| |
Eur J Biochem,
262,
637-643.
|
 |
|
|
|
|
 |
H.D.Simpson,
and
F.Barras
(1999).
Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase.
|
| |
J Bacteriol,
181,
4611-4616.
|
 |
|
|
|
|
 |
H.Palonen,
M.Tenkanen,
and
M.Linder
(1999).
Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis.
|
| |
Appl Environ Microbiol,
65,
5229-5233.
|
 |
|
|
|
|
 |
H.Sticht,
S.E.Escher,
K.Schweimer,
W.G.Forssmann,
P.Rösch,
and
K.Adermann
(1999).
Solution structure of the human CC chemokine 2: A monomeric representative of the CC chemokine subtype.
|
| |
Biochemistry,
38,
5995-6002.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.van Tilbeurgh,
S.Bezzine,
C.Cambillau,
R.Verger,
and
F.Carrière
(1999).
Colipase: structure and interaction with pancreatic lipase.
|
| |
Biochim Biophys Acta,
1441,
173-184.
|
 |
|
|
|
|
 |
P.J.Simpson,
D.N.Bolam,
A.Cooper,
A.Ciruela,
G.P.Hazlewood,
H.J.Gilbert,
and
M.P.Williamson
(1999).
A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity.
|
| |
Structure,
7,
853-864.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Lu,
P.Deng,
X.Liu,
J.Luo,
R.Han,
X.Gu,
S.Liang,
X.Wang,
F.Li,
V.Lozanov,
A.Patthy,
and
S.Pongor
(1999).
Solution structure of the major alpha-amylase inhibitor of the crop plant amaranth.
|
| |
J Biol Chem,
274,
20473-20478.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Tanaka,
S.Fujiwara,
S.Nishikori,
T.Fukui,
M.Takagi,
and
T.Imanaka
(1999).
A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1.
|
| |
Appl Environ Microbiol,
65,
5338-5344.
|
 |
|
|
|
|
 |
B.Imperiali,
and
J.J.Ottesen
(1998).
Design strategies for the construction of independently folded polypeptide motifs.
|
| |
Biopolymers,
47,
23-29.
|
 |
|
|
|
|
 |
D.Esser,
B.Bauer,
R.M.Wolthuis,
A.Wittinghofer,
R.H.Cool,
and
P.Bayer
(1998).
Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf.
|
| |
Biochemistry,
37,
13453-13462.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.García-Olmedo,
A.Molina,
J.M.Alamillo,
and
P.Rodríguez-Palenzuéla
(1998).
Plant defense peptides.
|
| |
Biopolymers,
47,
479-491.
|
 |
|
|
|
|
 |
F.J.Moy,
P.K.Chanda,
S.Cosmi,
M.R.Pisano,
C.Urbano,
J.Wilhelm,
and
R.Powers
(1998).
High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
|
| |
Biochemistry,
37,
1495-1504.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.P.Connelly,
and
L.P.McIntosh
(1998).
Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule.
|
| |
Biochemistry,
37,
1810-1818.
|
 |
|
|
|
|
 |
M.Beissinger,
H.Sticht,
M.Sutter,
A.Ejchart,
W.Haehnel,
and
P.Rösch
(1998).
Solution structure of cytochrome c6 from the thermophilic cyanobacterium Synechococcus elongatus.
|
| |
EMBO J,
17,
27-36.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Linder,
T.Nevanen,
L.Söderholm,
O.Bengs,
and
T.T.Teeri
(1998).
Improved immobilization of fusion proteins via cellulose-binding domains.
|
| |
Biotechnol Bioeng,
60,
642-647.
|
 |
|
|
|
|
 |
P.E.Johnson,
A.L.Creagh,
E.Brun,
K.Joe,
P.Tomme,
C.A.Haynes,
and
L.P.McIntosh
(1998).
Calcium binding by the N-terminal cellulose-binding domain from Cellulomonas fimi beta-1,4-glucanase CenC.
|
| |
Biochemistry,
37,
12772-12781.
|
 |
|
|
|
|
 |
S.Walter,
E.Wellmann,
and
H.Schrempf
(1998).
The cell wall-anchored Streptomyces reticuli avicel-binding protein (AbpS) and its gene.
|
| |
J Bacteriol,
180,
1647-1654.
|
 |
|
|
|
|
 |
W.Shao,
L.F.Jerva,
J.West,
E.Lolis,
and
B.I.Schweitzer
(1998).
Solution structure of murine macrophage inflammatory protein-2.
|
| |
Biochemistry,
37,
8303-8313.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Zhu,
K.Sandman,
G.E.Lee,
J.N.Reeve,
and
M.F.Summers
(1998).
NMR structure and comparison of the archaeal histone HFoB from the mesophile Methanobacterium formicicum with HMfB from the hyperthermophile Methanothermus fervidus.
|
| |
Biochemistry,
37,
10573-10580.
|
 |
|
|
|
|
 |
J.J.Prompers,
A.Groenewegen,
R.C.Van Schaik,
H.A.Pepermans,
and
C.W.Hilbers
(1997).
1H, 13C, and 15N resonance assignments of Fusarium solani pisi cutinase and preliminary features of the structure in solution.
|
| |
Protein Sci,
6,
2375-2384.
|
 |
|
|
|
|
 |
J.Medve,
J.Ståhlberg,
and
F.Tjerneld
(1997).
Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose.
|
| |
Appl Biochem Biotechnol,
66,
39-56.
|
 |
|
|
|
|
 |
K.Morimoto,
S.Karita,
T.Kimura,
K.Sakka,
and
K.Ohmiya
(1997).
Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain.
|
| |
J Bacteriol,
179,
7306-7314.
|
 |
|
|
|
|
 |
K.Sorimachi,
M.F.Le Gal-Coëffet,
G.Williamson,
D.B.Archer,
and
M.P.Williamson
(1997).
Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin.
|
| |
Structure,
5,
647-661.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.E.Himmel,
P.A.Karplus,
J.Sakon,
W.S.Adney,
J.O.Baker,
and
S.R.Thomas
(1997).
Polysaccharide hydrolase folds diversity of structure and convergence of function.
|
| |
Appl Biochem Biotechnol,
63,
315-325.
|
 |
|
|
|
|
 |
M.K.Bhat,
and
S.Bhat
(1997).
Cellulose degrading enzymes and their potential industrial applications.
|
| |
Biotechnol Adv,
15,
583-620.
|
 |
|
|
|
|
 |
M.L.Mattinen,
M.Kontteli,
J.Kerovuo,
M.Linder,
A.Annila,
G.Lindeberg,
T.Reinikainen,
and
T.Drakenberg
(1997).
Three-dimensional structures of three engineered cellulose-binding domains of cellobiohydrolase I from Trichoderma reesei.
|
| |
Protein Sci,
6,
294-303.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Saloheimo,
T.Nakari-Setälä,
M.Tenkanen,
and
M.Penttilä
(1997).
cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast.
|
| |
Eur J Biochem,
249,
584-591.
|
 |
|
|
|
|
 |
P.R.Mittl,
S.Di Marco,
G.Fendrich,
G.Pohlig,
J.Heim,
C.Sommerhoff,
H.Fritz,
J.P.Priestle,
and
M.G.Grütter
(1997).
A new structural class of serine protease inhibitors revealed by the structure of the hirustasin-kallikrein complex.
|
| |
Structure,
5,
253-264.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Pagès,
L.Gal,
A.Bélaïch,
C.Gaudin,
C.Tardif,
and
J.P.Bélaïch
(1997).
Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation.
|
| |
J Bacteriol,
179,
2810-2816.
|
 |
|
|
|
|
 |
B.Baumann,
H.Sticht,
M.Schärpf,
M.Sutter,
W.Haehnel,
and
P.Rösch
(1996).
Structure of Synechococcus elongatus [Fe2S2] ferredoxin in solution.
|
| |
Biochemistry,
35,
12831-12841.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Faber,
A.Lindemann,
H.Sticht,
A.Ejchart,
A.Kungl,
M.Susani,
R.W.Frank,
D.Kraft,
M.Breitenbach,
and
P.Rösch
(1996).
Secondary structure and tertiary fold of the birch pollen allergen Bet v 1 in solution.
|
| |
J Biol Chem,
271,
19243-19250.
|
 |
|
|
|
|
 |
E.Margolles-Clark,
M.Tenkanen,
H.Söderlund,
and
M.Penttilä
(1996).
Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain.
|
| |
Eur J Biochem,
237,
553-560.
|
 |
|
|
|
|
 |
F.J.Moy,
A.P.Seddon,
P.Böhlen,
and
R.Powers
(1996).
High-resolution solution structure of basic fibroblast growth factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.
|
| |
Biochemistry,
35,
13552-13561.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Sticht,
G.Wildegger,
D.Bentrop,
B.Darimont,
R.Sterner,
and
P.Rösch
(1996).
An NMR-derived model for the solution structure of oxidized Thermotoga maritima 1[Fe4-S4] ferredoxin.
|
| |
Eur J Biochem,
237,
726-735.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Sticht,
M.Auer,
B.Schmitt,
J.Besemer,
M.Horcher,
T.Kirsch,
I.J.Lindley,
and
P.Rösch
(1996).
Structure and activity of a chimeric interleukin-8-melanoma-growth-stimulatory-activity protein.
|
| |
Eur J Biochem,
235,
26-35.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Tormo,
R.Lamed,
A.J.Chirino,
E.Morag,
E.A.Bayer,
Y.Shoham,
and
T.A.Steitz
(1996).
Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose.
|
| |
EMBO J,
15,
5739-5751.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.A.Plesniak,
W.W.Wakarchuk,
and
L.P.McIntosh
(1996).
Secondary structure and NMR assignments of Bacillus circulans xylanase.
|
| |
Protein Sci,
5,
1118-1135.
|
 |
|
|
|
|
 |
M.Linder,
I.Salovuori,
L.Ruohonen,
and
T.T.Teeri
(1996).
Characterization of a double cellulose-binding domain. Synergistic high affinity binding to crystalline cellulose.
|
| |
J Biol Chem,
271,
21268-21272.
|
 |
|
|
|
|
 |
M.Linder,
and
T.T.Teeri
(1996).
The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose.
|
| |
Proc Natl Acad Sci U S A,
93,
12251-12255.
|
 |
|
|
|
|
 |
M.R.Bray,
P.E.Johnson,
N.R.Gilkes,
L.P.McIntosh,
D.G.Kilburn,
and
R.A.Warren
(1996).
Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification.
|
| |
Protein Sci,
5,
2311-2318.
|
 |
|
|
|
|
 |
P.E.Johnson,
M.D.Joshi,
P.Tomme,
D.G.Kilburn,
and
L.P.McIntosh
(1996).
Structure of the N-terminal cellulose-binding domain of Cellulomonas fimi CenC determined by nuclear magnetic resonance spectroscopy.
|
| |
Biochemistry,
35,
14381-14394.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.E.Johnson,
P.Tomme,
M.D.Joshi,
and
L.P.McIntosh
(1996).
Interaction of soluble cellooligosaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC 2. NMR and ultraviolet absorption spectroscopy.
|
| |
Biochemistry,
35,
13895-13906.
|
 |
|
|
|
|
 |
P.Tomme,
A.L.Creagh,
D.G.Kilburn,
and
C.A.Haynes
(1996).
Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis.
|
| |
Biochemistry,
35,
13885-13894.
|
 |
|
|
|
|
 |
S.Denman,
G.P.Xue,
and
B.Patel
(1996).
Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II.
|
| |
Appl Environ Microbiol,
62,
1889-1896.
|
 |
|
|
|
|
 |
V.Harjunpää,
A.Teleman,
A.Koivula,
L.Ruohonen,
T.T.Teeri,
O.Teleman,
and
T.Drakenberg
(1996).
Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves.
|
| |
Eur J Biochem,
240,
584-591.
|
 |
|
|
|
|
 |
A.M.Gronenborn,
and
G.M.Clore
(1995).
Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy.
|
| |
Crit Rev Biochem Mol Biol,
30,
351-385.
|
 |
|
|
|
|
 |
F.W.Smith,
P.Schultze,
and
J.Feigon
(1995).
Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats.
|
| |
Structure,
3,
997.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.M.Clore,
J.Ernst,
R.Clubb,
J.G.Omichinski,
W.M.Kennedy,
K.Sakaguchi,
E.Appella,
and
A.M.Gronenborn
(1995).
Refined solution structure of the oligomerization domain of the tumour suppressor p53.
|
| |
Nat Struct Biol,
2,
321-333.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Blaak,
and
H.Schrempf
(1995).
Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form.
|
| |
Eur J Biochem,
229,
132-139.
|
 |
|
|
|
|
 |
H.Stålbrand,
A.Saloheimo,
J.Vehmaanperä,
B.Henrissat,
and
M.Penttilä
(1995).
Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain.
|
| |
Appl Environ Microbiol,
61,
1090-1097.
|
 |
|
|
|
|
 |
M.Linder,
M.L.Mattinen,
M.Kontteli,
G.Lindeberg,
J.Ståhlberg,
T.Drakenberg,
T.Reinikainen,
G.Pettersson,
and
A.Annila
(1995).
Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I.
|
| |
Protein Sci,
4,
1056-1064.
|
 |
|
|
|
|
 |
P.Tomme,
D.P.Driver,
E.A.Amandoron,
R.C.Miller,
R.Antony,
J.Warren,
and
D.G.Kilburn
(1995).
Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain.
|
| |
J Bacteriol,
177,
4356-4363.
|
 |
|
|
|
|
 |
S.Keränen,
and
M.Penttilä
(1995).
Production of recombinant proteins in the filamentous fungus Trichoderma reesei.
|
| |
Curr Opin Biotechnol,
6,
534-537.
|
 |
|
|
|
|
 |
T.Reinikainen,
O.Teleman,
and
T.T.Teeri
(1995).
Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei.
|
| |
Proteins,
22,
392-403.
|
 |
|
|
|
|
 |
A.Saloheimo,
B.Henrissat,
A.M.Hoffrén,
O.Teleman,
and
M.Penttilä
(1994).
A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast.
|
| |
Mol Microbiol,
13,
219-228.
|
 |
|
|
|
|
 |
B.L.Grasberger,
G.M.Clore,
and
A.M.Gronenborn
(1994).
High-resolution structure of Ascaris trypsin inhibitor in solution: direct evidence for a pH-induced conformational transition in the reactive site.
|
| |
Structure,
2,
669-678.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.F.Damberger,
J.G.Pelton,
C.J.Harrison,
H.C.Nelson,
and
D.E.Wemmer
(1994).
Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.
|
| |
Protein Sci,
3,
1806-1821.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Terasawa,
D.Kohda,
H.Hatanaka,
K.Nagata,
N.Higashihashi,
H.Fujiwara,
K.Sakano,
and
F.Inagaki
(1994).
Solution structure of human insulin-like growth factor II; recognition sites for receptors and binding proteins.
|
| |
EMBO J,
13,
5590-5597.
|
 |
|
|
|
|
 |
J.Schnellmann,
A.Zeltins,
H.Blaak,
and
H.Schrempf
(1994).
The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline alpha-chitin of fungi and other organisms.
|
| |
Mol Microbiol,
13,
807-819.
|
 |
|
|
|
|
 |
M.R.Rejante,
and
M.Llinás
(1994).
Solution structure of the epsilon-aminohexanoic acid complex of human plasminogen kringle 1.
|
| |
Eur J Biochem,
221,
939-949.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Béguin,
and
J.P.Aubert
(1994).
The biological degradation of cellulose.
|
| |
FEMS Microbiol Rev,
13,
25-58.
|
 |
|
|
|
|
 |
R.T.Clubb,
J.G.Omichinski,
H.Savilahti,
K.Mizuuchi,
A.M.Gronenborn,
and
G.M.Clore
(1994).
A novel class of winged helix-turn-helix protein: the DNA-binding domain of Mu transposase.
|
| |
Structure,
2,
1041-1048.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Bagby,
T.S.Harvey,
S.G.Eagle,
S.Inouye,
and
M.Ikura
(1994).
NMR-derived three-dimensional solution structure of protein S complexed with calcium.
|
| |
Structure,
2,
107-122.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Sutcliffe
(1993).
Representing an ensemble of NMR-derived protein structures by a single structure.
|
| |
Protein Sci,
2,
936-944.
|
 |
|
|
|
|
 |
M.W.MacArthur,
and
J.M.Thornton
(1993).
Conformational analysis of protein structures derived from NMR data.
|
| |
Proteins,
17,
232-251.
|
 |
|
|
|
|
 |
P.W.Davis,
W.Thurmes,
and
I.Tinoco
(1993).
Structure of a small RNA hairpin.
|
| |
Nucleic Acids Res,
21,
537-545.
|
 |
|
|
|
|
 |
T.Keitel,
O.Simon,
R.Borriss,
and
U.Heinemann
(1993).
Molecular and active-site structure of a Bacillus 1,3-1,4-beta-glucanase.
|
| |
Proc Natl Acad Sci U S A,
90,
5287-5291.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Main,
T.S.Harvey,
M.Baron,
J.Boyd,
and
I.D.Campbell
(1992).
The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions.
|
| |
Cell,
71,
671-678.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.K.Brown,
J.C.Hempel,
and
P.W.Jeffs
(1992).
NMR restraint analysis of transforming growth factor alpha: a key component for NMR structure refinement.
|
| |
Proteins,
13,
306-326.
|
 |
|
|
|
|
 |
M.L.Donlan,
F.K.Brown,
and
P.W.Jeffs
(1992).
Solution conformation of human big endothelin-1.
|
| |
J Biomol NMR,
2,
407-420.
|
 |
|
|
|
|
 |
T.Nakai,
W.Yoshikawa,
H.Nakamura,
and
H.Yoshida
(1992).
The three-dimensional structure of guanine-specific ribonuclease F1 in solution determined by NMR spectroscopy and distance geometry.
|
| |
Eur J Biochem,
208,
41-51.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Reinikainen,
L.Ruohonen,
T.Nevanen,
L.Laaksonen,
P.Kraulis,
T.A.Jones,
J.K.Knowles,
and
T.T.Teeri
(1992).
Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I.
|
| |
Proteins,
14,
475-482.
|
 |
|
|
|
|
 |
G.M.Clore,
A.Bax,
and
A.M.Gronenborn
(1991).
Stereospecific assignment of beta-methylene protons in larger proteins using 3D 15N-separated Hartmann-Hahn and 13C-separated rotating frame Overhauser spectroscopy.
|
| |
J Biomol NMR,
1,
13-22.
|
 |
|
|
|
|
 |
N.R.Gilkes,
B.Henrissat,
D.G.Kilburn,
R.C.Miller,
and
R.A.Warren
(1991).
Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families.
|
| |
Microbiol Rev,
55,
303-315.
|
 |
|
|
|
|
 |
M.Nilges,
G.M.Clore,
and
A.M.Gronenborn
(1990).
1H-NMR stereospecific assignments by conformational data-base searches.
|
| |
Biopolymers,
29,
813-822.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |